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ABSTRACT

This paper presents a novel framework for the identifica-
tion of an image acquisition chain using dictionaries of edge
profiles. We investigate how edges, one of the most common
features present in images, are transformed during the image
acquisition chain. A dictionary of edge profiles is constructed
corresponding to edges obtained from known devices and at
different stages in the chain. The processing chain of a query
image is then identified by feature matching using the maxi-
mum inner product criteria. Experiments have shown that the
proposed method is able to identify the sources and acquisi-
tion stages of query images. It also has good performance in
both recapture detection and chain identification applications
for natural scene images.

Index Terms— Image Forensics, Recapture Detection,
Dictionary of Edge Profiles, Image Acquisition Chain, Line
Spread Function, Source Identification

1. INTRODUCTION

In recent years the focus of attention by the research commu-
nity has turned to the authenticity and integrity verification of
digital images. Despite the fact that image forensics is a new
area of research, several forensic techniques aimed at veri-
fying the fidelity of digital images have been proposed in the
literature. This is due to the high demand for tools in this area.
The majority of research conducted in image forensics centers
on image source identification and forgery detection. A com-
mon approach for source identification is to search for traces
of unique footprints left in an image by different stages of the
acquisition process which are correlated to the intrinsic prop-
erties of known image sources. Footprints are also residual
artefacts generated during a particular imaging process and
are often used as evidence of image tampering. Image forgery
can be detected by the presence of processing footprints or the
inconsistency of source footprints across images. This may
indicate the fusion of images from different sources. A com-
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prehensive overview of image forensic techniques based on
specific footprints can be found in [1].

Today, digital images can be repeatedly captured, manip-
ulated, and shared online by multiple users and can, therefore,
undergo several stages of processing over their lifetime. How-
ever, an individual footprint determined from a specific image
source or a clue derived from local processing alone may be
insufficient to provide a detailed description of the processing
history of an image. Furthermore, the individual footprints
may, in turn, be altered by the processing chain.

The presence of footprints introduced by the individual
stages of a processing chain was first explored in [2]. The
method models the processing block of a single camera with a
series of in-camera operations and is able to distinguish orig-
inal images from their post-acquisition tampered versions. In
[3] a method is proposed for the detection of JPEG recom-
pression using the statistical features of DCT coefficients.
Forgery detection based on resampling in a digital domain is
studied in [4] and [5] with the assumption that tampering is
often associated with scaling and rotation.

Problems in image reacquisition have also been studied in
terms of recapture detection. In [6] a recapture detection al-
gorithm that uses a combination of colour and resolution fea-
tures and a Support Vector Machine (SVM) classifier is pre-
sented. The method in [7] employs multiple physical features
including surface gradient, specularity distribution, contrast,
histogram, and blurriness in order to detect images recaptured
from printed material. The blurriness feature discussed in this
research is based on off-focus capture, mismatched resolu-
tion, and depth of field limits. In [8], a source camera can
be identified from a printed image using the Photo Response
Non-Uniformity (PRNU) pattern that is unique to each image
sensor.

Most approaches for recapture detection rely on classifiers
that use statistical parameters that are extracted from an image
and a combination of features derived from training sets. Fur-
thermore, existing methods detect recapture using evidence
obtained from a single event. In our scheme, we apply the
knowledge that the shape of an edge profile in an image is
determined by the different stages of the image acquisition
chain. Using a structured dictionary built in a controlled way
from edges found in an image our proposed method is capa-
ble not only of detecting recapture but also of retrieving the
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Fig. 1. Setup of signal diagram used in the research problem statement.

parameters in the image chain, thereby allowing individual
devices in the chain to be identified.

The paper is organised as follows. In Section 2, we for-
mulate a problem statement in order to model a series of pro-
cesses in a chain of acquisition events with controlled condi-
tions. A model for image acquisition and its unique proper-
ties is also described in this section. In section 3 we present
our proposed framework with a dictionary setup and feature
matching technique. The experiments and performance eval-
uation are discussed in Section 4 and conclusions are pre-
sented in Section 5.

.

2. PROBLEM SETUP

2.1. Problem Statement

In this section, a simplified model of an image acquisition
chain is defined in order to enable us to study the degradations
introduced into an edge by the image acquisition and repro-
duction chain. The only prior in this model is an input which
is described by an ideal edge f(t). The model incorporates
the fundamental components of an imaging chain that com-
prise the processes of image acquisition, image reproduction,
and image re-acquisition as shown in Figure 1.

