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Abstract

Consider the problem of sampling signals that are nonbandlimited but have finite number of degrees of freedom

per unit of time and call this number the rate of innovation. Streams of Diracs and piecewise polynomials are the

examples of such signals, and thus are known as signals with finite rate of innovation (FRI) [3]. We know that

the classical (‘bandlimited-sinc’) sampling theory does not enable perfect reconstruction of such signals from their

samples since they are not bandlimited. However, the recent results on FRI sampling [3], [4] suggest that it is possible

to sample and perfectly reconstruct such nonbandlimited signals using a rich class of kernels.

In this paper, we extend the results of [4] in higher dimensions using compactly supported kernels that reproduce

polynomials (satisfy Strang-Fix conditions). In fact, the polynomial reproduction property of the kernel makes it

possible to obtain the continuous-moments of the signal from its samples. Using these moments and the annihilating

filter method (Prony’s method), the innovative part of the signal, and therefore, the signal itself is perfectly

reconstructed. In particular, we present local (directional derivatives based) and global (complex-moments, Radon

transform based) sampling schemes for classes of FRI signals such as sets of Diracs, bilevel and planar polygons,

quadrature domains (e.g. circles, ellipses, cardioids), 2-D polynomials with polygonal boundaries, and n-dimensional

Diracs and convex polytopes.

This research has been promisingly explored in super-resolution algorithms [5] and distributed compression [6],

and might find its applications in photogrammetry, computer graphics, and machine vision.
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I. INTRODUCTION

Sampling plays an important role in modern signal processing and communication applications. Shannon’s
classical sampling theory and its extensions are very powerful and have been extensively utilized for bandlimited
signals [7], [8]. Moreover, the classical sampling is also extended to the classes of non-bandlimited signals that
reside in a shift-invariant subspace [9], [8]. For a comprehensive account on the modern sampling developments,
we refer to [7], [8].

Recently, novel sampling schemes have been presented for larger classes of 1-D signals that are neither bandlimited
nor reside in a fixed subspace. Such signals enjoy a finite number of degrees of freedom (or rate of innovation)
and are classified as signals with Finite Rate of Innovation (FRI) [3]. Streams of Diracs, nonuniform splines, and
piecewise polynomials are examples of such signals. The key feature of [3] is perfect reconstruction of FRI signals
from a finite number of samples using annihilating filter method (Prony’s method). Subsequently, the schemes of [3]
are extended for the classes of 2-D FRI signals such as sets of 2-D Diracs, and polygons in [10] and [11]. The
schemes of [10] rely on global algorithms in Fourier domain, and can be unstable at times. Most importantly, all
these schemes [3], [10], [11] use infinite support sinc and Gaussian kernels, and therefore, are not convenient in
practice. However, the results of [12], [4] show that many 1-D FRI signals with local rate of innovation can be
sampled and perfectly reconstructed using compactly supported kernels (e.g. B-splines [13]) that satisfy Strang-Fix
conditions [14], and therefore, reproduce polynomials.

In this paper, we extend the results of [12], [4] for multidimensional FRI signals using local kernels that reproduce
polynomials. It is important to remember that the polynomial reproduction property of kernels plays a pivotal role in
our sampling schemes. In particular, it allows us to obtain the moments of the signals from their samples, and using
these moments the signals are reconstructed. In this paper, we propose local and global reconstruction schemes
with varying degrees of complexities. Our schemes are based on three different approaches:

1) Directional derivatives based approach: This is a local approach for reconstructing a planar polygon from its
corner points. It uses a link between continuous domain directional derivatives and discrete domain directional
differences based on the fundamentals of lattice theory [15], [16], [17].

2) Complex-moments based approach: In this global approach, we exploit complex-moments and show that it is
possible to reconstruct bilevel-convex polygons, sets of 2-D Diracs, polygonal lines, and quadrature domains
(e.g. ellipses, cardioids, and lemniscates) from their samples. Implicitly, we derive a sampling perspective to
the ‘shape from moments method’ of [18], [19], [20].

3) Tomographic approach: Finally, in the third approach, we integrate the moment property of Radon trans-
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form [19] in the framework of FRI sampling and derive an Annihilating-Filter-based-Back-Projection (AFBP)
algorithm, which allows us to sample more general FRI signals such as 2-D polynomials with polygonal

boundaries.

We show that, using these approaches, classes of multidimensional FRI signals can be sampled and perfectly
reconstructed from their samples. It is important to note that we concentrate on sampling and perfect reconstruction
theory, and therefore, throughout the paper we consider noiseless signals and measurements.

The paper is organized as follows: In the following section, we begin with the framework for sampling FRI signals,
and introduce a local reconstruction scheme for 2-D Diracs. In Section III, we extend the local reconstruction
of 2-D Diracs for planar polygons using directional derivatives based approach. We then show in Section IV
that the complex-moments can be used to derive global algorithms for sampling sets of 2-D Diracs, bilevel and
convex polygons, and quadrature domains. Finally, in Section V, we employ multidimensional Radon transform
and AFBP algorithm for sampling more general FRI signals such as 2-D polynomials with polygonal boundaries.

The concluding remarks are given in Section VI.

II. 2-D SAMPLING FRAMEWORK

In this section, we review the concept of signals with finite rate of innovation (FRI), and describe the sampling
setup and sampling kernels that we employ for the proposed schemes. We review an important tool: ‘annihilating
filter method’ [3] which is used extensively in subsequent sections. Finally, we close this section by introducing
a local reconstruction scheme for 2-D Diracs in order to demonstrate the role of polynomial reproduction in FRI

sampling.

