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Abstract—Transform coding is routinely used for lossy
compression of discrete sources with memory. The input
signal is divided into N -dimensional vectors, which are
transformed by means of a linear mapping. Then, trans-
form coefficients are quantized and entropy coded. In this
paper we consider the problem of identifying the trans-
form matrix as well as the quantization step sizes. First,
we study the case in which the only available information
is a set of P transform decoded vectors. We formulate the
problem in terms of finding the lattice with the largest
determinant that contains all observed vectors. We propose
an algorithm that is able to find the optimal solution
and we formally study its convergence properties. Three
potential realms of application are considered as example
scenarios for the proposed theory: parameter retrieval
in presence of a chain of two transform coders, image
tampering identification and parameter estimation for
predictive coders. We show that, despite their differences,
all three scenarios can be tackled by applying the same
fundamental methodology. Experiments on both synthetic
data and real images validate the proposed approach.

I. INTRODUCTION

Transform coding has emerged over the years as
the dominating compression strategy. Transform cod-
ing is adopted in virtually all multimedia compression
standards including, among others, image compression
standards such as JPEG [3] and video compression
standards such as, for example, H.264/AVC [4] and
HEVC [5]. This is due to the fact that transform coders
are very effective and yet computationally inexpensive
since the encoding operation is divided into three rela-
tively simple steps: linear transformation of the data,
scalar quantization of each coefficient, and entropy
coding.

Due to its centrality to any type of multimedia data,
transform coding theory is now extensively used in a
new range of applications that rely on the possibil-
ity of reverse-engineering complex chains of operators
starting from the available output signals. Indeed, the
lifespan of a multimedia signal is virtually unbounded.
This is due to the ability of creating copies and the
availability of inexpensive storage options. However,
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signals seldom remain identical to their original version.
As they pass through processing chains, some operators,
including transform coding, are bound to leave subtle
characteristic footprints on the signals, which can be
identified in order to uncover their processing history.
This insight might be extremely useful in a wide range
of scenarios in the field of multimedia signal processing
at large including, e.g.,: i) forensics, in order to address
tasks such as source device identification [6] or tamper-
ing detection [7][8]; ii) quality assessment, to enable
no-reference methods that rely solely on the received
signals [9][10]; iii) digital restoration, which requires
prior knowledge about the operations that affected a
digital signal [11].

In this context, several works have exploited the foot-
prints left by transform coding. In [12], a method was
proposed to infer the implementation-dependent quan-
tization matrix template used in a JPEG-compressed
image. Double JPEG compression introduces character-
istic peaks in the histogram of DCT coefficients, which
has been used, e.g, for tampering localization [13][8].
More recently, similar techniques were applied to video
signals for the cases of MPEG-2 [14][15], MPEG-
4 [16][17] and H.264/AVC [18].

All the aforementioned works assume prior knowl-
edge of the specific transform in use, whereas the
quantization steps need to be estimated. Some efforts in
the direction of detecting the standard being considered
can be found in [19], which leverages the differences in
the way transform coding is implemented to discrimi-
nate between MPEG-2, MPEG-4 and H.264/AVC coded
video. However, the work in [19] implies a closed-group
assumption, where the codec to be identified belongs to
a set whose elements are known a priori. Moreover,
enumerating the possible codecs may be impractical,
since recent coding architectures are more diversified
in terms of both the type of transform being used and
the block size.

Given the specific nature (e.g., only images or only
videos) and the dependence on heuristics of the afore-
mentioned methods, it is therefore natural to try and
develop a universal theory of transform coder identi-
fication that is independent of the specific application
at hand. To this end, in this paper we consider a
general model of transform coding that can be tailored
to describe a large variety of practical implementations
that are found in lossy coding systems, including those
adopted in multimedia communication. From the output
produced by a transform coding chain, we investigate



the problem of identifying its parameters, by proposing
an algorithm that receives as input a set of P transform
decoded vectors embedded in a N -dimensional vector
space and produces as output an estimation of the
transform adopted, as well as the quantization step sizes.
We leverage the intrinsic discrete nature of the problem,
by observing the fact that these vectors are bound to
belong to a N -dimensional lattice. Hence, the problem
is formulated in terms of finding a lattice that contains
all observed vectors.

Lattice theory has been widely used for source and
channel coding (e.g., [20], [21], [22]). However, to the
best of the authors’ knowledge, this theory has not
been employed to address the problem of identifying a
linear mapping using the footprint left by quantization.
Only [23] uses similar principles but their goal is
to investigate the color compression history, i.e., the
colorspace used in JPEG compression. Therefore, the
solution proposed is tailored to work in a 3-dimensional
vector space, thus avoiding the challenges that arise in
higher dimensional spaces. A refined version of [23]
was proposed in [24] based on the notion of dual lattice.

Efforts to solve the problem of finding a basis from
a set of generating vectors stemmed directly from
the related problem of lattice reduction [22]. Lattice
reduction techniques aim to find, given a basis for
a lattice, an equivalent basis matrix with favorable
properties. Usually, such basis consists of vectors that
are short and with improved orthogonality. Out of the
several definitions of lattice reduction techniques, the
most popular one is the Lenstra-Lenstra-Lovász (LLL)
reduction [25], which can be interpreted as the Gauss
reduction to lattices of rank greater than 2. However,
one of the disadvantages of the LLL algorithm is that
the input vectors must be linearly independent [26].
Therefore, the LLL algorithm as originally formulated
cannot be directly applied to the task of finding a
basis from a set of randomly observed, possibly linearly
dependent vectors. The algorithms in [26] and [27]
address this problem by iteratively testing subsets of
the observed vectors for linear dependence during the
lattice reduction procedure. At their core, however, they
still employ the original LLL reduction concept. This
implies having to consider all the observed vectors
simultaneously, which results in a high computational
complexity (see [27][28][29] for details). Further efforts
were devoted to improve the computational efficiency,
with the works in [28][30] proposing an incremental
version of the algorithm in [26] where observed vectors
are individually input in the system until convergence is
reached. While the proposed method achieves a better
performance in terms of computational complexity it
requires that P � N and still relies on LLL.

Conversely, we propose a technique that is not based
on the computationally intensive LLL, and instead we
provide a number theoretical intuition to tackle this

problem. Indeed, our proposed method is a higher-
dimensional extension of Euclid’s algorithm, which is
routinely used to find the greatest common divisor
(GCD) in a set of integers. Specifically, whenever
N = 1 and P = 2, the proposed method coincides
with Euclid’s algorithm. In our proposed technique,
a method for basis orthogonalization is only seldom
used whenever the candidate basis exceeds a threshold
orthogonality defect. It has to be stressed that this
does not have to be accomplished exclusively via LLL,
but alternative ad hoc methods can be chosen instead.
Moreover, the proposed algorithm is incremental, with
a complexity that is shown to grow linearly with N .
We prove its convergence and show that its probability
of successfully identifying the correct lattice approaches
1 whenever there is a moderate excess of 6-7 vectors
beyond the dimension of the space N , thus reducing
the need for techniques such as [28][30] that require
P � N .

