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Abstract—Image based rendering is an attractive alternative
to model based rendering for generating novel views due to
its lower complexity and potential for photo-realistic results.
In order to reduce the number of images necessary for alias-
free rendering, some geometric information for the 3D scene is
normally necessary. In this paper, we present a fast automatic
layer-based method for synthesising an arbitrary new view of a
scene from a set of existing views. Our algorithm takes advantage
of the knowledge of the typical structure of multiview data in
order to perform occlusion-aware layer extraction. Moreover, the
number of depth layers used to approximate the geometry of
the scene is chosen based on Plenoptic sampling theory with the
layers placed non-uniformly to account for the scene distribution.
The rendering is achieved by using a probabilistic interpolation
approach and by extracting the depth layer information on a
small number of key images. Numerical results demonstrate that
the algorithm is fast and yet is only 0.25 dB away from the ideal
performance achieved with the ground-truth knowledge of the 3D
geometry of the scene of interest. This indicates that there are
measurable benefits from following the predictions of Plenoptic
theory and that they remain true when translated into a practical
system for real world data.

Index Terms—View synthesis, Plenoptic function, depth layer,
multi-view.
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I. INTRODUCTION

V IEW synthesis is the process of generating an arbitrary

new view of a scene from a set of existing views. One

approach is to create a textured 3D model of the entire scene

and to use this for synthesising new views. This approach

allows freedom in the final rendering but creating the complex

3D model in the first place can often be computationally inten-

sive. Moreover, the synthesised output images, in particular for

cluttered scenes, are often noticeably artificial. An alternative

approach is image based rendering (IBR) [2], [3], in which

new views are generated by combining individual pixels from

a densely sampled set of input images. This approach requires

little geometric information and can give potentially photo-

realistic results but requires many more input images [4].

These two approaches can be thought of as opposite extremes

of a spectrum where a reduction of one resource, geometric

completeness, requires a corresponding increase in another, the

number of images, to maintain a consistent quality.
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Plenoptic sampling theory [5], [6] gives us a theoretical

framework to understand this trade-off. In particular, Plenoptic

sampling shows that, in the absence of occlusions, the number

of views necessary for alias-free rendering does not depend

on the geometrical complexity of the scene but only on the

depth variation within the scene (e.g., [7]). Consequently, a

layer-based representation [8], [9], [10], [11], where the scene

is split into separate depth layers each with a reduced depth

range, is a good way of introducing a variable amount of

geometric complexity to allow accurate view synthesis from a

moderate number of input images. In particular, the trade-off

between geometric information and rendering quality reduces,

in this way, to a trade-off between the number of images, the

depth variation within the scene and the number of layers. A

layer based model also has other advantages including implicit

occlusion ordering and scalability.

For a layer based system each pixel in the input images

needs to be assigned to a particular layer. This is normally

achieved by matching points in two or more images and

comparing the pixel position shift and the camera position shift

which gives us the depth. Several methods have operated at a

local pixel level, often with high speed (e.g., [12]) the accuracy

of which can be improved by expanding the matching scope,

for example by utilising a semi-global approach to improve the

edge accuracy (e.g., [13]). One popular alternative to a pixel

based method is the use of blocks of pixels [14]. Although

more robust to noise and requiring a less iterative approach

it introduces the problem of blockiness and poor reproduction

of object edges. Various post-processing methods have been

proposed to refine a coarse disparity map in conjunction with

the original images [15], [16]. An alternative to dealing with

the issue of matching object edges is through the use of a

collection of sub-blocks processed together, as suggested in

[17], [18], or using segments based on the image content rather

than a regular grid [19]. Although an initial segmentation step

is required and some assumptions are made about picking

segments that remain within the same layer, there are several

advantages to this approach as discussed by Zhang et al. [20].

One is a higher robustness to noise, another is that it allows

good edges to be formed without a highly iterative approach.

An extension of the general segmentation method is the use

of high level object segmentation [21], [22] often based on

human intervention [9].

There are many ways to use the layer model to synthesise

new image views, various image warping techniques applied to

the whole image have been proposed in [23], [24] although the

resultant output is a complete image, it may be significantly
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distorted and often may not fully take into account the occlu-

sions and disocclusions inherent in the set-up. An alternative

approach is a rigid layer shift accounting for the occlusion

ordering on the layers, this models a scene more accurately

but dissoclusion may lead to gaps in the final output which

need to be filled as discussed in [25].

Depending on the type of rendering and the quality of the

depth geometry a number of rendering artifacts can arise.

Various approaches to mitigate these have been proposed

such as enhancing depth geometry using the images [26] or

merging separately generated geometry together [27]. One

major, though inevitable, difficulty with layer shifts is the

introduction of holes in the output image due to regions in the

output image that are not visible in any input image. Several

innovative approaches have been suggested to solve this for

specific situations with varying degrees of complexity, for

example [28], [29], [30]. Work has also been done to measure

and predict the extent of errors in a system [31] to pick the

particular approach to be used.

In this paper we present a fast automatic algorithm for IBR

from a set of input images that uses Plenoptic sampling theory

as a guide to the required number of layers. The theory shows

that, provided certain assumptions are met, alias-free rendering

can be achieved by spacing the layers uniformly in inverse

depth. In practice however, these assumptions, which include

the absence of occlusions, an infinite field of view and a perfect

reconstruction filter, are not fully met and some aliasing is

inevitable. In Sec. V-B, we demonstrate that this residual

aliasing distortion can be reduced by placing the layers closer

together than the minimum spacing predicted by Plenoptic

theory. Conversely, for any given number of layers, the impact

of the residual aliasing on rendering quality is affected by

the chosen layer positions. Accordingly, our algorithm selects

non-uniformly spaced layer positions according to the depth

distribution of objects within the scene by increasing the

density of layers at depths that occur frequently while reducing

the density at depths that occur infrequently. In Sec. V-B

we demonstrate on a range of datasets that despite the use

of non-uniformly spaced layers, Plenoptic theory accurately

predicts the minimum number of layers required for high

quality rendering even though its underlying assumptions are

not fully met in practice.

The algorithm handles occlusions effectively by assigning

image regions to layers in two non-iterative stages. It fur-

ther improves rendering quality by selectively merging small

regions into surrounding layer regions and by the use of a

probabilistic interpolation method. Moreover we propose a

novel method of using multiple depth maps in a master-slave

approach that is effective and scalable. We also note that the

overall algorithm scales naturally with the number of input

images, can be adaptive in the choice of the number of layers

and can be used on different camera arrays such as the EPI

volume [32] or the Lightfield [33], [34].

Simulation results show that our method is only 0.25 dB

away from the ideal performance achieved when having access

to the ground truth pixel based geometric information of the

scene and comparisons are also made to alternative methods.

In addition these results demonstrates the effectiveness of our

method and the validity of the layer-based model.