A. FRI Signals

Consider a 1-D signal of the form [3]

N
9t =D D Xin i (t—tn), )

=0 n€Z

where the set of functions {¢;(¢)},7 =0,1,..., N is known. Notice that the free parameters (degrees of freedom)
of g(t) are the time instants ¢,, and coefficients \; .
It is therefore natural to introduce a counting function Cy(t,,t;) that counts the number of free parameters of

g(t) over an interval T = [t,,tp]. The rate of innovation of g(t) is then defined as [3]

p=1m ¢, (~1.7). o)

T—00 T 2’2
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Definition 1 [3]: A signal with a finite rate of innovation is a signal that is characterized by (1) and with a finite
p as given in (2).
Moreover, the notion of FRI can be extended in 2-D (or in higher dimensions). In particular, a 2-D FRI signal

g(z,y) is given by

N
g(z,y) = Z Z Z Aigk @i (T — 25,9 — Yk) , 3)

i=0 jeZ keZ

where the free parameters, in this case, are the shifts x; and y; and the coefficients ); ;. The local rate of

Cy [(—Z, %), (=%, )] over the window of size 7, X 7.

innovation is then given by pg, = e, I

ToTy
For instance, when ¢; (z,y) = dyy(z,y), and both z; — x;_1 and y, — yx—1 are ii.d. random variables with
exponential density, then g(x,y) describes a separable 2-D Poisson process. A set of 2-D Diracs is one particular

realization of the 2-D Poisson process. Other examples of 2-D FRI signals include lines in 2-D, polygonal lines,

convex and bilevel polygons, and classes of algebraic curves (e.g. ellipses, cardioids, and lemniscates) [10], [18].

B. Sampling Setup

Prefilterng Sampling Discretizgion
N X y
h(x,y) = oxy| == —= C/ID —
9(xy) M 95(%.Y) Sj k= 9s(iTx.KTy)

JZ % Oxy(X— Ty, y—KTy)

Fig. 1. A generic 2-D sampling setup: Continuous signal g(x, y) is convolved by a smoothing kernel ¢y (,v) and then sampled uniformly by
2oz 2oner Sey(® — jTe, y — kT)) to obtain the sampled signal gs(z,y). The block C'/D represents continuous to discrete transformation

and corresponds to the read-out of sample values S; ., j, k € Z from gs(z,y).

We consider a 2-D generic sampling setup as shown in Figure 1, where a continuous 2-D FRI signal g(z,y)
is prefiltered by a smoothing (sampling) kernel h(x,y) = pauy(—2/Ty, —y/T),), and the filtered version g(z,y) *

Ouy(—2 /Ty, —y/T,) is sampled uniformly to obtain the set of samples S; ; given by

Sj,k = <9($7y)»80xy($/Tz—]»y/Ty—k»
= [ [ @) enta/Ts s/ T, k) dady @

where T, T, € R* are sampling intervals along = and y directions respectively. For simplicity, we assume T, =
T, = 1 unless explicitly specified. Note that the setup of Figure 1 is typical for acquisition devices and processing

algorithms, and can be extended to higher dimensions (i.e. in 3-D and above) [8].
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C. Sampling Kernels and their Properties

It is always desirable to have a freedom in selecting or designing a sampling kernel ¢, (x,y) of choice. However,
in practice, the kernel results from the physical properties of a given acquisition device and does not allow desired
flexibility. Recall that the Shannon’s sampling theorem uses infinite support sinc kernel (ideal low-pass filter), while
the FRI schemes of [3], [10], [11] use infinite support sinc and Gaussian kernels, and for that reason, are not
convenient in practice.

For the proposed sampling schemes, we consider any compactly supported kernel that satisfies Strang-Fix
conditions [14] and therefore reproduces polynomials up to certain degree n. To be more precise, our sampling
kernel ¢, (z,y) is given by the tensor product of two 1-D functions ¢(x) and ¢(y) that can reproduce polynomials
x® and y” respectively, where «, 3 € {0,1,...,n} and z,y € R. This means that there exists coefficients C;f}f
such that the kernel ¢, (z,y) satisfies:

YooY il enla—gy—k = 2%y’ 5)

j=—00 k=—00
where «, 3 specify the degrees of polynomials that the kernel ¢, (z,y) can reproduce along x and y directions
respectively. For instance, B-spline of order n can reproduce polynomial up to degree n, i.e. o, 3 € {0,1,...,n}.
Notice that Cﬁ}ﬁo is responsible for the reproduction of a polynomial of degree o along x-axis, while C’ﬁf is
responsible for the reproduction of a polynomial of degree [ along y-axis.

Furthermore, for o« = 3 = 0, if the kernel ¢, (z,y) allows C;.f;f = C;)”,S =1, then (5) reduces to

oY ewl—jy—k) =1 (6)

j=—00 k=—00
Above equation states that the sum of shifted versions of sampling kernel produces unit amplitude polynomial of
degree zero, and is often acknowledged as ‘partition of unity’ in wavelet community.
Notice that the orthogonal Daubechies scaling functions [21] and biorthogonal B-splines [13] satisfy the properties
of (6) and (5) and therefore are valid sampling kernels. A simple illustration of partition of unity and polynomial

reproduction using B-spline sampling kernel is given in Figure 2.

D. Annihilating Filter Method

The annihilating filter method plays an important role in reconstruction of FRI signals [3]. Seeing its immediate
relevance in following sections, we briefly discuss its core formulation. For in-depth treatment, we recommend [3]

and [22]. This method (often termed as Prony’s method) is well known in error-correction coding [23] and spectral
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estimation [22]. In spectral estimation, it is common to observe a signal 7[n| that is composed of linear combinations

of exponentials such that
N-1

i)=Y piul, pi€Cou€CneN, (7)
1=0

where p; denotes weights, and u; denotes locations of the spectral components.
The annihilating filter method consists of two steps:
1) Design of the filter A[n| that annihilates signal 7[n], that is A[n] % 7[n] =0, ¥Vn € N.

2) Determination of the locations u; and weights p; using filter A[n] and observed signal 7[n].

Consider the signal 7[n] of (7), and a filter A[n], n =0,1,..., N with z-transform
N N-1
A(z) = ZA[n] 27" = H (1—u zil), (8)
n=0 =0
where u;’s are distinct. It then follows that
N
Aln]*7[n] = ZA[Z] Tln=1] 9)
1=0
N N-1
Z pi All] u?_l
1=0 i=0
N-1 N
_ 0i (ZA[Z] u;l) u?
=0 =0
=0 from (8)
= 0. (10)

Thus, the filter A[n] is called annihilating filter since it annihilates the observed signal 7[n]. Notice that A[n] is
unique for the observed signal 7[n|, since the u;’s are distinct. Clearly, the knowledge of A[n] is sufficient to
retrieve the locations g, u1,...,un—1, since these locations are the roots of filter A(z) in (8).