The acquisition blocks are modeled by an A/D conversion
step (See detail in section 2.2). Each of the blocks has two
main parts: a sampling kernel and a sampling operation for a
1-D signal. The first and the second sampling kernels repre-
sent the impulse responses of the first and second acquisition
devices respectively. The images may be sampled at different
sampling rates T1, and T2.

After the first acquisition stage, a digitised version, g[n],
of the perfect edge, f(t), is obtained. The discrete samples
are then transformed back to the continuous domain by inter-
polation before being reacquired to the digitised form, ĝ[n],
by the second acquisition device. As a result of the reacqui-
sition process, footprints that are present in the image, ĝ[n],
will have inherited characteristics from the original digitised
signal, g[n].

We now consider an unknown query digital image q[n]
given only the prior knowledge that it is the result of the ac-

quisition of a perfect edge f(t). We would like to answer the
following questions:

1) What stages in the chain are the samples q[n] from?
(we are referring to the single captured g[n] and recaptured
ĝ[n] images)

2) How can we identify the acquisition elements ϕ1(t)
and ϕ2(t) (or ϕ1(t) in a single capture case) with access to
q[n] alone?

2.2. Image Acquisition Model

Image acquisition is a process that converts the spectral en-
ergy of a real scene to colour signals in the form of digital
numeric values corresponding to the location of pixels in the
image. The standard components of an acquisition device
include the optical units, image sensor, and post processing
units. Figure 2(a) describes the process of image acquisi-
tion which can be parametrically modeled as shown in Fig-
ure 2(b). The light-field image f(x, y), that is captured by
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Fig. 2. Simplified image acquisition models represented by
(a) acquisition components and (b) signal diagram.

an acquisition device, becomes blurred by the imperfection
of the optical units and sensor. These imperfections can be
modeled by the filter h(x, y). The blurred image g(x, y) =
f(x, y) ∗ h(x, y) = f(x, y) ∗ ϕ(x/T −m, y/T − n) is then
uniformly sampled with sampling period T , where ϕ(x, y) is
a sampling kernel which is a time reverse version of the trans-
fer function h(x, y). The discrete samples g[m,n] , represent-
ing a digital image, can be derived from sampling a blurred
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image, g(x, y), at the location [m,n] as:

g[m,n] = g(m,n)

=

∫ ∫
f(x, y)ϕ(x/T −m, y/T − n)dxdy

= 〈f(x, y), ϕ(x/T −m, y/T − n)〉, (1)

where x, y ∈ R and m,n ∈ Z . The parameters x, y represent
the coordinate of the image plane while m,n are the row and
column pixel indices of the image respectively.

2.3. Sampling Kernel and Line Spread Function

The response of an acquisition device to an input image can be
modeled by the sampling kernel ϕ(x, y) of the device. The re-
sponse, which is frequently described by a Point Spread Func-
tion (PSF), represents the degree to which light from a point
source is spread after it has been captured through the acqui-
sition device. Thus the PSF determines the amount of blur
that is introduced into the image. Typically, the PSF is unique
to a device and its 3-dimensional shape depends on several
factors such as the optics used during acquisition. The unique
response of the PSF can, therefore, be used to trace back to
the acquisition device that generated the image.

Edges are typical features that are present in almost every
type of computer generated and natural image. We assume
that the PSF is separable and therefore a one-dimensional
(1D) model can be used to adequately characterise the sam-
pling kernels. The blurring properties of 1D signals can be
measured by the Line Spread Function (LSF) of the acquisi-
tion device. One way of determining the LSF, assuming that
the PSF is circularly symmetric, is by integrating over cross-
sections of the PSF along points that lie on a straight line.

For the purposes of simplifying our model we consider
only 1D signals over the entire framework. With reference
to Figure 2(b) the response, g(t), to a perfect edge, f(t), can
be computed by g(t) = f(t) ∗ ϕ(−t/T ), where ϕ(t) is the
LSF of the acquisition device. In our research, we computed
the LSF of different acquisition devices using the SFRMAT
3.0 software [9] which is based on the slanted edge testing
standard described in the international standard, ISO 12233..