We note that previously Tong et al. [35] have investigated

the trade-off between geometry and the number of input im-

ages. There are several similarities in our approaches including

the use of a layered geometric model and the combination of

discrete input images to directly synthesise the output rather

than using a pre-generated unified reference image model.

However, they use a stereo-matching algorithm to extract

layers whereas we use a two-stage approach which allows us to

handle occlusions effectively. Moreover, they have investigated

situations in which the trade-off between geometry and number

of images can have several optimal points and experimentally

determine their validity. In contrast, we have used only a single

operating point, as given by Plenoptic sampling theory, based

on a fixed input image spacing, and have investigated the

behaviour either side of this operating point.

The paper is organised as follows: In Sec. II we discuss the

Plenoptic function and its relation to the depth layer model.

Sec. III describes how we extract the layers from the input

images. In Sec. IV we present the view synthesis algorithm

and in Sec. V we analyse the performance of our method.

Finally, Sec. VI concludes the paper.

II. THE PLENOPTIC FUNCTION AND LAYER

APPROXIMATION

A convenient way of regarding a multiview image set is to

consider the collection of light rays emanating from the scene.

The complete seven dimensional parametrization of the rays

at any position and time is known as the Plenoptic function,

introduced by Adelson and Bergen [36]:

P = P7(i, j, λ, t, VX , VY , VZ), (1)

in which λ is the wavelength, t is the time, (VX , VY , VZ)
is the position of the camera centre and (i, j) a point in

the image. The dimensions of the Plenoptic function can be

reduced by imposing restrictions on the acquisition setup. Thus

we can omit t for a static scene and we can omit λ by

considering separate red, green and blue images. A convenient

parametrization, the Light Field or Lumigraph, introduced in

[33], [34], assumes the light ray intensity is constant along its

length, the cameras are restricted to the plane VZ = 0 and

define a light ray by the coordinates of its intersections with

two parallel planes, the image plane (i, j) and the camera

plane (VX , VY ). This leaves us with the four dimensional

parametrisation,

P = P4(i, j, VX , VY ). (2)

In this paper, we will assume that a static scene is sampled

by an array of identical pinhole cameras whose optical centres

lie on a camera plane perpendicular to their optical axes

as illustrated in Fig. 1(a). We define a right-handed world

coordinate system with its origin at the optical centre of the

upper left camera position and the Z-axis pointing towards the

scene.

The geometry of the pinhole camera Lightfield is illustrated

in Fig. 1(b). The camera centre location is (VX , VY ) on the

camera plane which is separated from the image plane by the
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(a) Camera Array (b) Pinhole model

Fig. 1. (a) Our array of cameras allows us to sample the Plenoptic function
in the image, (i, j), and camera, (VX , VY ), planes. (b) The pinhole camera
model of how the rays within a scene are captured by a camera, with the lens
modelled as a single point, and the ray vector described as the intersection
with two planes.

focal length f . The image plane for each camera has a separate

coordinate system (i, j), centred on the optical axis. For a light

ray that originates at point (X,Y, Z) in real world space and

passes through the camera position (VX , VY ), the intersection

with the image plane (i, j) is given by,

(i, j) =
f

Z
(X − VX , Y − VY ) . (3)

(a) Layered view (b) EPI lines

Fig. 2. Four points at two different depths, ZA and ZB observed by a
camera in positions VX = 1 and VX = 2, (a) shows the top down real world
scene and (b) shows the EPI plot.

The Plenoptic function can be further simplified by fixing

VY , thereby restricting the camera positions to a horizontal

line. This set-up is known as the 3-D EPI (Epipolar-plane

Image) [32]. Fig. 2(a) shows the view from above of four

points in a scene, P,Q,R and S at two different depths, ZA

and ZB , from the camera line. The figure shows the light

rays from the four points that are received at two different

camera positions VX = 1, 2. For each of the four scene points,

Fig. 2(b) plots i,the intersection with the image plane of a

light ray from the point as a function of the camera position,

VX . The locus corresponding to each scene point is known as

its EPI line [32]. Each EPI line has a constant gradient, the

‘disparity gradient’ (DG) that is inversely proportional to the

depth, Z, of its scene point; thus the lines corresponding to P
and Q have a steeper gradient than those corresponding to R
and S. From Fig. 2(a) we can see that when the camera is at

VX = 2, point Q occludes point R; this occlusion is predicted

by the intersection of the EPI lines shown in Fig. 2(b) since

lines with a steeper gradient occlude lines with a shallower

gradient when they intersect. When we consider a full scene

with many points and hence many EPI lines we call the whole

an EPI line volume (ELV) [37].

A. Plenoptic Spectrum
In [5], Chai et al. use spectral analysis to investigate the

EPI structure described above. The two dimensional Fourier

transform of a line in the EPI domain is a line perpendicular

to the original and with a gradient f/Z. This is shown in

Fig. 3(a) for a point at depth Z. In the more general case

of a scene with varying depth, each point leads to a line in

the EPI spectrum and all the line gradients are bounded by the

minimum and maximum depths of points within the scene. For

a scene comprising points with Zmin ≤ Z ≤ Zmax, we end

up with a bandlimited spectrum with a characteristic bow-tie

shape support as shown in Fig. 3(b). This theory makes several

assumptions including, for example, the absence of occlusions

and an infinite field of view. Since these assumptions are not

fully met in practice, the spectrum of a real scene is only

approximately bandlimited [7], [38], [39]. If the EPI is uni-

(a) Fourier transform (b) Bow-tie bounding

Fig. 3. (a) Shows the Fourier transform of an EPI line. (b) Taking the
minimum, Zmin, and maximum, Zmax, depths bounds the bundle of EPI
lines into a characteristic bow-tie shape.

formly sampled with cameras spaced ΔVX apart, the spectrum

repeats at intervals of 2π/ΔVX , as shown in Fig. 4(a), where

u, the pixel spacing, determines the maximum frequency in

the ωi direction. An optimal reconstruction filter (dotted line)

can be constructed around the fundamental section of the

spectrum defined by Zmax and Zmin. This allows us to pick a

sufficiently low camera spacing ΔVX such that aliasing does

not occur. If ΔVX is made too large, aliasing will occur as the

repeated spectra overlap; this is shown in Fig. 4(b). Combining

(a) No aliasing (b) Aliasing occurs

Fig. 4. (a) Using an optimal reconstruction filter (dotted line) and a finite
depth of field we can calculate a sufficiently small sampling spacing to avoid
aliasing effects. (b) A higher ΔVX leads to aliasing as parts of the repeated
spectrum lie within the optimal reconstruction filter (shaded regions).

the relationships shown in Fig. 3 and Fig. 4 we determine the

maximum camera spacing [5] as,

ΔVX =
1

Bfh
(4)
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where h = [1/Zmin − 1/Zmax] and B ≤ 0.5/u is the highest

image bandwidth given a pixel spacing u.