Since there are N unknown coefficients of A[n] (recall that A[0] = 1), we need to solve a system of N linear
equations, and therefore, require at least 2V values of 7[n]. For instance, the observations 7[0], 7[1],...,7[2N —1]

allow to describe the convolution A[n] * 7[n] = 0 in matrix/vector form as:

[ TIN=-1] 7[N-=-2] .- 7[0] 1T All] ] | T[N] ]
T[N] TIN=-1] --- 7[1] Al2] _ T[N.+ 1] . an
I T2N = 2] 7[2N-3] --- 7[N—1] 1L A[N] | I T[2N — 1] |

The solution of this Yule-Walker system gives the filter coefficients A[n]. From equation (8), it is straightforward

to see that the roots of filter A(z) are the locations u;.
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Once the locations u; are known, the weights p; are determined by solving equation (7) as follows

1 1 1 00 7[0]
UQ o cee UN—1 P01 (1
= ] . (12)
_Ué\[ﬂ (TN R N | pv—a | | TIN-1] ]

Given that all locations w; are distinct, the Vandermonde system of (12) is invertible and yields a unique solution
for the weights p;.

Moreover, it is possible to show that the signals of form 7[n] = Zf’;ol pinful are annihilated by the filter
A(z) = Hij\;_ol (1- u,»,z_l)R+1 [3]. This method has been successfully utilized for determining weights p; and

locations u; of the streams of differentiated Diracs, and therefore, for the reconstruction of piecewise polynomial

signals [3], [12], [4].

E. Local Reconstruction of 2-D Diracs

Now to demonstrate the essential role of polynomial reproduction in the proposed FRI sampling, we begin with a
simple class of FRI signals. Consider a set of 2-D Diracs g(z,y) = > .y @i 0zy (v — 24,y — i), a,z,y € R. It is
important to note that each 2-D Dirac can be parameterized by an amplitude a; and a coordinate position (x;,y;),

and thus has a finite number of degrees of freedom (or rate of innovation) which equals three.

We observe the samples S; . = (9(x, V), Yzy(x/Tw — j,y/Ty — k)), where T, T, are the sampling intervals
and @, (z,y) is the sampling kernel with compact support L, x L,,. Assume that the Diracs in signal g(z,y) are
distributed in such a way that there is at most one Dirac in any given window of size (L, +1)T x (L, +1)T, and
assume that the kernel ¢, (x,y) can reproduce polynomials up to degree one, i.e. o, 5 € {0,1} in (5). Therefore,
from (6), an algebraic sum of shifted kernels is constant and equals to unity (see Figure 2 (b)). Whereas from (5),
the linear combinations of shifted kernels with coefficients C},}S and C’?”kl produce unit-slope linear functions along
2 and y directions (see Figures 2(c) and (d)). Moreover with above assumptions, we are sure that only L, X L,
inner products (or samples) S, = (9(x,v), puy(z/Tx — j,y/Ty — k)) overlap in an arbitrary window of size

(Ly +1)T, x (L, + 1)T, that encloses a unique Dirac ap 6,y (z — 2p,y — Yp), p € Z.
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Fig. 2. Local reconstruction of a 2-D Dirac ap dzy(z — zp,y — yp): The B-spline sampling kernel ﬁgy(w, y) that can reproduce polynomials

up to degree 3 is given in part (a). The reproduction of polynomial of degree O (partition of unity), responsible for the determination of amplitude
ap is given in part (b), whereas the reproduction of polynomials of degree 1 along = and y directions, responsible for the determination of

coordinates x, and y, are given in part (c) and part (d) respectively.

Therefore, for a given Dirac (assuming T, = T}, = 1), it follows that

L, Ly
DD Sk = { apbuyle —zp,y —yp), ZZ%y —J.y—k)

j=1k=1 j=1k=1

Lm Ly
//ap(sry(x_xpay_yp Yoyl —jy— k) | dedy

oo —oo j=1k=1
Ly Ly
= apZZny(mp —Jyp — k)
j=1k=1
= a (from equation (6)) (13)
and
L, Ly L, Ly
1,0 .
Cj,k Sj,k - ap(szy(x_l'pvy_yp ’ZZCjk Somy _va_k)
Jj=1k=1 j=1k=1
L, Ly
= / / ApOay (T — Tp, Y — Yp) C;,’;S Ouy(x —J,y — k) | dedy
e o j=1k=1
L Ly
= >3 O enlay == b)
j=1k=1
= apTp (from equation (5)). (14)
DRAFT
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Ly Ly
Similarly, it is straightforward to arrive at > > C’jok1 Sjk = apyp in the line of above derivation.
j=lk=1 °~

Thus, the amplitude a, of a given Dirac is retrieved using

L, Ly
ap = Sik (15)

j=1k=1

and the position (z,,,) is retrieved using

Lw Ly
_ 1,0 ¢,
Tp = E :Cj,k Sk /apv
j=1k=1
La: Ly
= c%l s a (16)
Yo = gk Pdk P
j=1k=1

where the coefficients C;)’,S and C’?”kl are identified from equation (5).
Hence, a local reconstruction scheme for 2-D Diracs follows

Proposition 1: Assume a sampling kernel ¢.,(x,y) with support L, x L, that can reproduce poly-
nomials of degree zero and one along the Cartesian axes x and y. A set of finite amplitude 2-D
Diracs g(z,y) = > icz@idey (T — 2,y —y;) is uniquely determined from its samples defined by S;r =
(9(z,y), Pay(x/Ty — §,y/T, — k)), if there is at most one Dirac in any distinct window of size (L, + 1)T, x

(Ly + 1)T,.

III. DIRECTIONAL DERIVATIVES BASED APPROACH

The contribution of this section is two-fold: 1) We extend the local reconstruction scheme of 2-D Diracs for planar
polygons and develop an algorithm useful for super-resolution corner reconstruction; 2) In developing this algorithm,
we derive a link between continuous domain directional derivatives and discrete domain directional differences based
on the fundamentals of lattice theory [17], which in turn, provides a background for the tomographic approach of

Section V.