Then, as an example of the practical implications for
the proposed theory, we show three separate realms of
application: transform parameter retrieval for processing
chains of two transform coders, image tampering iden-
tification, and parameter estimation in the presence of
predictive coding. The first scenario was studied in [31]
for the case of a 2-dimensional transform, in order
to determine the analytical conditions under which it
is possible to navigate back up the signal’s history to
the first coding stage and determine the first encoder’s
exact transform parameters. Instead, in this work we
address the more challenging case of N -dimensional
transforms, with N ≥ 2. Our main contribution is a
method that is able to identify the parameters used by
the first transform coder (i.e., the adopted transform and
quantizer), when observing the output of the second
transform coder, thus generalizing the results obtained
in the case of a single transform coder. Importantly,
this extension also enables to analyze the conditions
under which our proposed algorithm can operate cor-
rectly under quantization noise, thus relaxing the strict
requirements of integral vectors [29] or exact rational
arithmetic [28] present in earlier works.

The other two application scenarios hinge on the
ability of the proposed framework to robustly handle
outliers. We show how with a RANSAC-like procedure
it is possible to correctly accomplish the proposed tasks
with a high probability of success, which we charac-
terise as a function of the main operational parameters.

The rest of this paper is organized as follows. Sec-
tion II introduces the necessary notation and formulates
the transform identification problem and Section III
provides the background on lattice theory. First, we
consider a chain that consists of a single transform coder
in Section IV, we propose a method to identify the
transform and provide a theoretical analysis of its con-
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vergence properties. Then, we focus on a chain with two
transform coders in Section V and we show how it is
possible to reuse the method in Section IV, provided that
the input is properly de-quantized. The performance of
the algorithms is evaluated empirically in Section VII on
both synthetically generated and real datasets. Finally,
Section VIII concludes the paper, indicating the open
issues and stimulating further investigations.

II. PROBLEM STATEMENT

The symbols x, x and X denote, respectively, a scalar,
a column vector and a matrix. A M ×N matrix X can
be written either in terms of its columns (xj) or rows
(x̄Ti ). Specifically,

X = [ x1 x2 . . . xN ] =

 x̄T1
x̄T2
· · ·
x̄TM

 . (1)

Let x denote a N -dimensional vector and W a
transform matrix, whose rows represent the transform
basis functions.

Transform coding is performed by applying scalar
quantization to the transform coefficients y = Wx.
Let Qi(·) denote the quantizer associated to the i-th
transform coefficient. We assume that Qi(·) is a scalar
uniform quantizer with step size ∆i, i = 1, . . . , N .
Therefore, the reconstructed quantized coefficients can
be written as ỹ = [ỹ1, ỹ2, . . . , ỹN ]T , with

ỹi = Qi(yi) = ∆i · round
[
yi
∆i

]
, i = 1, . . . , N. (2)

The reconstructed block in the original domain is given
by x̃ = W−1ỹ.

Let {x̃1, . . . , x̃P } denote a set of P observed N -
dimensional vectors, which are the output of a transform
coder. Due to quantization, the unobserved vectors rep-
resenting quantized transform coefficients {ỹ1, . . . , ỹP }
are constrained to belong to a lattice Ly described by
the basis By = diag(∆1,∆2, . . . ,∆N ). Therefore, the
observed vectors {x̃1, . . . , x̃P } belong to a lattice Lx
described by the basis:

Bx = [bx,1, . . . ,bx,N ] = W−1By, (3)

with bx,i = ∆iŵi, i = 1, . . . , N , W−1 =
[ŵ1, . . . , ŵN ].

First, we study the problem of determining Bx from
a finite set of P ≥ N distinct vectors {x̃1, . . . , x̃P }.
That is, we seek to determine the parameters of a
single transform coder based on the footprints left on its
output. In Section IV we propose an algorithm to solve
this problem and we study its convergence properties.
In addition, we show that the probability of correctly
determining Bx (or, equivalently, another basis for the
lattice Lx) is monotonically increasing in the number

of observations P , and rapidly approaching one when
P > N . Note that when determining Bx, the proposed
method does not make any assumption on the structure
of the transform matrix W. In the general case, given
Bx, it is not possible to uniquely determine W and
the quantization step sizes ∆i, i = 1, . . . , N . Indeed,
the length of each basis vector bx,i can be factored
out as ‖bx,i‖2 = ∆i‖ŵi‖2. However, in the important
case in which W represents an orthonormal transform,
the quantization step sizes ∆i, i = 1, . . . , N , and the
transform matrix W can be immediately obtained from
Bx. Indeed, W−1 = WT , ŵi = w̄i, i = 1, . . . , N ,
with ‖w̄i‖2 = 1. Therefore:

∆i = ‖bx,i‖2, i = 1, . . . , N, (4)

w̄i = bx,i/‖bx,i‖2 i = 1, . . . , N. (5)

Then, we consider the more challenging case in which
an input signal is processed as illustrated in Figure 1, by
cascading two transform coders characterized, respec-
tively, by the transform matrices Wa and Wb and quan-
tizers Qa,i(·), Qb,i(·), i = 1, . . . , N . We assume that
both transform coders work on vectors having the same
size N , and that the signal is not shifted or resampled in
between the two transforms. Let {ũ1, . . . , ũP } denote
a set of P observed N -dimensional vectors, which are
the output of the second transform coder. We assume
that the second transform coder is completely known.
Indeed, whenever this is not the case, it can be identified
with the method described in Section IV. Therefore,
without loss of generality, we will consider the set of
observed vectors {z̃1, . . . , z̃P }, such that z̃j = Wbũj .

Due to quantization, the observed vectors
{z̃1, . . . , z̃P } are constrained to belong to a lattice Lz
described by the basis Bz = diag(∆b,1, . . . ,∆b,N ).
Similarly, the unobserved transform coefficients
{ỹ1, . . . , ỹP } of the first coder belong to a lattice Ly
described by the basis By = diag(∆a,1, . . . ,∆a,N ).
Hence, the unobserved vectors {x̃1, . . . , x̃P } ∈ Lx
with basis Bx = W−1

a By .
In Section V we study the problem of determining

Bx from a finite set of P ≥ N distinct vectors
{z̃1, . . . , z̃P }. That is, we seek to determine the pa-
rameters of the first transform coder in a chain of two
transform coders, when we observe the output of the
second one. This is a much more challenging problem
than the one addressed in Section IV, since the observed
vectors do not lie on the lattice Bx. As a consequence, a
direct application of the method in Section IV to the set
of vectors {z̃1, . . . , z̃P } would identify Wb rather than
Wa. We show how to solve the problem in the case the
transform matrices are orthonormal, i.e., WT

aWa = I
and WT

b Wb = I. For the sake of simplifying the
notation, we assume that the same step size is used to
quantize the transform coefficients, i.e., ∆a,i = ∆a and
∆b,i = ∆b, i = 1, . . . , N . However, this condition can
be relaxed.
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Fig. 2. Examples of lattices. (a) The fundamental parallelotope of a lattice defined by a basis B. (b) Parallelotope enclosing an arbitrary vector
z. (c) Another (equivalent) basis for the lattice in (a). (d) An example of a sub-lattice of the lattice L(B).

x̃ = u

W−1
a W−1

b

x y zỹ ũz̃
Qa QbWbWa

Fig. 1. Block diagram of a chain of two transform coders.

III. BACKGROUND ON LATTICE THEORY

In this section we provide the necessary background
on lattice theory. Further details can be found, e.g.,
in [32][33][22]. Let L denote a lattice of rank K
embedded in RN . Let B = [b1,b2, . . . ,bK ] denote
a basis for the lattice L. That is,

L = {x|a1b1 + a2b2 + . . .+ aKbK , ai ∈ Z}. (6)

In order to make the mapping between a basis and the
corresponding lattice explicit, the latter can be expressed
as L(B).