B. Layer Model

The Plenoptic model describes a scene in terms of light

rays emanating from points within a scene. A geometric model

helps us describe and store the position of these points. One

method of achieving this is a full 3D model in which every

point has its own individually recorded position in (X,Y, Z).
An alternative is a layer based model where the volume in

which the points reside is partitioned into a set of constant-

depth layers parallel to the camera plane and each point is

assigned to the closest layer.

In this work we use a depth-layer based geometric model

because it is robust, offers a good description of many real

scenes and is computationally efficient. Fig. 5 shows the layer

model of a simple scene, where each surface point is projected

along the Z axis onto the nearest layer to form a series of

fronto-parallel planes. Associated with each layer l, at depth

Zl, is a unique disparity gradient (DG), gl = Δi/ΔVX = f
Zlu

,

for a pixel spacing of u.

Fig. 5. Layer model, each point in the continuous real world (dotted) is
projected onto the nearest layer to give a series of planes (solid).

By dividing the scene into layers, we can reduce the

depth range within any given layer; this reduces h in (4)

and therefore allows sparser sampling in VX . Conversely if

we have a fixed camera spacing, ΔVX , we can use (4) to

determine h. Assuming the layers are uniformly spaced in

Z−1 with a pixel spacing of u, this allows us to determine the

minimum number of layers,

Lmin = fΔVXBh (5)

=
fΔVX

2u
(

1

Zmin
− 1

Zmax
) (6)

=
ΔVX

2
(gmax − gmin), (7)

necessary for successful rendering, known as the minimum

sampling criterion (MSC). This value gives us a guideline

for the number of layers necessary for high quality rendering.

Generally the range of Z for a scene will be constrained by the

real world geometry, so if we are given a fixed camera spacing

we can determine the optimal number of layers, or conversely

if we have a fixed number of layers we can determine the

corresponding maximum camera spacing.

We use this Plenoptic sampling framework to advise our

layer extraction algorithm. In the initial stage of our algorithm

we calculate Zmin, Zmax and ΔVX in order to determine

the necessary Lmin. Since this computation can be performed

on any number of input images, our algorithm allows us to

adaptively modify the number of layers extracted as the visible

scene depth range or camera spacing change.

III. LAYER EXTRACTION

Our view synthesis is dependent on the depth layer model

generated from a collection of camera views. As discussed

in Sec. II, the required number of layers can be determined

from the Zmin and Zmax of the scene. This can be calculated

from a sparse estimate of the scene geometry, which is used

to initialise the next step. At this point we diverge from the

Pleoptic theory which suggests evenly spaced layers, as objects

within a real scene are not uniformly distributed in depth so

there are advantages to assigning the output layers with uneven

spacings. To do so a more detailed knowledge of the scene

geometry is needed to assign layers to the best positions, this

is discussed further in Sec. III-C. Once the layer positions

have been chosen we can assign each pixel within an image

to a particular layer, this flat representation of the geometry is

known as a disparity gradient map (DG map). This gives us a

final version of the ELV quantised to the chosen layers that we

then use to synthesise new views. For the sake of convenience

and to simplify explanation we have assumed the input images

have already been rectified.

Fig. 6. Algorithm flow diagram, the main stages of the algorithm are
(A) estimating the depth range of the scene (Sec. III-A), (B) calculate an
accurate disparity gradient histogram (Sec. III-B), (C) assign the best layers
using the Lloyd-Max algorithm (Sec. III-C) and (D) assign segments to layers
(Sec. III-D).

The layer extraction algorithm as shown in Fig. 6 and

described in detail below, comprises the following main stages:

i) Depth range estimation: Zmin, Zmax and ΔVX are

found by examining the depth estimation of features

within the scene.

ii) Disparity gradient histogram: a more detailed estimate

of the depth distribution of the scene, bounded by the

previously calculated Zmin and Zmax, is obtained.

iii) Non uniformly spaced layers: the detailed depth distribu-

tion estimate from the previous step is used to determine

the optimum layer positions that will minimise the total

error.

iv) Prioritised layer assignment: pixels are assigned to

layers in a single pass taking occlusions in the scene

into account.
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The algorithm can potentially compute a separate DG map

for all the available input images, however, we found that for

all the datasets tested, the DG map only needs to be calculated

for a few key images, typically two images. The use and the

choice of these key images will be covered in more detail in

Sec. IV-C.

Finally, the algorithm outlined so far is for the EPI case

where camera motion is only along the X axis, this is for ease

of presentation and understanding. However the extension for

the more general case of camera motion in more dimensions

is straightforward. When our input is a 2-dimensional camera

array we can parallelise the calculation along the VX and VY

axis, as shown in Fig. 7, and then combine the results. The

Fig. 7. With a 2-dimensional camera array the EPI sets for a key image can
be separately calculated along both VX and VY axis in parallel with a shared
key image. Calculations along both separate axis can then be combined for a
more robust and accurate result.

benefit of this approach is that we can also use the same

algorithm for this type of camera array. Choosing two EPI

subsets from the camera array that intersect makes it possible

for them to share a common key image to ensure consistent

segmentation. Additionally by choosing two perpendicular EPI

sub-sets we maximise the assignment diversity and hence the

coverage of the scene. For example in Fig. 7 if we select

the top left camera view VX = 0, VY = 0 as a key image

we would choose the row VY = 0 for one EPI line and the

column VX = 0 for the other EPI line. This extension and

how to utilise the extra dimension of information is covered

in detail in Sec. III-E.

A. Depth range estimation

The first stage of the algorithm is to determine the Zmin and

Zmax for the visible scene. To achieve this aim as efficiently

as possible we match a limited number of distinctive features

between two images.

FAST features [40] are extracted from the key image and

matched to an adjacent image using the pyramidal Lucas-

Kanade feature tracker [41], [42]. The implementation for both

these algorithms is taken from the OpenCV 2.4 library [43].

If we compare the DG histograms, as shown in Fig. 8,

for the FAST feature points (solid line) and the ground truth

(dotted line) we can see they have a similar distribution,

however there are regions which do not match well and there

are several key discrepancies. The most obvious is the large

peak between the DG values 3.8 - 4.2 which is only partially

represented by a small spike in the FAST points at DG =

4, in addition the spike at DG = 9.4 is also missing. This

is because, as can be seen in Fig. 9, the FAST points are

not uniformly distributed in the image, as they cluster around

distinctive features and are sparse in low texture regions in

the background (DG values 3.8 - 4.0) and the roof area at

DG = 9.4. Although there are not enough FAST points to

determine the final layer positions robustly, we can reliably

estimate Zmin and Zmax from this DG and move onto the

next stage of the algorithm. By comparing the DG histograms

we can easily calculate ΔVX for different image pairs.

Fig. 8. Comparison of the DG histograms for image 0 from the Teddy
sequence; the ground truth (dotted line) and the FAST features (solid line
scaled by a factor of 8). Peaks in the ground truth histogram that correspond
to regions with few FAST points (e.g. at disparity gradients 3.9 and 9.4) are
missing from the FAST point histogram.