Consider a planar polygon g(z,y) with N corner points as shown in Figure 3(a). The sides of the polygon are

identified by the 2-D lines:
y; =tan(6;) x; +b;, i=1,2,...,N,
where b; are the shifts and 6; are the orientations.
For this N sided polygon, consider an arbitrary corner point (e.g. point A in Figure 3) formed by two sides with
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@
d§r]

@ ® ©

Fig. 3. For a given planar polygon g(z, y), a pair of two successive first order directional derivatives déll) [-] and d(glz) [] decomposes a corner

point A into a 2-D Dirac.

orientations ¢, and 5. A pair of first order directional derivatives dgi) [[] and déi) [] on g(z,y) can be written as

dg) [dﬁﬁ) [g(af,y)]} = cos(f1) 008(92)887;2 (g(%y)) +sin(6r + 92)8% (a% (g(w,y))) +
92
sin(6;) sin(92)a—y2 (g(az, y)) . (17)

Clearly, this pair of directional derivatives produces a 2-D Dirac at the corner point A (see Figures 3(b) and (c)).
Likewise, we can ‘turn’ other corner points into Diracs by selecting proper pairs of derivatives. This suggests that
the local reconstruction scheme of Diracs, described in previous section, can be tailored for reconstructing corner
points of planar polygons.

However, the practical difficulty is that instead of a direct access to the polygon g(x,y), we only have access to
its samples S; , = (g(z,y), Puy(x/Ty — j,y/Ty — k)), where @, (z,y) is a sampling kernel that can reproduce a
polynomial of degree zero. Fortunately, discrete equivalent to the directional derivatives is directional differences,
and directional differences can be connected to the corresponding continuous derivatives. This connection is based
on the fundamentals of lattice theory, and in particular, involves subsampling over rectangular lattices. Since we
are dealing with a finite number of samples S; 1, j, k € Z over a uniform rectangular grid, we focus onto the 2-D
integer lattices. For further details on lattice theory, we refer to [15], [16], [17].

For a given corner point, assume that the orientations #; and € of the two adjacent polygonal sides are such
that 61 = tan™! (ﬁ—j) and 0y = tan™? (5;—?) where v1 1, v1,2,v2,1,V22 € Z. Let the corresponding base lattice
A be given by A = {\: A = ny¥ + nath}, where U; = [v;,1,vi 2], = 1,2 are its basis vectors. The lattice A is
characterized by a sampling matrix Vj = o with determinant det(V}).

V2,1 V2,2
Now compute the finite differences of the samples S, j, first along the lattice direction ¢, and then along .
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Assuming T, = T, = 1, it then follows that

1 1
Rjak = Dég) {Dél) [Sj,k]} = {S(j+v2,1+v1,1)7(k+112,2+v1,2) - S(j+®2‘1),(k+v2,2)} - {S(j+vl,1),(k+vl,2) - Sj,k}
= <g(:17,y), {@my (1’ — (4w +v11),y—(k+ve2+ Ul,z)) — Yoy (»T —(JH+wve)y—(k+ Uz,z))} —

{svmy(x —(+v1),y— (k+v12) — pay(z—jy — k)}>

and by using Parseval’s identities, and after certain manipulations (refer Appendix-I), we derive that

Rjk 02 0, P35k 0 ( 0 )) .
L L (2 (Z _jy—k 18
|det(VA)| ‘det(VA” 802 801 (g(x?y) 74.91702 (aj .77 y ) ) ( )
xT * 0 xT * 0 xT
where (g, g, (2,y) = (et y\)siilei—g)l))\ B, (@¥) 1S a modified kernel, and (3 (x,y) and G (z,y) are the 1-D

B-splines of order zero in zy-plane along orientations #; and 05 respectively. For example, assuming that the
original kernel ¢, (x,y) is a Haar scaling function (see Figure 4(a)), the modified kernel (g, g, (z,y) is shown in
Figure 4(b). Since the skewness of the modified kernel depends on orientations #; and 65, we denote the modified

kernel as ‘directional kernel’.

N
N

250

,..:.:.;.g.z.:\\&\&\\\
=
X

w‘\\“\\\\\\\\\\\\‘\;@;
ORI
R
NN

QORI
RIS

=

7

)

vy '5"":,
L

(a) (b)
Fig. 4. Original and directional kernels: (a) @z (x,y) is a Haar scaling function with support 1 x 1, (b) Directional kernel (g, g, (x,y) with

support 4 x 4 for a given corner point of the polygon g(z, y) formed by the two sides with orientations tan(61) = 2/1 and tan(f2) = —1/2.

The kernel (s, o,(x,y) is of compact support Ly g, 9, X Ly 6, 0, = (|v1,1] +|v2,1| + Lz) X ([v1,2| + |v2,2] + Ly),

where L, x L, is the support of the original sampling kernel ¢4, (z, y). The skewed shape of kernel (g, ¢, (x,y), and

the factors I det(lvA)\ and |Sin(92_ ol in equation (18) are due to subsampling over integer lattices. It is important to
note that there exists an independent directional kernel (g, ¢,,,(%,y), i = 1,2,..., N for each independent corner
point of the polygon g(x,y), where 0, n = 6;.

Equation (18) states that the new samples R; ; given by the finite differences along ¥ and ¥ are equivalent to
those obtained by sampling déi) [déi) [g(x, y)]} with the directional kernel (g, g, (z,y). Moreover, if all the corner

points of the polygon g(x,y) are sufficiently apart such that there is at most one corner point in any distinct window
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of size (Ly0,,0,., +1)Tw X (Ly.0,,0,,, +1)Ty, i =1,2,..., N, then it is possible to reconstruct the corner points
using local reconstruction scheme of 2-D Diracs as given in Section II-E.