3. IDENTIFICATION OF ACQUISITION CHAINS

In this section, we create a framework for the identification
of the acquisition chain. A collection of dictionary elements
was constructed corresponding to the discrete edge profiles
that resulted from the acquisition of a perfect edge using a
wide range of known capture devices at different stages of the
imaging chain. Identification of a query image was done by
determining the best match between an edge profile found in
a query image and an edge profile from the dictionary. This
enabled us to predict the device used to capture the image.

3.1. Dictionary of Key Footprints of Acquisition Devices

A dictionary D was built with a collection of features that
represent blurred patterns introduced into a perfect edge by
all individual possible devices and all possible stages in the
chain. Dictionary elements, φi,γ , for a single capture with a
device, i, can be created as follows:

φi,γ = ϕi ∗ u[n − γ], (2)

where ϕi is the 1D LSF of the device, i, u[n] is a unit step
function that represents a perfect edge, and γ are all possible
shifts of edges in the window of interest.

Next, dictionary elements for recapture were built by sim-
ulating the actual image reproduction and reacquisition pro-
cesses of the display and camera, respectively. Edge profiles
from a single capture were linearly interpolated to increase
the number of samples by 16 times before being resampled
again by the second acquisition device. All possible combi-
nations of acquisition devices were simulated at the second
acquisition stage.

In this research, we captured images using three camera
models, a Canon EOS 400D with Canon EF-S 18-135mm IS
lens, a Canon PowerShot SX200 IS, and an Olympus E-P2
with 14-42mm lens kit. The cameras are referred to as C1, C2,
and C3, respectively. To ensure that the Line Spread Func-
tions for each device did not vary each time the camera was
used, the focal length of each camera was fixed to the max-
imum optical zoom setting possible. Thus, for C1, C2 and
C3 the focal length was set at 135mm, 35mm, and 42mm,
respectively. We constructed a set of dictionary elements cor-
responding to the edge profiles present in images taken with
the three cameras in the single capture and recapture camera
combinations presented in Table 1. Some examples of the first
derivative of edge profiles from cameras C1 and C2 and their
recaptured version, C1-C2, is shown in Figure 3.

Table 1. DICTIONARY ELEMENTS USED IN THE EXPERI-
MENTS

Single Capture Recapture
Dictionary Source Dictionary Recapture Order
Element Camera Element
φ1 C1 φ4 C1 andC1
φ2 C2 φ5 C1 andC2
φ3 C3 φ6 C1 and C3

φ7 C2 and C1
φ8 C3 and C1

3.2. Edge Feature Matching

The purpose of feature matching is to find a dictionary el-
ement that provides the best representation of the observed
edge from a query image. The best feature φm was chosen
from a set of dictionary elements φi in the dictionary D by
using the maximum inner product criterion.
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Fig. 3. Comparative plots of differentiated versions of the
edge profiles from cameras C1 and C2 and their recaptured
version C1-C2

φm = argmax
φi∈D

|〈q, φi〉|, (3)

where q is the vector of edge profiles from a query image and
φm is the dictionary element with the best match. The sam-
pling kernel and the stage in the chain that the image was from
was then predicted by identifying the process that maximised
the inner product between the edge feature and the dictionary
element.

4. SIMULATION RESULTS AND DISCUSSIONS

4.1. Kernel and Acquisition Stage Identification

In this research we assumed that the LSFs of the capture de-
vices were space-invariant. Inaccuracies introduced in cap-
ture device identification were due to the presence of image
noise and to edge profiles that differed greatly from the pro-
file of a ideal edge. Software was developed for selecting a
region of interest (ROI) in a query image corresponding to a
window of width 128 pixels and height 100 pixels. The ROIs
were manually selected and centred on the in-focus areas with
sharpest edges. A total of one hundred individual horizon-
tal lines were used in dictionary matching in order to obtain
a statistically significant match. Identification was based on
two important results: the average inner product (%) and the
confidence. The former represented the average inner product
between a query edge and each dictionary element over 100
lines of a chosen area while the latter was the probability that
the query image was classified into that category.

4.2. Simulation on Perfect Edges

In this section, the proposed algorithm was tested with a set
of query images that included both single capture and recap-
tured images. For the single capture case, a scene comprising
a sheet of paper with an artificially generated sharp, high con-
trast, straight edge was captured digitally using camera C1.
The image was displayed on a computer screen and recap-
tured using camera C2. The average inner product and confi-
dence was computed between the recaptured edge profile and
the dictionary elements and the results are summarised in Ta-
ble 2.