Fig. 9. Teddy image 0 and the corresponding FAST features. The features
are not uniformly distributed, there are (H)igh concentrations of points within
highly textured areas and (L)ow concentrations within regions having little
texture variation.

B. Disparity gradient histogram

Matching the features between images gives a good estimate

for the DG range but a more detailed estimate of the scene

disparities is needed to assign layers. Although we want an

estimate of the DG, g, for each pixel we will not calculate

this on a pixel by pixel basis. Rather than assigning each pixel

to a layer individually, we segment the images, using a 2D

spatial and colour based method (eg. [44]), then assign entire

segments to a particular layer. This has two advantages: it

makes the algorithm more robust to noise and, since object

edges are normally aligned to segment boundaries, results in

sharp and consistent edges.

We need a reasonably accurate estimate of the g for each

segment in the image. Based on our assumptions we can

discount any features whose matches do not lie on the epipolar

line, so shifts will only be along one axis. Most segments

within the image have at least one feature, however not all

feature tracking is reliable. To account for this we can compare

the estimate from several features within the same segment

and if they agree we can conclude that there is sufficient

evidence to assign that segment to a particular g. However the

more features we require, the fewer segments are available.

We found experimentally that a valid threshold was 10 feature
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points in a segment. The remaining segments are assigned

using the following method.

We have an estimate for the Zmin and Zmax of the scene

and hence their inverse relation gmax and gmin. We need

to calculate the best match for each remaining, un-assigned

segment within this DG range. For any given camera pair,

with separation ΔVX , we can calculate the expected disparity

shift d of a segment with gradient g. We can evaluate the result

of assigning a segment to a particular g and see how well the

predicted shift of a segment from the key image applies as a

prediction for the other images. We sample the DG histogram

uniformly between gmin and gmax, with sufficient resolution

to represent pixel-accurate disparities between the images of

the most widely spaced cameras. Following [45] our matching

metric is based on sum of absolute differences (SAD) where

we are trying to minimise the error function ε for each of the

N segments. Each segment, Sn, contains Kn pixels each of

which has a position index (i
(n)
k , j

(n)
k ) within an image Im.

Therefore the matching error ε is,

ε (Sn) =

1

M

Kn−1∑
k=0

M−1∑
m=1

∣∣∣I0 (i(n)k , j
(n)
k

)
− Im

(
i
(n)
k + g(n)Vm, j

(n)
k

)∣∣∣
(8)

where Kn is the total number of pixels within the segment

Sn which is being evaluated over M images. I0 is the key

image and Im is the target image. g(n) is the proposed DG

and Vm is the Vx position of image m.

This allows us to select the layer assignments that will

minimise the global ε for a scene.

C. Non uniformly spaced layers

Previous authors [45] have selected layers that are uniformly

spaced in disparity as suggested by Plenoptic theory. For the

case of a precisely bandlimited Plenoptic spectrum with an

ideal reconstruction filter, this results in alias-free rendering

with the minimum number of layers. Because the assumptions

underlying Plenoptic theory are not fully met in practice, some

aliasing is always present and its impact on rendered output

images can be reduced by increasing the layer density beyond

that indicated by the theory. As will be seen in Sec. V-B, the

overall rendered image quality for a given number of layers

can be improved by increasing the layer density at depths that

occur frequently in the observed scene while decreasing it at

depths that occur less often.

This assignment requires some geometric knowledge of the

scene, so we take our new DG histogram, shown in Fig. 10 for

the Teddy data set, and use it to assign the layers. We want to

minimise the error from quantising disparities to these layer

positions so the Lloyd-Max algorithm [46] with a quadratic

cost function is used to find the values of gl for each of the

Lmin layers. The DGs of the resulting layers are shown as

the vertical lines in Fig. 10. It can be seen that these cluster

around the regions with a higher density of pixels, minimising

the assignment error when using the layer model.

Fig. 10. Disparity gradient distribution (black curve) for Teddy sequence
with its associated DG layers (vertical red lines), where L is 8.

If layers can be placed non-uniformly, the potential im-

provement in performance is several dB, as will be shown

in Sec. V.

The use of non-uniform layer spacing represents a trade-

off in which the aliasing error at frequently occurring scene

depths is reduced at the expense of increased aliasing error at

rarely occurring scene depths. This trade-off is controlled by

the cost function used in the Lloyd-Max algorithm; we have

found that the use of a quadratic cost function consistently

gives the greatest improvement in PSNR on our evaluation

datasets.

D. Prioritised layer assignment

We know from the Plenoptic theory that occlusions are

hierarchical and predictable in that segments with higher g
always occlude those with a lower g. Our key innovation is to

refine the DG assignment in a separate step, initially analysing

each segment in isolation (as discussed previously) and then

taking into account the predicted occlusions from surrounding

segments to refine the initial estimate. The improvements can

be seen in Fig. 11.

(a) Original DG map. (b) Refined DG map.

Fig. 11. Using the prioritised segment assignment improves the accuracy of
assignment for the whole DG map, especially for segments (marked) that are
occluded by foreground objects.

Plenoptic sampling theory suggests that only a limited

number of layers is required for alias-free synthesis, so we can

conduct the final occlusion-aware segment assignment using

the layers calculated with the Lloyd-Max algorithm (eg. 8

layers shown in Fig. 10) with no loss of quality.

The new matching error ε is calculated using,

ε (Sn) =
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1

M

Kn−1∑
k=0

M−1∑
m=1

O
(n)
k

∣∣∣I0 (i(n)k , j
(n)
k

)
− Im

(
i
(n)
k + g(n)Vm, j

(n)
k

)∣∣∣
(

Kn−1∑
k=0

O
(n)
k

)
log

(
Kn−1∑
k=0

O
(n)
k

)
(9)

where O is a visibility mask and,

O
(n)
k =

{
1 if Im(i

(n)
k + g(n)Vm, j

(n)
k ) is visible;

0 if Im(i
(n)
k + g(n)Vm, j

(n)
k ) is occluded.

(10)

As the segments were previously matched with no concept

of occlusions the results were independent of the assignment

order. However we can use the previous results to aid us

in re-calculating the segment disparity in a more efficient

manner. Assuming that the first pass is relatively accurate all

Sn assigned to the top level, gmax, should be well assigned as

they will not have any occlusions. If ε is sufficiently low then

the top level segments are used to form the occlusion map

for the subsequent layer. If ε is too high then it is likely that

the segment has been misassigned and so it is omitted from

the occlusion map. This process is repeated for each layer

until gmin is reached. Segments with a poor matching score

are ignored until the very end at which point they are then

assigned using the most recent and complete occlusion map.

The benefits of this prioritised procedure is that occlusions

are estimated for all new assignments, rather than the less

accurate assignments of Eq. (8), and that unreliably assigned

segments are ignored when estimating occlusions. We note

that the prioritised approach does not increase the complexity

of the method in that it only changes the order in which

segments are tested but it does improve the quality of the

occlusion map and hence the final reliability of the algorithm.