Assuming that the kernel ¢, (z,y) satisfies partition of unity (6), the directional kernel (g, o,(z,y) always
satisfies partition of unity (6) and reproduces polynomials up to degree one (5) along both z and y directions.
These properties of the directional kernel (g, ¢,(,y) enable us to determine the amplitude a, and the coordinate
position (xp,y,) of the resultant 2-D Dirac a0,y (x — 2,y — y;) at the given corner point using a finite number
of samples IZ; . In fact, we only need a small isolated group of samples (i.e. L; g, 9, X Ly ¢, 0, samples) in the
vicinity of the given corner point. Hence the local reconstruction scheme of (15) and (16), for the given corner

point (e.g. point A) leads to the following identities

. Z]‘ >k Rk

— 19
= Tldet(Vy)] (19
1,0 0,1
- Zj Zk Cj,k Rj _ Zj Zk Cj,k R; (20)
P ap |det(Vy)] + 7 ap |det(Vy)]

where C’;;,S and C?y’kl are the coefficients of kernel (y, ¢,(,y), identified from equation (5).

Clearly, the coordinate pair (x,,y,) gives the position of the given corner point (e.g. point A), whereas a, gives
the amplitude of the planar polygon g(x,y). It is straightforward to see that this reconstruction scheme applies
equally to all the corner points of g(x,y) using appropriate directional kernels (g, o, (x,y), i =1,2,..., N. From
the knowledge of the corner points and directions, it is possible to reconstruct the polygon g(x,y). To summarize,
we have

Proposition 2: Assume an N sided planar polygon g(x,y) with the orientations 0;,7 = 1,2,..., N of its sides
satisfying tan(f;) € Q, and that the kernel ¢, (z,y) can reproduce polynomial of at least degree zero, a set of
samples S, . = (9(x, V), Yuy(x/Tw — j,y/Ty — k)) is sufficient to reconstruct the polygon g(z,y) provided that
there is at most one corner point in any distinct window of size (Ly0,,0,., + 1)1z X (Ly,0,,6,,, + 1)1}, where

Ly.0.0.01 % Ly,p,,0.,, is the support of the directional kernel (y, o, , (z,y), and 0;; n = 0;.

In practice, the orientations of the polygonal sides are not known in advance. However, if we assume that the
sides of the N sided planar polygon g(x,y) take only a finite number of orientations 6;, where tan(6;) € Q. Then
by trying all possible orientations we can retrieve the correct ones. More precisely, given a large enough set of

samples S, = (9(x, V), pzy(x/Tw — j,y/Ty — k)), the reconstruction of g(x, y) is realized by the following steps.
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Algorithm- Reconstruction of planar polygon using directional derivatives

1) Apply a distinct pair of finite differences Dg) [[] and Déi) [-] over the set of samples S} ;, and obtain a new
set of samples R;j = Dg) {D(gi) [S; k]}

2) Check whether at least one isolated group of samples in R;j is segmented. If yes, then using the local
reconstruction scheme of (19) and (20), determine the amplitude a, and the position (z,,%,) of the Dirac,
and therefore, the corner point.

3) Reiterate from step 1 (with a new pair) until all N corner points are determined.

4) Using the recovered corner points and the successful pairs of orientations, reconstruct the polygon g(z,y).

500]

500 1000 1500 2000 2500 5 10 15 20 2

(@) (b)

() (d) (e)
Fig. 5. Simulation result for the planar triangle g(z,y) with three corner points A, B, and C such that its sides AB, BC, and C' A are
oriented at tan(61) = 2, tan(f3) = —oo, and tan(f2) = —% respectively: The original image of size 2500 x 2500 pixels as given in part (a)
is filtered with the Haar kernel ¢y (,y) of size 100 x 100, and a set of 25 x 25 samples S . is obtained as given in part (b). A set of new
samples R; ;. that isolates corner point A, using a pair of directional differences Déi) [[] and Dg;) [] along the sides AB and AC, is given in
part (c). Similarly, other two sets of differentiated samples R; ; that isolate corner points B and C' are given in parts (d) and (e) respectively.

Using the local reconstruction scheme of (19) and (20), the reconstructed corner points A, B, and C (marked with +) are given in part (a).

We conclude this section with a simple numerical example. Consider the case, where g(z,y) is a planar triangle
ABC' with its sides AB, BC, and CA oriented along tan(f;) = 2, tan(f3) = —oo, and tan(fy) = —1/2
respectively. The simulation results are shown in Figure 5. The original polygon ¢(z,y) is given in part (a). The set

of samples .S; j, obtained using the Haar kernel is given in part (b). The new set of samples R = D((,? [Déi) [S k]]
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derived from S;; using a pair of finite differences Déi) [[] and Déi) [-] is given in part (c). Similarly, the sets of
samples R; obtained by the differences Déi) [Déi) [S’j7k]} and Dé? {Dé? [Sj,kﬂ are given in parts (d) and (e)
respectively. The small isolated groups of samples in parts (c), (d), and (e) represent three 2-D Diracs that correspond
to the corner points A, B, and C respectively. These corner points are retrieved using the local reconstruction scheme
of (19) and (20) and are marked with + in Figure 5(a). The reconstruction of the corner points is exact to machine
precision. The computational cost of this local reconstruction algorithm is linear with the number N of corner

points, that is, of the order of O(N).

IV. COMPLEX-MOMENTS BASED APPROACH

In the previous section we have shown that planar polygons can be reconstructed locally if the corner points are
sufficiently apart. In this section, we present a global scheme which includes polygons with close corner points. In
particular, we show that bilevel and convex polygons, sets of Diracs, polygonal lines, and quadrature domains (e.g.
ellipses, and cardioids) are perfectly reconstructed from their samples using complex-moments and annihilating

filter method. Implicitly, we provide a sampling perspective to the ‘shape from moments method’ of [18], [20].

A. Background

The relationship between shapes and moments finds its application in many diverse fields such as computer
tomography, geophysical inversion, thermal imaging, and pattern recognition [19], [20], [24]. In fact, the general
formulation of recovering shapes from their moments is highly ill-posed problem [18], [20]. However, it has been
shown that certain classes of shapes such as binary polygons and quadrature domains are uniquely determined by
a finite number of moments [25], [18].