Any lattice basis also describes a fundamental paral-
lelotope according to

P(B) =

{
x|x =

K∑
i=1

θibi, 0 ≤ θi < 1

}
. (7)

When K = 2, 3, P(B) is, respectively, a parallelogram
or a parallelepiped. As an example, Figure 2(a) shows
the fundamental parallelotope corresponding to a lattice
basis B when K = 2.

Given a point z ∈ RK , let Pz(B) denote the paral-
lelotope enclosing z. Pz(B) is obtained by translating
P(B) so that its origin coincides with one of the lattice
points. More specifically,

Pz(B) =

{
x|x = B ·

⌊
B−1z

⌋
+

K∑
i=1

θibi, 0 ≤ θi < 1

}
.

(8)
Figure 2(b) illustrates Pz(B) for an arbitrary vector z.

Different bases for the same lattice lead to different
fundamental parallelotopes. For example, Figure 2(a)
and Figure 2(c) depict two different bases for the same
lattice, together with the corresponding fundamental
parallelotopes. However, the volume of P(B) is the

same for all bases of a given lattice. This volume equals
the so-called lattice determinant, which is a lattice
invariant defined as

|L| =
√

det(BTB). (9)

If the lattice is full rank, i.e., K = N , the lattice
determinant equals the determinant of the matrix B,
|L| = |det(B)|.

Let L denote a sub-lattice of L. That is, for any vector
x ∈ L, then x ∈ L. A basis B for L can be expressed
in terms of B as

B = BU, (10)

where U is such that uij ∈ Z. Moreover, let det(U) =
±m, then

|L|
|L| = |det(U)| = m (11)

and we say that L is a sub-lattice of L of index m. For
example, Figure 2(d) shows two lattices L and L, such
that L ⊂ L. In this case, L is a sub-lattice of index
m = 19.

IV. AN ALGORITHM FOR TRANSFORM
IDENTIFICATION

In this section we propose an algorithm that is able
to determine the parameters of a transform coder from
its output, i.e., a set of observed vectors {x̃1, . . . , x̃P }.
This is accomplished by finding a suitable lattice L∗
such that {x̃1, . . . , x̃P } ⊂ L∗. We will show later that,
with probability approaching one, L∗ ≡ Lx, provided
that P −N > 0.

The problem of determining a basis for the lattice
Lx is complicated by the fact that we typically observe
a finite (and possibly small) number of vectors P
embedded in a possibly large dimensional space. More
precisely, {x̃1, . . . , x̃P } belong to a bounded lattice, in
virtue of the fact that each transform coefficient yi is
quantized with a finite number of bits Ri, to one of 2Ri

reconstruction levels. Let R̄ denote the average number
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of bits allocated to transform coefficients. The number
of potential lattice points is equal to

N∏
i=1

2Ri = 2
∑N

i=1 Ri = 2NR̄, (12)

and only P of them are covered by observed vectors.
Thus, we note that, given R̄, the number of lattice points
increases exponentially with the dimension N and that
in most cases of practical relevance P � 2NR̄.

Another issue arises from the fact that, for a set of
vectors {x̃1, . . . , x̃P }, there are infinitely many lattices
that include all of them. Indeed, any lattice L̄ such
that Lx ⊂ L̄ is compatible with the observed set of
vectors. Note that any basis of the form B = BxU

−1,
with det(U) = ±m, with m an integer greater than
one defines a compatible lattice L̄. A simple example
is obtained setting U = aI, a ∈ N, a > 1.

In order to resolve this ambiguity, we seek the lattice
L∗ that maximizes the lattice determinant |L|, within
this infinite set of compatible lattices. That is,

maximize
L(B)

|L(B)|
subject to {x̃1, . . . , x̃P } ⊂ L(B).

(13)

For example, for the set of observed points
{x̃1, x̃2, x̃3} depicted in Figure 3(a), Figure 3(g) illus-
trates a basis for the lattice that is the optimal solution
of (13). In contrast, the lattice in Figure 3(h) is a
feasible solution of (13), but it is not optimal, since it is
characterized by a lower value of the lattice determinant.

The proposed method used to solve the problem
above is detailed in Algorithm 1. The method constructs
an initial basis for an N -dimensional lattice (line 1).
This is accomplished by considering the vectors in O
until N linearly independent vectors are found. These
vectors are used as columns of the starting estimate
B(0) and to populate the initial set of visited vectors
S. We denote with U the set of vectors in O that
have not been visited yet. Then, the solution of (13)
is constructed iteratively, by considering the remaining
vectors in U one by one. At each iteration, the function
recurseTI returns a basis for a lattice that solves
(13), in which the constraint is imposed only on the
subset of visited vectors S, that is, S ⊂ L(B). As
such, the algorithm starts finding the solution of an
under-constrained problem and additional constraints
are added as more vectors are visited.

Figure 3 shows an illustrative example when N =
2 and three vectors {x̃1, x̃2, x̃3} are observed (Fig-
ure 3(a)). The initial basis (line 1) is constructed using
x̃1 and x̃2, since they are linearly independent (Fig-
ure 3(b)). Then, the point x̃3 is selected (line 6 and
Figure 3(c)) and the function recurseTI (line 9)
returns a basis that solves (13), i.e., a basis with the
largest lattice determinant that includes all observed

ALGORITHM 1: TI algorithm
Input: Set of observed vectors O = {x̃1, . . . , x̃P }
Output: A basis B of the lattice solution of (13)

1) B(0) = initBasis(O);
2) S = {b1, . . . ,bN};
3) U = O \ S;
4) r = 0
5) while card{U} > 0;
6) Pick x̃ in U ;
7) U = U \ {x̃};
8) S = S ∪ x̃;
9) B(r+1) = recurseTI(B(r),S);

10) r = r + 1
11) end

vectors. Figure 3(f) illustrates such a basis, and Fig-
ure 3(g) shows an equivalent basis obtained after lattice
reduction.

A. The implementation of recurseTI
The function recurseTI receives as input a set of

visited vectors S and the current estimate of a basis B
for the lattice L(B). If S ⊂ L, i.e., all the vectors in
S belong to the lattice defined by B, the recursion is
terminated (line 1 in Algorithm 2). Otherwise, one of the
vectors z that does not belong to L is selected (line 4)
and the parallelotope which encloses it is identified
(line 5). Then, a vector d is computed as the difference
between z and one of the vertices of the parallelotope
(line 7).

Specifically, given a basis B as input, we compute
the vector v = B · round(B−1z), which represents
one of the vertices of the parallelotope enclosing z. In
order to prevent numerical instability induced by the
inversion of the matrix B, we perform basis reduction
according to the LLL algorithm and we find a nearly
orthogonal basis which is equivalent to B, but has a
smaller orthogonality defect. In our implementation,
we perform basis reduction only when the condition
number is greater than a threshold T , which was set
equal to 104.

Although any candidates z ∈ S \ L(B) can be
selected, we pick the one that minimizes the distance
from the corresponding vertex v, so as to minimize the
length of the new basis vector d. The intuition here is to
capture a short vector that cannot be represented by the
current lattice, and to modify the current basis in such
a way that (upon convergence) it can be represented.