The weighting in the SAD (9) is biased towards preferring

larger segments whenever possible, so the increased reliability

of large segments is reflected in the confidence metric.

E. Segment extraction for 2D camera arrays

For the 2D camera array case the two intersecting camera

lines are calculated separately and then combined afterwards.

This combination is simple as the camera lines intersect with

the shared key image at the intersection point, as seen in Fig.7.

This means that only one image needs to be segmented and

that the matching error for each segment can be minimised

in both directions. By choosing to use an additional camera

line perpendicular to the first we maximise the diversity of the

segment matching as some objects may be largely occluded or

contain poor texture in a certain direction but these problems

might not be apparent in the orthogonal direction. For example

in Fig. 12 we look at the matching confidence (inverse error) of

a segment for different potential disparities and we note that

the confidence along VX (dashed line) shows a small peak

while that along VY (solid line) shows a large distinct peak

which is closer to the ground truth (labelled GT). We therefore

find that the most robust and reliable improvement comes from

choosing either one direction or the other based on the strength

Fig. 12. For this segment there is a small (incorrect) peak when matching
along VX (dashed line) but along VY (solid line) there is a distinct peak in
the segment assignment confidence close to the marked ground truth (GT).

and sharpness of the peak, rather than combining and possibly

exacerbating any errors. As both EPI sub-sets have the same

key image, combining the results is very simple.

F. Depth Flattening

The prioritised segment matching step is good for dealing

with the types of errors shown in Fig. 11 where a segment is

grossly mis-assigned due to an occlusion. Fig. 13 illustrates an

example of a few types of error that are not resolved. Segments

that are small and affected by frame occlusions or a segment

wrongly assigned to a slightly different DG will cause a minor

but unsightly artefact in the final synthesis. An additional step

is required to deal with this type of issue. To reduce the

(a) Original DG map (b) Enhanced DG map

Fig. 13. Using the prioritised segment assignment and applying the flattening
algorithm with an α of 0.4 and ζ of 0.01 per iteration allows us to deal with
un-assigned and slightly miss-assigned segments.

artefacts in the final output we can include the DG of the

surrounding layers as a weight in the segment assignment.

This will favour adjacent segments with the same DG as long

as there is not a major reduction in the matching confidence.

The first step is to find the percentage of the segment border

Fig. 14. For segment (i) there are three different adjacent disparity gradients,
g =2 , g =4 and g =9. Segments (ii) to (iv) all have g = 4 and their combined

border ratio with (i) is 0.75 so B
(n)
4 = 0.75 , similarly from segment (vi) B

(n)
9

= 0.20 and segment (v) B
(n)
2 =0.05.

bounded by each of the gl, giving us the border ratio B
(n)
g

for each segment n and disparity gradient g (see Fig. 14

for an illustrative example). This border ratio allows us to

determine which would be the best disparity to re-assign the
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segment to in terms of flattening the DG map. The second

step is to determine the cost of such a disparity re-assignment.

We do this by looking at the DG confidence histogram H
(n)
g

for each segment n. Initially each segment is assigned to the

highest peak at ĝn and the cost of re-assignement to a new g
is the percentage shift in the confidence value in relation to

ĝn. For a low texture background segment with a wide peak

(which is the main type of segment to have slight variations

of assignment), as shown in Fig. 15, a small shift in g leads to

a small shift of H so there is little cost in the re-assignment.

Conversely a highly textured foreground object with a sharply

Fig. 15. When the peak is shallow and smooth, slight changes in g do not
lead to a large change in confidence.

defined peak which we do not want to flatten with surrounding

segments, such as Fig. 16, has a high cost for the same degree

of re-assignment. Combining these gain and cost functions

Fig. 16. When the peak is steep and sharp, slight changes in g lead to a
large change in confidence.

together gives us the flattening metric F
(n)
g ,

F (n)
g = B(n)

g − α

(
H

(n)
max −H

(n)
g

H
(n)
max

)
(11)

which balances the gain of flattening a segment to the sur-

rounding segment DG, based on the border length, versus the

cost of a less confidence assignment with a weighting term α
to allow fine tuning. The segment, Sn, will be assigned to the

layer associated with the highest F
(n)
g , as long as it is above a

re-assignment threshold of 0.6. The process is iterative with all

calculations occurring with the current segment assignments

and a simultaneous re-assignment of all the segments after the

round of calculations has finished. However in certain cases the

segments can end up in periodic pattern, flip-flopping between

a series of states. To force the system to stabilise a damping

term ζ is added to the equation,

F̃g,n(k + 1) = B(n)
g (k)− ζ(k)− α

(
H

(n)
max −H

(n)
g

H
(n)
max

)
(12)

where a high ζ will stabilise the system in fewer iterations.

IV. VIEW SYNTHESIS

View synthesis is the creation of novel views of a scene

based on existing images. Our synthesis algorithm consists of

the following steps: First we need layer based geometry for

all of the input images and the view to be synthesised. As

described previously, we calculate the layer models for a few

key images and then use these to predict the geometry for all

the other views. This geometry allows us to use the EPI line

structure to interpolate a new image from existing images.

The synthesis method for each new image comprises the

following steps:

i) Plenoptic synthesis: using the EPI line structure we

predict the intersection in adjacent images of the EPI

line that passes through each new output image pixel,

accounting for occlusions.

ii) Probabilistic pixel interpolation: based on their spatial

positions and pixel value similarity a probabilistic esti-

mate is made to interpolate the new pixel position.

iii) Multiple key images: multiple key images are utilised to

fill in any gaps in the output image.

iv) Orphan edges and alpha blending: post-processing is

applied to the image on a pixel by pixel basis to remove

minor rendering artefacts.

Generally to minimize errors the closest two images either

side of the new view are used for the synthesis, as described

in Sec. IV-B.

Due to the differing amounts each layer is shifted, regions

of one layer may move to occlude a layer with a lower DG.

Consequently when the layers are shifted, regions of the scene

also become disoccluded leaving gaps. It is important to under-

stand the causes of different types of occlusion/disocclusion

as different approaches are required to deal with them. Three

types of possible disocclusion are illustrated in Fig. 17; (A)

shows tearing, where a missing region appears in a oblique

surface which is assigned to multiple depth layers; (B) shows

a region of inter object disocclusion; these two types of occlu-

sion are covered in Section IV-C. Type (C) errors demonstrate

disocclusions due to the lack of available image information

outside the field of view. Type (A) and (B) errors can be

in-filled directly, either from surrounding pixels or different

image sources if available. Type (C) holes can cause problems

if in-filled directly, as described in the latter part of Sec. IV-C.

Fig. 17. The view from the Teddy sequence at VX = 0 is projected layer
by layer to VX = 8, with resulting disocclusions left as black pixels. Three
different types of disoclusion are highlighted.