Table 2. RESULTS FOR IMAGE CHAIN IDENTIFICATION US-
ING A SINGLE CAPTURED IMAGE FROM C1 AND A RECAP-
TURED IMAGE FROM C1-C2

Dictionary
Single Capture (C1) Recapture (C1-C2)

Average Conf. Average Conf.
Element Innerproduct Innerproduct

φ1 97.075 0.94 78.650
φ2 87.818 0.01 68.030
φ3 95.903 0.05 79.623
φ4 92.799 84.998 0.10
φ5 87.100 86.996 0.68
φ6 87.807 85.766 0.22

4.3. Simulation on Real Images

The experiment was extended by applying the method to nat-
ural images. A collection of 160 single capture (original) and
recaptured images containing natural scenery was used. For
the group of images originating from a single capture, three
sets of 20 images captured hand-held by cameras C1, C2 and
C3 were used. For the recaptured images the three cameras
were combined to create 5 groups of 20 recaptured images
based on the following order of capture: C1-C1, C1-C2, C1-
C3, C2-C1, and finally C3-C1. All the recaptured images
were taken using a fixed tripod under controlled lighting con-
ditions. Some examples are shown in Figure 4.

(a) Single Capture C1 (b) Recapture C1-C3

(c) Single Capture C3 (d) Recapture C3-C1

Fig. 4. Examples of images used in the experiments (a) Single
capture from C1 (b) Recaptured image from C1 and C3 (c)
Single capture from C3 (d) Recaptured image from C3- C1

In the experiment, images were classified into 8 groups
based on the degree of similarity between the dictionary el-
ements and edge profiles. According to the source of dictio-
nary elements, images that were classified in groups 1-3 were
categorised as single capture whereas recaptured images were
classified in groups 4-8.
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Table 3. SOURCE IDENTIFICATION RESULTS

Query Image
Dictionary Elements

Performance (%)Single Capture Recapture
φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

Single capture
C1 18 1 1 90
C2 1 15 3 1 75
C3 1 1 16 1 1 80

Recapture

C1-C1 1 17 1 1 85
C1-C2 1 15 1 3 75
C1-C3 1 1 16 2 80
C2-C1 1 1 17 1 85
C3-C1 1 1 2 16 80

The results from the experiment are summarised in Table
3. From the 100 recaptured pictures, 98 were correctly identi-
fied as recaptured and 2 were misclassified as single capture.
This resulted in a true positive rate of 98% and a false nega-
tive rate of 2% and suggests that the algorithm performed very
well for the case of recapture detection. For the case of single
capture detection, 56 out of the 60 single capture images were
correctly classified resulting in a 93.3 % true negative rate and
a 6.67% false positive rate.

As observed in Table 3 the eight sets of 20 query images
were classified into 8 groups (φ1 to φ8 inclusive) based on the
similarity between edge profiles in the images and the dictio-
nary elements. The single capture images acquired by cam-
eras, C1, C2 and C3 were correctly identified with an accu-
racy of 90%, 75% and 80% respectively resulting in an aver-
age performance of 81.67% over all three cameras. The per-
formance of groups that contained camera C1 (Canon EOS
400D) was slightly higher than groups that did not contain
C1. This is probably due to the use of manual settings on C1
but not on cameras C2 and C3 where the feature was not avail-
able. For the group of recaptured images, the average identi-
fication performance was 81%, resulting in an average overall
performance for single and recaptured images of 81.25%.

5. CONCLUSIONS

A proposed framework for the identification of image acquisi-
tion chains with application to recapture detection and source
camera identification has been presented. The query images
were classified based on the unique properties of edge profiles
found in the image resulting from the different stages of the
image acquisition chain.

A dictionary of edge profiles was constructed from edges
that were transformed by the line spread functions resulting
from the combination of all known image capture devices and
acquisition chains. The maximum inner product was used to
determine the best match between an edge found in a query
image and a dictionary element. The algorithm was tested
with sets of ideal synthetic edges and real natural images and
the results suggest that the method is capable of delivering

accurate image recapture detection and image chain identifi-
cation.
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