Formally, the geometric moments 1,5 of order n = (o + 3) of a 2-D function g(z,y) in the closure 2 € R?

are defined as [24], [26]

fop = //Qg(x,y) a®y? dx dy, Q1)

where a, 8 € {0,1,...,n}. Similarly, the complex-moments 7, g of order n = (« + ) of g(z,y) are defined
as [27]

Ta,p = //Qg(:v,y) ( +iy)* (x —iy)? da dy, (22)

where ¢ = +/—1. Sometimes, it is convenient to use simple complex-moment 7,, of order n = (a + (3) as given
by [19]

ra= [ [ ) o+ i) dedy, 23)
Q
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Note that the binomial expansion of (x + iy)™ in (23) facilitates to retrieve an nth order complex-moment 7,, from

the nth order geometric moments (i, 3 using:

n
_ ny g : _
Ty = i” o, With a=n-—p. (24)
> (5) e

Now assume that we observe a sampled version of g(x,y), that is, we observe samples S;, =
(9(z,y), Pay(x/Ty — §,y/T, — k)), where the kernel ¢, (x, y) can reproduce polynomials along x and y directions.
By using polynomial reproduction property of ¢, (x,y), we can show that it is possible to retrieve the moments

ta,p Of g(z,y) from its samples S; ; accurately. In fact, we have that

fiap = // g(z,y) 2y’ du dy

@ | [t I enta =iy =Ry dedy
= ZZC // 2,y) Puy(@ — j,y — k) da dy
E ZZ CFi Sy 25)
ik
where the equalities (a) and (b) are obtained from (5) and (4) respectively.

This result is at the heart of our sampling schemes. With the ‘sample-moment’ connection (25) at our disposal,

we now begin with the global reconstruction of bilevel polygons.

B. Bilevel Polygons

Let g(z,y) be a bilevel, simply connected, and non-degenerate polygon with N corner points (vertices) z;, | =

1,2,..., N in the complex plane z = x + ¢y. For such a polygon, Davis’s theorem [25] states that

N
[ [ otann® @ dzdy =3 pihie) 26)
=1

where h(z) is an analytic function in a closure 2, h(?)(2) is the second order derivative of h(z), and p; are complex
coefficients.

In [19], Milanfar et al. re-examined Davis’s work (26) and employed a specific analytic function h(z) = 2.
Assuming that the corner points z; (with 2;* as their complex conjugates) are arranged in counter-clockwise direction
in order of increasing index and satisfy the modulo operation 2; = z;4 v, it was shown that the complex coefficients

p; are given by [19]:

N R Ao
pL = ( - ) l:172a"'7N7
2\za1—2 21— 24
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and that
N
Yoo = //g(x7y)h(2)(2)dzdy
=1 Q

_ //Qg(x,y)(z")@) dz dy
= aln=1) [ [ step)tat i de dy

= 4, Yn>2, Q27)

where 7,, is the complex-moment with weight n(n — 1), and is related to the simple complex-moment 7,, of (23)
by 7, = n(n — 1)7,—2. Note that 7y = 71 = 0 by definition.

From equation (27), it is clear that the weighted complex-moments 7,, are the linear combinations of exponentials
zj". Therefore, the annihilating filter method, described in Section II-D, can be employed to retrieve the N corner
points z; of g(z,y) from the 2N complex-moments 7,,,n = 0, 1,...2N —1. Moreover, if the bilevel polygon g(z, y)
is convex, it can be uniquely reconstructed from the retrieved corner points z; [19]. Note that the relationship among
the weighted complex-moments 7,,, simplex complex-moments 7,,, and the geometric moments u, g facilitates to
obtain the weighted complex-moments 7,, up to order 2N — 1 from the geometric moments fi, g of order 2N — 3.

Let us now return to the sampling setup of Figure 1, where g(x,y) is a bilevel and convex polygon with N
corner points z; = (x; + iy;), l = 1,2,..., N. Clearly, the rate of innovation of g(x,y) is 2N. Assume that we
observe samples S = (9(x,v), Yy (x/Te — j,y/Ty — k)) produced by the kernel ¢, (x,y) that can reproduce
polynomials up to degree 2N — 3 along z and y directions. The polynomial reproduction property of ¢g,(z,y)
allows us to obtain the moments 1, g of g(x,y) from its samples S, . Therefore, by a suitable adaption of (25)
and (24) in the formulation of (27), we can obtain the complex-moments 7,,, n = 2,3,...,2N — 1 of g(z,y)
from the samples S ;. More precisely, the geometric moments ji g are given by: pap = > j >k Cz;f Sk
with o, 8 € {0,1,...,2N — 3} (see eq. (25)). The knowledge of p, g then allows us to retrieve the complex-
moments 7, using (24). Finally, the weighted complex-moments 7,, of (27) are given by 7, = n(n — 1)7,,_o with
n=23,...,2N —1and 79 =7 =0.

By using 2N complex-moments 7, in the annihilating filter method, we design a filter A[n] such that the
convolution 7, * A[n] = 0. The N complex roots of the annihilating filter A(z) provide positions (in x + iy form)

of the N corner points of the polygon g(x,%). Assumption of convexity and bilevelness! guarantees a uniqueness

UIf the convex polygon is large enough such that there is at least one sample enclosed within the polygonal boundary then we can reconstruct

its amplitude as well.
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of polygonal reconstruction. Consequently, it follows that

Proposition 3: A bilevel and convex polygon g(x,y) with N corner points is uniquely determined from its
samples S;r = (9(x,Y), Yay(z/Ty — j,y/Ty — k)) provided that the sampling kernel ¢, (z,y) can reproduce

polynomials up to degree 2N — 3 along both the Cartesian axes = and y.

- -
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Fig. 6. Simulation: (a) The original image g(z, y) consists of three bilevel polygons: triangle, rectangle, and pentagon. (b) The set of samples
S;,% produced by the inner product between g(x,y) and a B-Spline sampling kernel ,Bzy(x, y) that can reproduce polynomials up to degree

seven. (c¢) Sampled version of the pentagon. (d) Original pentagon and five reconstructed corner points (marked with +).