9

A. Plenoptic synthesis

Earlier we described EPI lines for individual points, if we

consider the EPI lines for the whole image sequence we will

have a 3D volume of lines. Novel views are generated by

interpolating new points from the other input images along

the corresponding EPI line. We assume a Lambertian scene

meaning that the intensity value is constant along each EPI

line. In Fig. 18 we illustrate a simplified 2D case with four

EPI lines on two layers. The new sample on an EPI line, at

position VX = 1.7, is interpolated from the samples provided

by input images, VX = 1 and VX = 2, either side. For points

P, Q and S the EPI line is un-occluded on both sides so the new

sample will be interpolated as a blended distance-dependant

mixture of the two input images. In the case of R only one

side of the EPI line is un-occluded so only the sample from

VX = 2 will be used.

We synthesise the image on a layer by layer basis, starting

with the lowest disparity and hence the most distant layer, and

move through the layers progressively closer to the camera to

preserve the occlusion ordering.

Fig. 18. To synthesise a new view at V1.7 we take pixels along the EPI
line from bracketing views V1 and V2 and combine them to form a new
interpolated value. If a potential source pixel is occluded it is not included in
the interpolation.

B. Probabilistic pixel interpolation

To synthesise a new view we scan through all the empty

output pixels synthesising each individually by interpolating

along the EPI lines from the two closest bracketing views,

as shown in the top down view in Fig. 19. Because the g ·

Fig. 19. When synthesising a new view (dotted line) at V1.3 we interpolate
along the EPI line using samples from bracketing views (dashed lines) V1 and
V2. Because the sample point in i for the existing views does not always lie
exactly on a pixel we have to use the two closest pixels from each bracketing
view.

VX for a point has a sub-pixel precision the projection to

the bracketing images will not always lie exactly on a pixel.

The traditional approach would be to linearly interpolate the

value of the intersection point from the pixels either side of

the intersection based on their spatial separation. For example

using linear interpolation for the synthesised point in Fig. 19

we obtain

P1,2,3,4 = (1− γ)P1,2 + γP3,4, (13)

where at VX = 1,

P1,2 = (1− α)P1 + αP2, (14)

similarly for VX = 2 P3,4 is calculated using β and

γ =
Vs − �Vs�

(�Vs� − �Vs�) , (15)

where γ is the distance between the synthesised image Vs (in

the example shown in Fig. 19 Vs = 1.3) and the lower bracket

image position, �Vs� normalised relative by the total distance,

(�Vs� − �Vs�). α and β are the distances in pixels from the

EPI line to P1 and P3 respectively.

However in some cases the pixels are not all equally valid

as sample points, for example, we need to make sure our

interpolation only uses pixels from the current layer and that

we account for any potential error in our layer assignment. So

rather than the fixed interpolation scheme of (13), we use a

probabilistic method, weighting each input pixel based on its

estimated reliability. The first stage is to set a very low weight

to any of the four input pixels which are not on the same layer

as the output pixel. Secondly we compare the pixel pairs on

either side of the bracket, if they are close in value then they

have a higher probability of being correct so they are weighted

higher.

So the probabilistic prediction for the interpolated pixel now

becomes,

P̂1,2,3,4 =
P̂1,2 + P̂3,4

4∑
p=1

Gp

, (16)

where

P̂1,2 = (1− γ)(G1φ(1− α)P1 +G2θαP2), (17)

P̂3,4 = (γ)(G4φβP4 +G3θ(1− β)P3), (18)

θ =
|P1 − P4|

|P1 − P4|+ |P2 − P3| , (19)

and

φ =
|P2 − P3|

|P1 − P4|+ |P2 − P3| . (20)

Where Gp is the weighting for a pixel, p, based on the distance

of its g layer from the output pixel g layer gdiff ,

Gp =

{
1− |gdiff | if |gdiff | ≤ 0.5;

0 otherwise.
(21)

and α and β are ratios of the intersection distance of the EPI

line in relation to the pixel pair either side, as shown in Fig. 19.

The benefits of this approach are an improvement in PSNR and

visual quality due to unreliable pixels having less effect on the

interpolation.
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C. Multiple key images

For complex scenes all regions of the scene may not be

visible from a single key image. Using more key images

increases the coverage of the scene and allows reliable as-

signment of these regions. For the EPI sequences tested, with

between 5 and 9 images, we use two key images as we

found that increasing the number of key images beyond this

point provides little additional benefit to the output quality.

By selecting images at opposite ends of the sequence we can

increase the parallax and hence maximise coverage. A similar

reasoning leads to choosing opposite corners when using a

Lightfield source.

When using multiple key images it is important that all the

calculated key image DG maps have the same layer positions.

The DG histograms, Fig. 10, are estimated for each key image

independently. These results are then combined before the

Lloyd-Max algorithm is applied jointly to both in order to

estimate a common set of layer disparity gradients. This allows

easy and smooth combination of the key image DG maps

as well as making sure that the layer positions are placed

efficiently even for objects that might not be visible from some

key images.

When synthesising a novel view, the consistent layer model

used in all key images allows them to be used in a master-slave

relationship. For each output view the closest key image is set

as the master and any other available key images as slaves.

Priority is given to the information from the master image in

the case of any conflicts, so the slave key images are used

only to fill holes in the resulting projection.

There are two different causes for the three types of occlu-

sion shown in Fig. 17. Firstly, the types (A) and (B), are caused

by objects occluding other objects within the scene, known as

internal occlusions. As these occlusions are consistent within

the scene they can be filled in from other slave images.

Type (C) errors are more problematic, because these framing

occlusions are not consistent within the scene as they will be

unique for each image position, so they will therefore cause

problems when they are projected beyond the camera position.

For example Fig. 20 shows a few examples of continuous

objects that are occluded by the image framing but would be

visible as a continuous surface in other views.

Fig. 20. A few examples of contiguous regions within the scene that extend
beyond the image framing and would therefore be occluded by the field of
view.

Fig. 21(a) shows the DG map directly calculated for the

camera position (Vx, Vy) = (4, 4) from the Tsukuba sequence.

Fig. 21(b) shows the prediction for the same camera position,

based on the calculation for camera position (Vx, Vy) = (0, 0).
If we compare the two there are a number of errors.