Hence, the updated basis is constructed by replacing
one of the columns of B with d (line 8). Among the N
possible cases, any choice such that Bi is non-singular
represents a valid selection (line 9). The choice of the
new basis among the set of (up to) N candidate bases
Bi is implemented as selecting the one that leads to the
smallest lattice determinant, after excluding those that
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Fig. 3. An example of transform identification. A set of three observed vectors is given in (a). Then, (b)-(h) show, step-by-step, how the
solution to problem (13) is sought by Algorithm 1.

do not have rank N . From Cramer’s rule, it follows that
det(Bi) = θidet(B), where θ = B−1d is the expansion
of d in the basis B. Hence, we replace the l-th column
of B, which is the one corresponding to the entry of θ
with the least strictly positive absolute value. That is,

l = arg min
j∈{p|θp 6=0}

|θj |. (14)

In the example in Figure 3, two recursive steps are
performed before terminating recurseTI. In the first
call, it is verified that x̃3 does not belong to the lattice
defined by the current basis (Figure 3(c)), and the
updated basis is constructed (Figure 3(d)) by replacing
one of the two basis vectors with the difference vector
between x̃3 and one of the vertices of Px̃3(B). In the
second call it is verified that neither x̃3 nor x̃2 belong
to the updated lattice. Therefore, one of the two differ-
ence vectors (e.g., the one representing the difference
between x̃2 and one of the vertices of Px̃2

(B)) is used
to replace one of the two basis vectors. In the third
call the recursion is terminated, because all points in S
belong to the lattice.

B. Analysis
1) Convergence: In this section, we prove that the

proposed algorithm converges in a finite number of
recursive steps to the solution L∗ of (13). Let B(0)

denote the initial estimate of a basis of the lattice.
Hence, each vector of B(0) can be expressed as a linear
combination with integer coefficients of the columns of
Bx. Thus, we can write B(0) = BxA, with det(A) = m

ALGORITHM 2: recurseTI(B,S)
Input: Set of vectors S = {x̃1, . . . , x̃S}, a basis B of a lattice.
Output: A basis of a lattice L with maximum determinant |L|,

such that S ⊂ L
1) if S ⊂ L(B)
2) return B
3) else
4) Pick z ∈ S \ L(B).
5) Determine Pz(B).
6) Pick a vertex v of Pz(B).
7) Compute d = z− v.
8) Compute Bi, replacing the i-th column of B with d.
9) Pick an index l, such that det(Bl) 6= 0.

10) recurseTI(Bl,S);
11) end

and m ∈ Z\{0}. From this, it follows that |L(B(0))| =
m · |Lx| and |Lx| ≤ |L(B(0))|

Let B(r) denote the estimate obtained after the r-th
call of the recursive function recurseTI. It is possible
to prove the following lemma:

Lemma 4.1: |L(B(r+1))| ≤ |L(B(r))|, with equality
if and only if S ⊂ L(B(r)) = L(B(r+1))
With Lemma 4.1 it is possible to prove the convergence
of the proposed method

Theorem 4.2: Algorithm 1 converges to the solution
of (13) in a finite number of steps.
Proofs are reported in the Appendix.

2) Rate of convergence: It is possible to prove that
the proposed method converges in a number of steps
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that is upper bounded by dlog2(|L(B(0))|/|Lx|)e. To
show this, it suffices to demonstrate that the value
of the lattice determinant is (at least) halved between
two consecutive calls of recurseTI, as stated by the
following theorem.

Theorem 4.3: If S 6⊂ L(B(r)), then |L(B(r+1))|
|L(B(r))| ≤

1
2

The proof is reported in the Appendix.
Based on Theorem 4.3,

|L(B(r))| ≤
(

1

2

)r
|L(B(0))|, ∀r > 0,S 6⊂ L(B(r))

(15)
Hence, convergence is achieved in up to⌈

log2

|L(B(0))|
|Lx|

⌉
(16)

number of steps.
3) Probability of success: In Section IV-B1, we

showed that the proposed method converges to the
optimal solution L∗ of (13). In this section, we show
that it converges to the correct (and unique) lattice Lx
(i.e., L∗ ≡ Lx) with high probability, provided that the
number of observed vectors P is greater than N .

Given a lattice Lx of rank N embedded in RN , there
is more than one sub-lattice L of L of index m. It can
be shown that the number of sub-lattices is equal to [34]

fN (m) =

q∏
i=1

N−1∏
j=1

pti+ji − 1

pji − 1
=

q∏
i=1

ti∏
j=1

pN+j−1
i − 1

pji − 1
,

(17)
where m = pt11 · · · p

tq
q is the prime factorization of m.

That is, p1, . . . , pq are the prime factors of m, and ts is
the multiplicity of the factor ps.

In order to determine analytically a lower bound on
the probability of converging to the correct solution,
we need to prove the following lemma, which provides
bounds on the number of sub-lattices.

Lemma 4.4: Given a lattice Lx of rank N embedded
in RN , the number fN (m) of sub-lattices of index m
is bounded by

mN−1 < fN (m) < mN . (18)

The proof is reported in Appendix.
Now, consider a specific sub-lattice L ⊂ Lx of index

m and a set of P vectors from the original lattice Lx. In
the case of uniformly distributed vectors, the probability
that one vector belong to the sub-lattice L is equal to
(1/m). Thus, the probability that all P vectors belong
to the same sub-lattice L is equal to (1/m)P , assuming
statistical independence among the set of vectors.

Let pfail(N,P ) denote the probability of failing to de-
tect the underlying lattice Lx of rank N , when P points
are observed. Then, psucc(N,P ) = 1 − pfail(N,P ). A

failure occurs whenever all P vectors fall in any of the
sub-lattices of index m. Hence, we can write

pfail(N,P ) <

∞∑
m=2

fN (m)

(
1

m

)P
<

∞∑
m=2

mN

(
1

m

)P
=

∞∑
m=2

1

mP−N = ζ(P −N)− 1 (19)

The first inequality is a union bound, i.e., the prob-
ability of failure is upper bounded by the sum of the
probabilities of observing all P vectors in a given sub-
lattice. The second inequality follows from the upper
bound given by Lemma 4.4. The last expression con-
tains ζ(·), which is the Riemann’s zeta function. That
is,

ζ(s) =

∞∑
m=1

1

ms
. (20)

Note that the infinite series converges when the real
part of the argument s is greater than 1. In our case,
this requires P − N > 1 or P > N + 1. Then, the
probability of success is lower bounded by

psucc(N,P ) > 2− ζ(P −N). (21)

It is interesting to observe that the probability of
failure/success depend solely on the difference P −N .
Hence, the number P of observed vectors needed to
correctly identify the underlying lattice grows linearly
with the dimensionality N of the embedding vector
space, despite the number of potential lattice points
grows exponentially with N , as indicated in Section IV.

V. HANDLING A CHAIN OF TWO TRANSFORM
CODERS

In this section we propose an algorithm that is able
to determine the parameters of the first transform coder
in a processing chain of two transform coders, by
observing the output of the second. The key idea of the
proposed method is to de-quantize the observed vectors
before applying the algorithm described in Section IV.
To this end, we proceed according to the following
steps:
A. We consider a subset of D ≤ P observed vectors
{z̃1, . . . , z̃lD} and for them we recover both the
distances from the origin and the distances between
pairs of vectors, as they were before the application
of the second transform coder.

B. Given the recovered distances, we computed a set
of de-quantized vectors {ẑl1 , . . . , ẑlD}, which lie
exactly on a lattice whose basis can be expressed
as Bẑ = RWbBx. The orthonormal matrix R
represents the ambiguity introduced by the denoising
procedure.

C. We compute an estimate R̂ of R by formu-
lating an orthogonal Procrustes problem, which

7



seeks the best matching between the set of de-
quantized vectors {ẑl1 , . . . , ẑlD} and the observed
ones {z̃l1 , . . . , z̃lD}.