Simulation result, for a simple scenario, is shown in Figure 6. Figure 6(a) shows a bilevel image g(z,y) that
consists of three polygons: triangle, rectangle, and pentagon. Assume that the polygons are enough apart such that
in the sampled version of g(x,y) as shown in part (b), they do not overlap. From these samples, by computing
sufficient complex-moments 7,,, we can retrieve the exact locations of the corner points for each polygonal shape
individually. For instance, a set of samples around the pentagon is given in part (c). The reconstructed corner
points of the pentagon are indicated with + in part (d) and the reconstruction is exact to machine precision. The
computational cost of this global reconstruction is influenced by the cost of root finding and is of the order of

O(N?3) where N is the number of corner points.
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C. Diracs, Polygonal Lines, and Quadrature Domains

Together with bilevel polygons there are other 2-D signals that are uniquely determined by a finite number of
moments. We now investigate sampling of such signals.

Diracs: Assume g(z,y) is a set of N 2-D Diracs in the closure (2, that is g(x,y) = Zf\il 05y (T — 21,y — Y1),
where a; denotes amplitudes and z; = x; + iy; denotes positions. Clearly, g(z,y) is not regular in €2, therefore we
cannot apply Davis’s theorem. However, it is possible to compute the simple complex-moments 7,, of g(z,y) as

given by

Tn

//Qg(fr, y) (z +iy)" dz dy

N
/ > ey (x — zi,y — ) (@ + iy)" du dy

Q=
N
= Z a; 2", where z; = x; + iy;. (28)
1=1
The amplitudes a; and positions z; of the Diracs are accurately retrieved from 2N complex-moments 7,,n =
0,1,...,2N — 1 using the annihilating filter method.

Since we have access to g(x,y) in form of its samples S = (9(x, V), Yzy(z/Ts — j,y/Ty — k)), the moments
7, of Diracs are obtained from their samples S;; using (24) and (25), where o, 3 € {0,1,...,2N — 1}. Thus,
Proposition 3 can be extend for the set of N 2-D Diracs provided that the kernel ¢, (x, y) can reproduce polynomials
up to degree 2N — 1 alon both the coordinate axis x and y.

Polygonal lines: Now consider g(z) = g(z,y) to be a set of N unit amplitude polygonal lines representing the
boundary df) of the convex polygonal closure 2. The closed set of polygonal lines g(z) join the corner points

z1, 1 =1,2,..., N in counter-clockwise direction such that z; = z;1 y, and is regular over d2. Consider an analytic

function h(z) in the closure ) such that Green’s theorem with the help of Cauchy-Riemann equations satisfies [25]

// g*(z)h(l)(z) drdy = %/ g (2)h(z) dz*, dz* =dzx —idy, (29)
Q dQ

where ¢g*(z) = g(z) =1 for the set of unit amplitude polygonal lines.

Furthermore, the equation of an arbitrary line P(Q joining two points P(z1) and Q(z2) in the complex Cartesian

* * * *

2{ — 2 2129 — 222
o 1 2 2+ 2 1

21 — 22 21 — 22

= Mz+ B, (30)

plane (z = x + iy) is given by [25]
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- N
where z* is the complex conjugate of z, M = ZL=22 is a slope, and B = 222-22%1 ig 3 shift.
zZ1—Z22 Z1—Z22

From (30), it follows that

dz* = Mdz. (31

Now by employing h(z) = z",n € N in (29) and using (30), (31), we have
i [& #+1 i
3 ZM;/ 2"dz| = f/ g (2)h(z) dz*
1=1

2 Jao
/ /Q 9(=) KV (2) da dy
n//ﬂg(m,y) (z +iy)" " dx dy

- %na n Z la (32)

where 7,, is a complex-moment with weight n, and in this case it is related to 7,, by 7,, = n7,_1 with 79 = 0. The
coefficient M; denotes the slope of the polygonal line joining corner points z; and 2;41.

The left-hand side of (32) reveals that the moments 7, are in form of linear combinations of the powers of
z;. Therefore, the annihilating filter method can retrieve the N corner points z; using 2N complex moments
Tn,m = 0,1,...,2N — 1. Recall that the moments 7,, = n7,_1 of g(x,y) are computed from its samples S x
using (24) and (25) with o, 8 € {0,1,...,2N — 2}. Hence, Proposition 3 can be extend for the convex set of N
polygonal lines g(z,y) provided that the kernel ¢, (x,y) can reproduce polynomials up to degree 2N — 2 along
x and y.

Quadrature domains: Finally, we consider a class of bounded planar domains in the complex plane z = x + iy.
A quadrature domain {2 is a planar domain that has real algebraic boundary determined by a polynomial equation:
QN ={z€C;P(z,2*) <0}, where P(z,2*) is a polynomial of degree less than or equal to N in each variable, and
N denotes the order of the quadrature domain [18]. The examples of quadrature domains are circles and ellipses
(with N = 1), and cardioids and lemniscates (with N = 2). For a complete treatment on quadrature domains, we
refer to [28], [29].

In particular, consider the quadrature domain g(z,y) C £2 whose boundary is expressed by the algebraic equation

P(a,y) = P(2,2*) =0, with == ZJ;Z Y= Z;Z . (33)
2

In [18], it was shown that the domain g(z,y) satisfying (33) can be uniquely reconstructed from its finite complex-
moments 7, 3, &, 3 < N as defined in (22), where N is the order of the domain g(z,y). In fact, the reconstruction

involves complex mapping (i.e. exponential transformation) of the moments 7, g, ., 3 < N to derive an annihilating
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filter A[l], l=0,1,..., N such that its coefficients produce a polynomial
p(z) = A[0]zN + A1V + ..+ A[N]2O. (34)

The polynomial manipulations of p(z) give the expression P(z,z*) = 0 that characterizes a given quadrature
domain g(zx,y). Moreover, any bounded planar domain can be approximated by a sequence of quadrature domains,
and therefore can be approximated by a finite number of moments [18].

Since it is possible to obtain the moments of g(x,y) from its samples S} , Proposition 3 can be extended for
the quadrature domain of order /N provided that the kernel can reproduce polynomials up to degree N along x and

y directions.

V. TOMOGRAPHIC APPROACH

Before we present the last approach, we would like to mention that there are many interesting papers in computed
tomography (CT) that exploit Radon transform for parametric and nonparametric estimation of multidimensional
shapes and contours from noisy tomographic data (e.g. [19], [30], [31]). In particular, the approach of [30] considers
estimation of polygonal and polyhedral corner points in Bayesian framework, where as the focus of [31] is on
information-theoretic issues in nonparametric boundary estimation.