In this case all the disocclusions are type B or C, as shown

in Fig. 17. For type B disocclusions such as Fig. 21(b)(B) the

error is a hole in the DG map so it can be in-filled either by

interpolating from surrounding pixels, expanding the adjacent

lowest disparity layer [47] or from the DG map of another

key image if there is one available. Some type C disocclusions

can be dealt with in a similar way, for example in the case

of Fig. 21(b)(C-i), although the error is caused by framing

rather than internal occlusion there is no information at all in

the error area so it can be in-filled as previously described

for a type B error. Fig. 21(b)(C-ii)) on the other hand poses

a problem, although the region is missing part of the table

lamp, due to the framing occlusion, there is already a lower

layer present, that should be occluded, so no in-filling will

occur. Because of their higher g layer, the foreground objects

near the edge of the field of view are very vulnerable to this

effect. Our method to prevent this is to project the slave DG

(a) (Vx, Vy) = (4, 4) (b)Projected from (Vx, Vy) = (0, 0)

Fig. 21. Comparing the original DG map for (a) and the DG map for
(Vx, Vy) = (0, 0) projected to the same position shows that some regions
(C-ii) cannot accurately be predicted without accounting for framing occlusion
effects, whereas some can: (B), (C-i).

maps onto the master and record which regions fall outside

the frame and hence correspond to regions unseen from the

master map. An example of this is shown in Fig. 22, showing

the regions of image (Vx, Vy) = (4, 4) which are occluded by

the framing of (Vx, Vy) = (0, 0). These selected regions of

the slave DG map can therefore legitimately occlude regions

of the master map, if they have a higher g, which solves the

problem caused by framing occlusions.

Fig. 22. Inter image projection allows us to calculate which parts of the
slave key image are occluded by the master image frame.

D. Removing orphan edges and alpha blending

If the layer segmentation does not exactly match the under-

lying image then, as illustrated in Fig. 23, shifting a layer

results in the edges of an object being left behind. These

orphan edges are normally only a pixel or two wide but can

cause very obvious rendering artefacts and can be distributed

throughout the image (depending on the difference in disparity

gradient on the object edge).

The orphan edges can be included in the correct layer if

we pre-process the disparity map, enlarging each layer by
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Fig. 23. If the layer segmentation (top layer) doesn’t match the underlying
image (bottom layer) then prediction projection results in the edges of an
object being left behind.

extending the boundary outwards by two pixels. An additional

benefit of this approach is that any small holes or thin intrusion

into layers are also absorbed, which generally improves the

modelling of a typical scene.

Layer extension solves the problems caused by orphan edges

but introduces a different error, if the extension goes beyond

the true layer boundary it leads to a halo of pixels round a

foreground object that should be assigned to a lower layer

causing an unsightly visual artefact.

As these errors will be on the edges of layers rather

than distributed through the image they are easier to predict,

additionally they are much easier to deal with via a technique

called alpha blending or coherence matting [9]. We allow a

degree of transparency for each pixel in the layer between 0

(completely transparent) and 1 (completely opaque). We model

the layers separately so for each pixel we can sum up all the

pixels in proportion to their alpha transparency. If all pixels

had a transparency of 0.8, a pixel would consist of 80% the

top layer then 16% of the next layer (0.8 times the remaining

0.2) and the remaining 4% from the final background layer. If

there are no layers underneath the alpha transparency of a layer

pixel will always be 1. Alpha blending mitigates the haloing

effect and has the added benefit of smoothing any jagged layer

edges.

It is important that the blending is done with true in-line

blending rather than just blurring the edges to avoid adding

unwanted inaccuracies and artefacts. The first stage is to

generate a alpha blending map for each layer. We use a linear

blending profile,

Ablend
i,j,g =

{ pl
pmax + 1

if pl ≤ pmax;

1 otherwise.
(22)

where pmax is the number of extended pixels and pl is

the current distance from the closest edge (in pixels) of

position (i, j) on the appropriate gl. If the underlying layer

is not explicitly known it is interpolated from the surrounding

geometry.

This blending layer is used to calculate an alternative for

the pixel in question which is then blended with the top

level pixel value. Fig. 24 shows the improvements using this

combined extend/blend method. Orphan edges are removed

and the edges of the foreground object are smoother and more

natural looking without any loss of clarity or sharpness for the

rest of the image.

V. EVALUATION

For our evaluation we used the Teddy (450×375, 9 RGB

images), Cones (450×375, 9 RGB images), Barn1 (432×381,

(a) Original (b) Enhanced (c) Diff

Fig. 24. By extending the d map by 2 pixels and then alpha blending by
the same amount the orphan edge effects seen in (a) can be removed (b). The
orphan edges can clearly be seen in the exaggerated diff map (c).

7 RGB images) and Sawtooth (434×380, 7 RGB images)

datasets [48], [49]. The key images were segmented using the

mean shift algorithm [50], [44]. We used the ‘leave m out’

method of evaluation in which only every (m+1)th image is

included in the input image set. These are used to synthesize

one of the omitted images for which the ground truth is known.

In all cases an infilling algorithm was used to fill any holes

with the lowest adjacent disparity in a similar way to [47].

A. Validation of the layer model

Plenoptic theory suggests that by choosing the appropriate

number of layers we can have alias-free rendering, and that no

further improvement will be gained by adding extra geometry.

We validate this analysis and the effectiveness of our algorithm

in Fig. 25 which shows the variation of PSNR with the

number of layers averaged over all the evaluation datasets. This

demonstrates that the gap between our algorithm and rendering

based on the knowledge of the GT geometry is only 0.25 dB.

It also shows that the layer-based representation incurs no-

loss in performance when compared to the rendering based

on complete geometry.

Fig. 25. The horizontal line shows the best average possible performance
using the raw ground truth DG map. The dashed line shows the average effect
of applying the layer model to the raw ground truth (with no segmentation).
The dotted line is our average algorithm result when the layer model is applied
to our own calculated DG map (with segmentation). All three results are
obtained by averaging over all the datasets. The average Lmin based on the
MSC is 14, it can be seen that the results have plateaued by this point.

Specifically, the solid horizontal line represents the best

possible rendering result using the provided raw ground truth

(GT) DG map, which provides full and accurate pixel based

geometric information. The dashed line shows the effect of

applying the layer model to this data by calculating the best

layer positions and assigning all the pixels to the closest layer.

As the number of layers used increases so does the quality

of the output until the improvement plateaus with no further

improvement with additional layers. Importantly this plateau

point is indistinguishable from the raw GT result showing that

there is no inherent loss in quality if a sufficient number of
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TABLE I
THIS TABLE CONTAINS THE COMPARISON RESULTS BETWEEN OUR 1ST

STAGE ALGORITHM, AS DESCRIBED IN SEC. III-B, AN ALTERNATIVE

STEREO-MATCHING METHOD [51] AND THE RESULT OF APPLYING OUR

2ND STAGE ALGORITHM WITH AND WITHOUT VARIABLY SPACED LAYERS

USING LLOYD-MAX. ALL RESULTS ARE FROM THE TEDDY DATASET [48]
WITH THE SAME PARAMETERS AND FINAL RENDERING ALGORITHM.

Method PSNR (dB)

1st stage only (48 Layers) 32.43

Alternative method [51] 32.65

Alternative method [51] + 2nd stage (14 layers) 33.04

1st + 2nd Stage (48 layers) 33.20

1st + 2nd Stage (14 layers) 33.25

layers is used. Finally the dotted line shows the result of our

layer based DG extraction and rendering algorithm, which has

only a 0.25 dB drop from the best possible performance. Part

of this drop is due to the use of segments and the remainder

due to minor assignment errors.