D. We adopt the method described in Section IV to
the vectors {x̂l1 , . . . , x̂lD}, x̂j = W−1

b R̂−1ẑlj , j =

1, . . . , D, to obtain an estimate B̂x of Bx.
Then, in Section V-E, we describe an iterative method

that can be adopted whenever it is not possible to de-
quantize D observed vectors at once, due to, e.g., the
use of a large quantization step size by the second
transform coder.

A. Exact recovery of vector distances
The denoising operation indicated in Step 1 exploits

the orthogonality of the transform Wa to determine the
quantization step size ∆a and, consequently, to recover
inter-vector distances exactly. Indeed, it is possible to
express a constraint on the lengths δ̃j of the unobserved
vectors {x̃1, . . . , x̃P } as well as on the lengths δ̃j1,j2 of
vector differences. That is,

δ̃2
j = ‖x̃j‖2 = aj∆

2
a, aj ∈ N, j = 1, . . . , P, (22)

δ̃2
j1,j2 = ‖x̃j1 − x̃j2‖2 = aj1,j2∆2

a,

aj1,j2 ∈ N, j1, j2 = 1, . . . , P. (23)

In practice, both aj and aj1,j2 belong to the subset
of integer numbers corresponding to those that can be
written as the sum of (up to) N squares. However,
when N ≥ 4, this subset coincides with the set of
integer numbers, as proven by Lagrange’s four square
theorem [35].

In order to determine ∆a, which is unknown, we
first note that ‖x̃i‖ = ‖zi‖, i = 1, . . . , P , since Wb

is orthonormal. Therefore, ∆a is the square root of
the greatest common divisor of {‖z1‖2, . . . , ‖zP ‖2}.
However, we have no access to zi’s, but only to their
quantized versions z̃i. The second quantization can be
seen as a form of noise. Hence, we estimate ∆a by using
the algorithm in [36], which is a generalized Euclid’s
algorithm for noisy measurements. Given ∆a, to recover
vector distances, we first note that

|ρ̃j − δ̃j | = |‖z̃j‖2 − ‖x̃j‖2| ≤
1

2

√
N∆b . (24)

The quantization error on the length of a vector can be
as large as half of the diagonal of the quantization cell
of the second quantizer. In case of lengths of vector
differences |ρ̃j1,j2 − δ̃j1,j2 |, the error can be twice as
that, since both vectors are quantized.

If the quantization error induced by the second quan-
tizer is sufficiently small, it is possible to recover the
exact values of δ̃j and δ̃j1,j2 from the observed vectors.
Indeed, we exploit the fact that δ̃2

j is a multiple of ∆2
a

(a similar argument holds for δ̃2
j1,j2

). To this end, we
compute an estimate δ̂j of δ̃j as follows:

δ̂j =
√
Q∆2

a
(ρ̃2
j ) . (25)

Note that any value of ρ̃j in the interval [lj , uj ]:[√
δ̃2
j −

∆2
a

2
,

√
δ̃2
j +

∆2
a

2

]
(26)

is quantized to δ̃j . Hence, if |ρ̃j − δ̃j | < min{uj −
δ̃j , δ̃j − lj} = uj − δ̃j , it is possible to guarantee that
δ̂j = δ̃j .

Figure 4 illustrates an example in which two N -
dimensional (unobserved) vectors {x̃1, x̃2} are pro-
cessed by a second transform coder. The coordinate
axes are aligned with the basis functions of the known
transform Wb. Hence, we display {z̃1, z̃2}. Figure 5
shows that the corresponding vector lengths, i.e., ρ̃1 and
ρ̃2, and the distance between vectors, i.e., ρ̃1,2, can be
effectively de-quantized so that δ̃1, δ̃2 and ρ̃1,2 can be
recovered exactly.

We conclude that δ̂j = δ̃j whenever the following
sufficient condition is satisfied

1

2

√
N∆b < uj − δ̃j =

√
δ̃2
j +

∆2
a

2
− δ̃j = τ(δ̃j ; ∆a).

(27)

B. Denoising observed vectors
Given the de-quantized values of vector lengths

and inter-vector distances, it is possible to write the
following set of constraints in the unknown vectors
{ẑ1, . . . , ẑP }

‖ẑj‖2 =
√
Q∆2

a
(ρ̃2
j ) = δ̃j j ∈ O, (28)

‖ẑj1 − ẑj2‖2 =
√
Q∆2

a
(ρ̃2
j1,j2

) = δ̃j1,j2 (j1, j2) ∈ D,
(29)

where O denotes the set of indexes of the vectors
whose length can be recovered exactly, i.e., those that
satisfy (27).
D is similarly defined, denoting the set of indexes

of pairs of vectors whose distance can be recovered
exactly.

Consider a subset of the unknown vectors
{ẑl1 , . . . , ẑlD} for which the distances from the
origin are known, i.e., lj ∈ O, and the distances
between all pairs are also known, i.e., (lj1 , lj2) ∈ D.
If D ≥ N , the position of the vectors can be
determined exactly, apart from an ambiguity that can
be represented by means of an arbitrary orthonormal
transform, which accounts for the rotation around the
origin and mirroring with respect to the coordinate
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z̃2
z̃1

x̃1

x̃2

(a)

δ̃1

δ̃2

δ̃1,2

ẑ1

ẑ2

(b)

z̃2
z̃1

R̂ẑ1

R̂ẑ2

(c)

Fig. 4. A toy example with two unobserved vectors {x̃1, x̃2} and the corresponding observed vectors {z̃1, z̃2}, in the coordinate system of
the known transform Wb.

0 1 2 3 4 5 6 7 8 9 10
δ̃2 [×∆2

1]

ρ̃2 →

ρ̃1 →
ρ̃1,2 →

δ̃2 [×∆2
a]

Fig. 5. Square distance values δ̃2 are constrained to be integer
multiples of ∆2

a. On the y-axis, it is illustrated the corresponding
quantizer applied to de-quantized observed distances ρ̃.

axes. Therefore, we proceed in two steps. First, we
seek an arbitrary feasible solution {ẑ1, . . . , ẑP } of (28).
It can be shown that a feasible solution can be found
as follows

• Initialize the solution by setting ẑl1 =
[δ̃l1 , 0, . . . , 0]T

• The remaining components are iter-
atively estimated, by setting ẑlj =
[ẑlj ,1, ẑlj ,2, . . . , ẑlj ,j ,0

T ]T , j = 2, . . . , N ,
and finding a solution in a j-dimensional subspace
of the following system of equations

ẑTlj ẑlj = δ̃2
lj

(ẑlj − ẑl1)T (ẑlj − ẑl1) = δ̃2
l1,lj

· · ·
(ẑlj − ẑlj−1

)T (ẑlj − ẑlj−1
) = δ̃2

lj−1,lj

. (30)

It is possible to show that (30) has a straightfor-
ward geometric interpretation, since it represents the
intersection of a line in N -dimensional space with a
hypersphere centered in the origin with radius δ̃j . The
solution is not unique. However, for the problem at
hand, it suffices to select arbitrarily a feasible solution.
Figure 4(b) illustrates a feasible solution corresponding
to the example in Figure 4(a).

C. Resolving the reference system ambiguity
The resulting vectors {ẑl1 , . . . , ẑlD} lie exactly on a

lattice whose basis can be expressed as Bẑ = RWbBx.
The orthonormal matrix R represents the ambiguity
introduced by the arbitrary choice of the reference
system, as well as the arbitrary choice when selecting
the feasible solution. In order to solve such ambiguity,
we seek an estimate R̂ of the matrix R by matching the
positions of the vectors {ẑl1 , . . . , ẑlD} to those of the
observed vectors {z̃l1 , . . . , z̃lD}. This can be formulated
as the following orthogonal Procrustes problem

R̂ = arg min
R
‖RẐ− Z̃‖F s.t. RTR = I, (31)

where Ẑ = [ẑl1 , . . . , ẑlD ] and Z̃ = [z̃l1 , . . . , z̃lD ] and
‖ · ‖F denotes the Frobenius norm.

D. Determining the transform basis functions
Finally, we obtain an estimate of the unobserved

vectors as x̂j = W−1
b R̂−1ẑlj , j = 1, . . . , D. The set of

vectors {x̂l1 , . . . , x̂lD} is guaranteed to lie on a lattice
B̂x, which represents an estimate of the lattice induced
by the first transform coder Bx. This can be achieved
with the method described in Section IV, provided that
a sufficiently large number of vectors is available to
converge to the correct lattice defined by B̂x, rather
than to one of its sub-lattices. The basis functions
(row vectors) of the transform Wa can be obtained as
ŵa,i = b̂x,i/‖b̂x,i‖, exploiting the orthonormality of
the transform.

E. Iterative estimation
Given a set of P observed vectors {z̃1, . . . , z̃P }, the

number D ≤ P of vectors that can be effectively de-
quantized depends on different factors: i) the statistical
distribution of the source from which the original vec-
tors {x1, . . . ,xP } are sampled; ii) the quantization step
sizes used in the first and second transform coder. A
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careful analysis of the bound in equation (27) reveals
that it is easier to denoise vectors whose length (ex-
pressed in ∆a units) is short, and when ∆b � ∆a.
In addition, when the dimensionality N increases: i)
the average length of vectors increases; ii) the bound
in (27) is more stringent, thus enabling to denoise
shorter vectors. Therefore, in some cases, it might not be
possible to denoise at least N+n vectors at once, since
the sufficient condition in (27) may not be satisfied for a
large enough number of vectors. Hence, we propose to
modify the algorithm in such a way that the solution is
sought incrementally. The key idea is to start from the
largest set of D(0) short vectors that can be efficiently
denoised. These are used to estimate a subset of the
basis functions of Wa, i.e., Ŵ(0)

a ∈ RM(0)×N , where
M (0) is the dimensionality of the span of the denoised
vectors. Then, the remaining vectors are projected in the
null-space of (Ŵ

(0)
a )T , and the denosing procedure is

applied to the result. The iterative procedure terminates
when either M (k) = N , or when all vectors are
denoised.

VI. HANDLING OUTLIERS

In this section we discuss how to handle outlier
observations. This is useful to model cases in which
some of the observed vectors do not represent the
output of a processing chain of one or two transform
coders. For example, this might capture two important
application scenarios:
• Local tampering: The signal produced as output of

a chain of transform coders is locally manipulated
in the original domain. For example, an image is
tampered with the aim of altering its content. As
a result, the observed vectors corresponding to the
modified region do not lie on a (noisy) lattice.
• Predictive coding: In some applications, transform

coding is combined with predictive coding. For
example, in the case of video, transform coding
is applied to motion compensated prediction resid-
uals. Prediction residuals can be recovered from
the decoded samples by applying the same motion
vectors used at the encoder. Despite using the
same motion estimation algorithm (which can be
detected, e.g., using the method in [37]), some
motion vectors might differ from those used at the
encoder and, consequently, the prediction residuals
of the corresponding blocks do not lie on a (noisy)
lattice.

Based on the theory and algorithms presented in
Section IV and V, we propose the following model to
address the aforementioned scenarios. Given a set of
observed vectors {x̃1, . . . , x̃P }, a subset of O vectors
are outliers, in the sense that they do not represent the
output of a transform coder chain. In order to apply our
techniques, first we need to identify the outliers and to

remove them from the set of observed vectors. To do so,
we rely on the constraints imposed on the vector lengths
by the transform coding chain, detecting as outliers
those vectors that do not fulfil such constraints.

First, let us consider the case in which the remaining
P − O vectors are observed at the output of a single
transform coder. The lengths of such genuine vectors are
constrained to be multiples of ∆2

a, as indicated in (22).
Therefore, it is possible to estimate ∆a by using the
algorithm in [36], and then identify as outliers those
observed vectors whose squared lengths do not fulfil
the constraint. The transform coder can be identified by
providing the remaining P−O as input to the algorithm
described in Section IV, provided that P −O−N > 0.

Second, let us consider the more challenging case in
which the remaining P − O are the output of a chain
of two transform coders. In this case, the lengths of
genuine vectors are constrained to satisfy (24). Although
it is possible for an outlier to satisfy such constraint,
we can quantify the probability α that this occurs.
This allows one to discard a fraction of 1 − α outliers
from the set of observed vectors. To compute α, one
needs to know the statistical distribution of the outlier
vectors. For example, if the elements of the outlier
vectors are modelled as an i.i.d. Gaussian distribution
N(0, σ2

x), the distribution of δ̃2 is chi-square with N
degrees of freedom. Figure 6 illustrates such example,
in which the shaded area represents the values of δ̃2 that
are compatible with (24) for the case where N = 8,
∆a = 1, ∆b = 0.01, σx = 1. The area under the curve
corresponding to the shaded area is equal to α. In this
example, 85% of the outliers were successfully detected.
In Section VII we evaluate α as a function of the main
operational parameters.

Although this method does not eliminate all outliers,
on average only Ō = round{αO} remain. The algo-
rithm is then executed multiple times, in a RANSAC-
like fashion, each time with a subset of N̄ = N + k
vectors (with k = 7, as determined in Section VII).
There are

(P−(1−α)O
N̄

)
such subsets on average, but the

algorithm does not need to visit all subsets. Indeed,
when a subset does not contain any outlier, the algo-
rithm converges to the correct solution. Convergence
can be verified by checking the coverage of points out-
side the subset used by the algorithm. The probability
that a subset does not contain any outlier is equal to
(1−q)N̄ (illustrated in Figure 7), where q = O/P is the
fraction of outliers. Note that q decreases to q = αO/P
when applying the method described above. Continuing
with the example above, if N = 16 and q = 0.1,
then the probability of finding a subset without outliers
grows from 20% to 78%, thus significantly reducing
the number of subsets that need to be visited before
reaching convergence. In Section VII we evaluate the
number of visited subsets as a function of the main
operational parameters.
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VII. EXPERIMENTS

We experimentally evaluated the algorithms discussed
in Section IV and Section V. First, for the case of a
single transform coder, we evaluate in Section VII-A
the number of observed vectors needed to successfully
identify the transform and the number of recursive steps
needed to compute the sought solution, which provides
an insight on the complexity of the algorithm. Then, for
the case of a chain of two transform coders, we evaluate
under which conditions it is possible to de-quantize the
observed vectors, and show how it is possible to recover
the transform used to compress an image.

A. Transform coder identification

We generated data sets of N -dimensional vectors,
whose elements are sampled from a Gaussian random
variable N (0, σ2). We considered the adverse case in
which the elements are independent and identically
distributed. Therefore, the distribution of the vectors is
isotropic and no clue could be obtained from a statistical
analysis of the distribution. Without loss of generality,
we set σ = 2, W = I and ∆i = 1, i = 1, . . . , N . The
same results were obtained using different transform
matrices and quantization step sizes.
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Fig. 8. (a) Empirical probability of success of Algorithm 1 in
identifying the transform and the quantization step sizes as a function
of the number of observed vectors P and the dimensionality of the
embedding vector space N . (b) Number of observed vectors P needed
to achieve psucc(N,P ) > 1− ε, with ε = 10−15.