Table I includes the results obtained when using an alter-

native pixel-based algorithm [51], [52] for which code was

available. The stereo-matching performance of this algorithm

on standard test sets is very high (94.5% of pixels within

±0.5 pixel disparity error [48]) although slightly worse that the

current state-of-the-art (98% within ±0.5 pixel disparity error).

Using only the 1st stage of our algorithm from Sec. III-A

(row 1) results in a lower performance than this alternative

algorithm (row 2), primarily because of a small number of

wrongly assigned segments. Applying the 2nd stage of our

algorithm from Sec. III-D improves the performance of both

the alternative method (row 3) and our method (row 5). The

disparity gradient histogram is here generated using either [51]

or our 1st stage method, the layers are assigned using the

Lloyd-Max algorithm from Sec. III-C and the number of layers

is 14 as indicated by the minimum sampling criterion, Lmin,

from (7).

Although the raw performance of our 1st stage method is

worse than that of [51], its disparity gradient estimates have a

lower median error; this results in more accurate layer depth

values and a slight increase in overall performance when the

2nd stage of our algorithm is applied (row 5 versus row 3).

Row 4 of the table shows the results of using the full depth

resolution (48 layers) in both stages of our algorithm. We note

that not only does this require much more computation, but

the performance is actually slightly degraded by 0.05 dB.

B. Algorithm breakdown

There are several major separable elements to the algorithm,

the breakdown of the geometric calculation is shown in

Fig. 26(a) for the Teddy sequence. With uniformly spaced

layers (dotted line) the performance improves slowly with

the number of layers and a very large number is required

to reach the performance limit. The PSNR can be increased

(dashed line) by incorporating layer extension (Sec. IV-D), and

disparity gradient flattening (Sec. III-F). With these improve-

ments, the use of uniform layer spacing (dashed line) comes

close to its limiting performance when using the number of

layers, Lmin, predicted by Plenoptic theory and shown in

Fig. 26(a) as the vertical dashed line at Lmin =14. As noted

in Sec. III-C, the assumptions of Plenoptic theory are not

fully met in practice and increasing the number of layers

beyond Lmin gives an additional performance improvement

when using uniformly spaced layers. By using non-uniform

layer spacing in our algorithm (solid line), we fully reach

limiting performance with Lmin layers and obtain significant

performance improvement when using fewer layers than this.
The corresponding graph for the Cones sequence is shown

in Fig. 26(b) where we see that the relationship between the

three curves is very similar. The use of non-uniform layer

spacing again provides a clear benefit although its magnitude

is less than with the Teddy sequence because the objects in

the Cones sequence are more uniformly spread in depth. We

note that Lmin again indicates the number of layers required

to reach limiting performance.

(a) Teddy Lmin = 14 (b) Cones Lmin = 13

Fig. 26. Showing the improvements in the algorithm results by using
uniformly spaced layers (dotted), uniformly spaced layers with extension
and layer flattening (dashed) and finally the best layer model with all
enhancements and non-uniformly spaced layers. Results are for the Teddy
sequence. The vertical line shows the calculated Lmin.

We can also breakdown the improvements in the results

due to various elements within the synthesis, as shown in

Fig. 27(a) for the Teddy sequence. The basic rending method

(dotted), with fixed pixel interpolation and no post-processing,

can be improved by using probabilistic interpolation (dashed

line), as described in Sec. IV-B. As well as smoothing the

results it gives a dramatic improvement to the overall quality

especially when few layers are used. Further improvements can

be made across the board by using alpha blending (solid line)

to minimise the errors on the edges of layers (see Sec. IV-D).

Very similar effects may be seen in Fig. 27(b) for the Cones

sequence although the differences are slightly increased.

(a) Teddy Lmin = 14 (b) Cones Lmin = 13

Fig. 27. Rendering improvements broken down into the basic rendering
(dotted), improved interpolation (dashed) and the final alpha blended rendering
(solid). Results are for the Teddy sequence. The vertical line shows the
calculated Lmin.

Finally we note that on a desktop PC the total time to

read in the input frames, extract the layers and synthesise an
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output image is 2.8 seconds, 0.6 seconds of which is the third

party segmentation algorithm and 0.2 seconds is the time to

synthesise each output image.

C. Output examples

In Fig. 28(a) we can see an example output of the algorithm

from the Teddy sequence. With a PSNR of 33.9 dB and no

major visual artefacts the rendering quality is very high with

a definite photo-realistic feel. Looking at the luminance error

map, Fig. 28(b), for the image we can see that 86% of the

image has an error of one or less, the overall mean error is

1.004 (for a full scale of 255) and that the larger errors are

only to be found on the edges of segments in thin bands. These

edge errors are reduced due to the layer extension and alpha

blending.

(a) Output (b) Error

Fig. 28. In (a) is an example rendered “miss one out” output for VX = 1
from the Teddy sequence with a PSNR of 33.9 dB, with 18 layers. In (b)
is an exaggerated difference error map (error × 10) for the image, with an
average error of 1.004.

Our algorithm scales in multiple dimensions, the extra

dimensions in for example a Lightfield sequence such as

Tsukuba, Fig. 7, provide extra information that we can use to

improve the layer allocation (see Sec. III-E). Additionally the

extra dimensions allows us more degrees of freedom in moving

the camera and synthesising new images without missing

information for large regions of the output. Fig. 29 shows the

results of changing VZ for the output image, with increasing

VZ from left to right. Note that this is not a zoom but rather

a true movement into the scene with resulting occlusions by

foreground objects. The important change is that the layers are

no longer rigid as movement of the camera in VZ translates

into movement in (i, j) for a point based both on its DG

value and on its position within the image. The layer and

position dependent scaling and warping can clearly be seen in

the different relative sizes of objects within the scene as you

move from left to right, foreground objects drastically change

size while the background is largely unaffected. It should be

noted that even with a large amount of movement into the

scene the output quality is still maintained.

Fig. 29. These images show the results of moving the position of the output
viewpoint in VZ as well as VX or VY . VZ increases left to right.

VI. CONCLUSION

In this paper we have presented a novel layer based algo-

rithm for IBR. Our approach uses Plenoptic sampling theory

to infer the amount of geometric information required for

artefact-free rendering. Guided by this prediction it takes

advantage of the typical structure of multiview data in order

to perform a fast occlusion-aware non-uniformly spaced layer

extraction. The rendering is improved by using a probabilistic

interpolation approach and by an effective use of key images

in a scalable master-slave configuration. Numerical results

demonstrate that the algorithm is fast and yet is only 0.25 dB

away from the ideal performance achieved with the ground-

truth knowledge of the 3D geometry of the scene of interest.

Finally we have shown that the Plenoptic theoretical frame-

work is applicable to real world cases, that a layer based model

does not lead to any loss in output quality and that the number

of layers required is correctly predicted by the theory.
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