Figure 8(a) shows the empirical probability of suc-
cess when N = 2, 4, 8, 16, 32, 64, and the number
of observed vectors P is varied, averaged over 100
realizations. As expected psucc(N,P ) = 0 when the
number of vectors P does not exceed the dimensionality
of the embedding vector space, i.e., P ≤ N . Then, as
soon as P > N , psucc(N,P ) grows rapidly to one. More
specifically, Figure 8(b) illustrates the number of ob-
served vectors P needed to achieve psucc(N,P ) > 1−ε,
where ε was set equal to 10−15. We note that when
N > 2, the number of observed vectors needs to exceed
by 6-7 units the dimensionality, and such a difference is
independent from N , as expected based on the analysis
in Section IV-B. Note that the results shown in Figure 8
are completely oblivious of the specific implementation
of Algorithm 2.

At the same time, it is interesting to evaluate the
complexity of Algorithm 2. Figure 9 shows the total
number of recursive calls needed to converge to the
solution of (13). Note that when a large enough number
P of vectors is observed, the algorithm converges to the
correct lattice Lx. Thus, visiting additional vectors does
not increase the number of recursive calls, since the base
step of the recursion is always met. Figure 9 shows two
cases, that differ in the way the set of observed vectors
is visited, i.e., randomly, or sorted in ascending order
of distance from the origin of the vector space. In both
cases, the number of recursive calls grows linearly with
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Fig. 9. Total number of recursive calls to recurseTI as a function
of the dimensionality of the space N and the strategy adopted to visit
the observed vectors.

N . This is aligned with the analysis in Section IV-B2,
which shows that convergence proceeds at a rate such
that the number of recursive steps is upper bounded by
dlog2 |L(B(0))|/|Lx|e. A (loose) bound on the lattice
determinant is given by

|L(B(0))| = |det(B(0))| ≤ ‖b(0)
1 ‖2‖b

(0)
2 ‖2 · ‖b

(0)
N ‖2

≤ ‖b(0)
max‖N2 , (32)

where the first inequality stems from Hadamard inequal-
ity and b

(0)
max is the column of B(0) with the largest norm.

Therefore,

dlog2 |L(B(0))|/|Lx|e ≤ dN log2(‖b(0)
max‖2)/|Lx|e

(33)
This explain the dependency on N , as well as the fact
that sorting the vectors so as to initialize B(0) with
shorter vectors reduces the number of recursive calls.

B. Handling a chain of two transform coders
First, we tested our method on synthetic data sampled

from a N -dimensional i.i.d. Gaussian distribution with
variance equal to σ2

x. For a fixed dimensionality (either
N = 8 or N = 16), we sampled P > N vectors
and fed them into the processing chain depicted in
Figure 1. We varied the signal-to-noise (SNR) ratio
due to the quantization of the first quantizer, SNR '
10 log10 σ

2
x/(∆

2
a/12), as well as the ratio between the

quantization step sizes of the first and second transform
coder. The goal of the experiment is to evaluate in which
conditions it is possible to de-quantize a sufficient num-
ber of input vectors. Figure 10 illustrates the number
D of vectors which are effectively de-quantized, when
P = 40 vectors were observed. It is possible to notice
a “cliff” effect, such that the configurations in the top-
right part of the figure correspond to cases in which
the proposed algorithm is able to find a solution, since
D ≥ N + n. When varying N , we observed that, for a
given value of SNR, a smaller value of ∆b is required
when N increases.

Then, we tested the proposed method on real im-
ages. In this case, we considered the 1338 images

N = 8
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Fig. 10. Number of de-quantized vectors D. Blue: 0. Dark red:
P = 40.

from the UCID dataset. Each image was compressed
with a JPEG-like transform coder. That is, the DCT
transform was applied to non-overlapping 8× 8 blocks
(N = 64). Transform coefficients were quantized
with a step size in the set ∆a ∈ {20, 30, 40, 50, 60},
which led to an average PSNR equal to, respectively,
{36.2, 33.6, 31.8, 30.5, 29.5}. Then, the inverse trans-
form was applied to each block, and the result was
rounded to the nearest integer in the pixel-domain.
Thus, Wb = I and ∆b = 1. In this case, it was
possible to successfully recover the transform by adopt-
ing the iterative version of the algorithm illustrated in
Section V-E, although it was not possible to find at
least D > 64 vectors that could be de-quantized at
once. Figure 11(a) shows for each basis function wa,j

associated to one of the DCT coefficients, the quantity
E[ŵT

a,jwa,j ], which indicates the average cosine of the
angle between true and estimated basis functions. We
observe that when the PSNR is less than 30dB, all basis
functions can be estimated with very high accuracy.
At higher values of the PSNR, the error increases as
more basis functions are estimated. This is due to the
fact that, at each iteration, we project in the null-space
of the estimated basis functions (Ŵ

(k)
a )T . Hence, the

noise in the observed data is due not only to quan-
tization, but also to the non-ideal projection. In order
to evaluate the algorithm with different transforms, we
tested the use of the Hadamard transform 11(b), as well
as a content-dependent KLT transform 11(c), estimated
independently for each image.

As an illustrative example, we show in Figure 11(d)
and Figure 11(e) the estimated basis functions (repre-
sented by each column of the matrix), when the first
image in the UCID dataset was coded using the DCT
and ∆a = 20, 30, respectively. This result can be
compared with the DCT basis functions illustrated in
Figure 11(f). We observe that most of the basis functions
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Fig. 12. Fraction of outlier reduction α.

were correctly recovered when ∆a = 30.
In order to show that our proposed algorithm does not

require the step size to be constant across coefficients,
we repeated the experiment in the case each coefficient
uses a different quantization step size. While in the
theory in Section IV we estimate a single quantization
step in order to simplify notation, we note that if
different quantization steps are used and share a greatest
common divisor, this is identified by our algorithm.
From the estimated g.c.d., the different steps can be
correctly recovered. Since the steps considered are not
irrational numbers, they will always share a g.c.d.,
which can be recovered by our algorithm. We test this
by first selecting a base quantization step size ∆a ∈
{2, 5, 10, 20, 30, 40, 50, 60}. Then, each coefficient was
assigned a quantization step size that is an integer
multiple of ∆a, selected at random. The results shown
in Figure 13 demonstrate that the algorithm is able to
cope with non-uniform quantization step sizes.

C. Handling outliers

We tested our method on a synthetic data sample
as in Section VII-B. The goal of the experiment is
to assess the fraction α of outliers that cannot be
detected by enforcing the constraint on vector lengths,
as described in Section VI. Figure 12 illustrates how
α varies as a function of the signal-to-noise (SNR)
ratio due to the quantization of the first quantizer as
well as the ratio between the quantization step sizes of
the first and second transform coder. It is possible to
observe that: i) for a given value of SNR, α decreases
when the ratio ∆a/∆b increases; ii) for a given SNR
and ∆a/∆b, α increases with N ; iii) when comparing
Figure 12 to Figure 10, a significant reduction on the
number of outliers is observed for those combinations
of parameters for which the algorithm converges.

TABLE I. NUMBER OF VISITED SUBSETS OF VECTORS.

N ∆b α 5th%tile median 95th%tile
8 0.01 0.15 1 1 3

1 1 3 9.5
16 0.005 0.16 1 1 3

1 1 10 32
32 0.0025 0.16 1 2 9

1 10 89 375
64 0.00125 0.15 1 4 13.5

1 2620 24800 >100000
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Fig. 13. Transform estimation example in the case of non-uniform
quantization step sizes.

Second, we evaluated the number of subsets of ob-
served vectors of size N̄ that need to be visited before
finding at least one set without outliers. The results are
shown in Table I, where σx = 1, ∆a = 1, P = 200
and q = 0.1. For different values of N , ∆b is adjusted
so as to obtain a value of α ∼ 0.16. The rows with
α = 1 indicate the case in which no outliers are
discarded by the method described in Section VI. It can
be observed that: i) even with a relatively small number
of observed vectors (P = 200), the algorithm converges
after visiting a small number of candidate subsets; ii)
detecting and discarding outliers is key to dramatically
improve convergence, especially when N increases.

VIII. CONCLUSIONS

In this paper we proposed a method which is able
to identify the parameters of a transform coder from
a set of P transform decoded vectors embedded in a
N -dimensional space. We proved that it is possible to
successfully identify the transform and the quantization
step sizes when P > N and this despite of the huge
number of potential quantization bins, which grows
exponentially with N for a target bitrate. In addition,
we proved that the probability of failure decreases
exponentially to zero when P − N increases. In our
experiments we found that an excess of approximately
6-7 observed vectors beyond the dimension N of the
space is generally sufficient to ensure successful con-
vergence.
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Fig. 11. Top row: Estimation accuracy. Bottom row: Transform estimation example for the first image in the UCID dataset.

We also studied the challenging problem of estimat-
ing both the transform and the quantizer of the first
transform coder in a chain of two transform coders. We
showed for the first time that, under specific conditions,
the effect of the second transform coder can be removed,
so that the problem can be addressed using the algorithm
used for a single transform coder. Then, we presented
an iterative method that successfully solves the problem
even when the conditions are not entirely satisfied.
Results on real data show the potential of this new
approach which might be useful also in image forensics
and video processing.

APPENDIX

of Lemma 4.1: If S ⊂ L(B(r)), then B(r+1) =
B(r) and the recursion terminates. Otherwise, let z ∈
S \L(B(r)) be any of the points which does not belong
to the lattice defined by B(r), v any of the vertices of
Pz(B(r)) and d = z−v. The vector d can be expressed
in terms of the basis B(r) as d = B(r)θ. By definition,
the vector z belongs to Pz(B(r)), hence −1 ≤ θi ≤ 1.
Since z /∈ L(B(r)), z does not belong to the vertices of
Pz(B(r)). It follows that there is at least one coefficient
θl in the basis expansion of d, such that 0 < |θl| < 1.

The vector d replaces the i-th column of B(r) to ob-
tain B

(r)
i . From Cramer’s rule, det(B(r)

i ) = θidet(B(r)).
Therefore, if we select l, such that 0 < |θl| < 1,

|L(B(r+1))| = |det(B(r+1))| = |det(B(r)
l )| (34)

= |θl||det(B(r))| < |det(B(r))| = |L(B(r))|

Note that there must be at least one such an index l, as
indicated above.

of Theorem 4.2: Let L∗ denote the solution of (13),
i.e., the lattice with maximum volume that includes all
observed vectors S. We need to prove that L(B(R)) =
L∗.

First, we prove that |L(B(R))| cannot decrease be-
yond |L∗|, i.e., |L∗| ≤ |L(B(R))|. To this end, let
L(B(R−1)) denote the lattice obtained at the iteration
just before convergence. Hence, there is at least one
observed vector x̃ ∈ L∗ such that x̃ /∈ L(B(R−1)).
Lemma 4.1 establishes that |L(B(R))| < |L(B(R−1))|.

Let d denote the difference vector as in line 7 of
Algorithm 2. By construction, d ∈ L∗. Let B∗ denote
a basis for L∗. Then, it is possible to write d = B∗θ∗,
θ∗i ∈ Z. L(B(R−1)) is a sublattice of L∗. Hence,
B(R−1) = B∗A, where A is a matrix of integer
elements such that det(A) = m, with m ∈ Z \ {0},
and |L(B(R−1))|/|L∗| = m.

It is possible to express d in the basis expansion of
B(R−1). That is,

θ = (B(R−1))−1d = (B∗A)−1B∗θ∗

= A−1θ∗ =
1

det(A)
cofactor(A)θ∗. (35)

Note that both the cofactor matrix cofactor(A) and θ∗

have integer elements. Hence, the vector cofactor(A)θ∗

has integer elements. Any nonzero element of θ is an
integer multiple of 1/det(A) = 1/m. Therefore, if θi 6=
0, |θi| ≥ 1/m.

From the proof of Lemma 4.1, we know that

|L(B(R))| = |θl||L(B(R−1))| ≥ 1

m
|L(B(R−1))| = |L∗|,

(36)
where θl is one of the nonzero elements of θ.

To prove that |L(B(R))| = |L∗|, it remains to be
shown that cannot be |L(B(R))| > |L∗|. Indeed, if this
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were the case, L(B(R)) would be the optimal solution
of (13), since it includes all observed points S and has
volume larger than |L∗|.

In order to prove that convergence requires a finite
number of steps, we construct the sequence of integer
numbers sr = |L(B(r))|, r = 0, 1, . . . , R.

Let R denote the smallest integer such that
|L(B(R))| = |L(B(R+1))|. That is, R is the number of
steps needed to achieve convergence. Note that R <∞.
Indeed, {sr} is a sequence of integer values. The se-
quence is monotonically decreasing due to Lemma 4.1,
until convergence is achieved and S ⊂ L(B(R)). In
addition, it is bounded from below by |Lx|. Therefore,
convergence is achieved in up to |L(B(0))|/|Lx| number
of steps.

of Theorem 4.3: Since S 6⊂ L(B(r)) the recursion
is not terminated. Consider the vector d = z−v, which
can be expressed in the basis B(r) as d = B(r)θ.
Dropping the superscript (r), it is possible to write

θ = B−1d = B−1(z− v) (37)
= B−1z−B−1(B · round(B−1z)) (38)
= B−1z− round(B−1z) = a− round(a), (39)

where we set a = B−1z. Due to the properties of
rounding, −1/2 ≤ θi < 1/2. Thus, replacing any of
the columns of B(r) such that θl 6= 0, we obtain, using
Cramer’s rule,

|L(B(r+1))|
|L(B(r))| = |θl| <

1

2
(40)

of Lemma 4.4: It is possible to derive both an
upper and a lower bound on the number of sub-lattices
that are independent from the prime factorisation of m
starting from (17). Since for all cases of interest N > 1,
we have:

pN+j−1
i − 1

pji − 1
>
pN+j−1
i

pji
. (41)

Substituting in (17), we have a function fN (m) that is
guaranteed to yield values below fN (m):

fN (m) =

q∏
i=1

ti∏
j=1

pN+j−1
i

pji
=

q∏
i=1

p
ti(N−1)
i . (42)

This is equivalent to the (N−1)th power of the product
of the prime factors of m. That is, the lower bound of
fN (m) can be expressed as fN (m) = mN−1.
In terms of the upper bound of fN (m), we proceed
similarly by starting with the observation that:

(pN+j−1
i − 1)/(pji − 1) < (pN+j

i )(pji ). (43)

By substituting back into (17), we can observe that:

q∏
i=1

ti∏
j=1

pN+j
i

pji
= mfN (m). (44)

Hence, it is easy to see that the upper bound on fN (m)
can be expressed as fN (m) = mN .
Therefore, since fN (m) < fN (m) < fN (m), we have
mN−1 < fN (m) < mN .
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