In this section, we concentrate on sampling and perfect reconstruction of multidimensional FRI signals using the link
between Radon transform projections and moments [19]. In particular, we show that, in addition to polygons and
Diracs, it is possible to reconstruct more general FRI signals such as 2-D polynomials with polygonal boundaries
from their samples. The key feature of the proposed scheme is an annihilating-filter-based-back-projection (AFBP)

algorithm.

A. 2-D Polynomials with Polygonal Boundaries

Radon transform: Let g(z,y) be a 2-D square-integrable function within a compact region (2 over the Euclidean

space R2. Then, the conventional Radon transform projection of g(z,v) is defined as [32] (see Figure 7(b)):

R,(t,0) = //Qg(a:, y) 6 (t — z cos(f) — ysin(0)) dx dy, (35)

where the projection angle 6 € [0,7), and l; 9 = 6 (t — x cos(f) — ysin(f)) is a straight line of integration at an
angle ¢ + 7 with the x-axis and at a radial distance ¢ away from the origin. The projections R,(t,) are square
integrable 1-D functions with finite support. The original function g(z,y) can again be reconstructed from its

projections R, (¢, 8) using filtered back-projection (FBP) reconstruction [32].
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AFBP Algorithm: Consider a specific case, where g(z,y) is a 2-D polynomial of total degree R — 1 inside a
convex polygonal closure €2 with N corner points. To be more precise, g(z,y) = Zf:_ol Zi:o by xFy = [33],

[34]. In this case, we observe that

(a)  Each projection R,(t,0) is a 1-D piecewise polynomial of maximum degree R and with at most N
discontinuities. Therefore, the (R + 1)-order derivative of such projection leads to a stream of at most
N differentiated Diracs dERH) [Ry(t,0)] = % [Ry(t,0)] = Z?E)l Zfzo ai 6T (t — t;), where t;

are locations and a;, are weights. It means that ngH) [Rq(t,0)] represents at most N Diracs with

N=N (R + 1) weights [12], [4]. A simple illustration of this scenario is given in Figure 7.

y
G
“ & g(xY)
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- R,(1.0)
2 s i h 4 15 t
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Fig. 7. AFBP reconstruction: The polynomial g(z,y) of degree R — 1 = 0 inside a convex polygon with N = 5 corner points (i.e. bilevel
pentagon) is shown in part (a). The Radon transform projection Ry (¢, ) along an angle & = 0 is shown in part (b). Note that Rg(t;,0) is a
single-valued line-integral at an arbitrary ¢ = ¢; within the support of R, (t,0). Since this projection Ry (t,6) is a piecewise polynomial of
degree R = 1, the R + 1 = 2-nd order derivative can decompose it in a stream of differentiated Diracs ng) [Rgy(t,0)] as shown in part (d).

In this case df) [Ry(t, )] represents N Diracs with N = N weights.

(b)  Moreover, following the connection between Radon projections and moments [19], the moments g, n € N
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of the differentiated Diracs d,ERH) [Ry(t,0)] are obtained by

po = [ A" R0 de

// d(R+1) (x,9)] (zcos(9) + ysin(0))" dz dy

= Z ( >cos (0)sin®(0) po5, with a=n— 0, (36)
=0 P
where pa5 = [ [g d;;: (z,y)] z*y® drdy are the geometric moments of the polynomial g(z,y)
differentiated R + 1 times along the direction of 6.
Since the projection ngH) [R,(t,6)] consists of at most N Diracs with N = N(R + 1) weights, the
9N = 2N(R + 1) moments fi,,,n = 0,1,...,2N(R + 1) — 1 are sufficient to retrieve the locations t;
and weights a; , of the Diracs dERH) [Ry(t,0)] (and therefore the piecewise polynomial signal R,(t,8)
itself) using annihilating filter method [12], [4].
By iterating the steps (a), (b), and (c) over N +1 distinct projection angles 6;,1 = 0,1,..., N, it is possible
to retrieve the N + 1 sets of Dirac locations ¢,. By back-projecting the IV + 1 sets of Dirac locations t;,
the NV corner points of the convex closure 2 are uniquely determined, and therefore, the closure of g(z,y)
itself [11], [35].
From the knowledge of closure {2 and Radon projection R,(t,6), we have access to the single-valued
line-integral Ry(t;,0) for an arbitrary ¢ = t; within the support of R,(t,60) (see Figure 7(b)). In fact,
Ry(t;,0) = fl g(x,y)dl = fl, Y (Z LS bk by k) dl is an equation with R = R(R +1)/2

unknown coefficients b; ;. Clearly, the coefficients b;; can be determined by solving a system of R
such equations (i.e. a generalized Vandemonde system). Fortunately, the theory of bivariate polynomial
interpolation [33], [34] assures a unique solution if at least R distinct projections R, (t,0) are known.?
Since N + 1 projections are required for recovering the closure €2, and R projections are required for

determining the coefficients b; , we are sure that max (/N + 1, R) projections are sufficient for the unique

reconstruction of g(x,y).

To summarize, if g(x,y) is a 2-D polynomial of degree R — 1 inside a convex polygonal closure {2 with N corner

points, then from the moments y,, we can retrieve the projection R (t, #) and from max (N +1, R) such projections

we can retrieve the polygonal closure (2 first and the coefficients b; ;, next. Notice that the crucial part of above

2 In fact, R projections Ry (t,0) are exploited to obtain R = R(R + 1)/2 line-integrals Ry (t;,0) using arithmetic progression [33]. It is

straightforward to obtain a unique (but suboptimal) solution by directly using R distinct projections Ry (t,6) [36].
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reconstruction is the recovery of corner points. Since the retrieval of corner points is based on annihilating filter, we
denote the proposed reconstruction as: annihilating filter based back projection (AFBP) algorithm. Equipped with
the Radon-moment connection (36) and AFBP algorithm, we now show that the 2-D polynomials with polygonal
boundaries can be uniquely reconstructed from their samples. Similar results can be obtained for other 2-D FRI
signals such as sets of 2-D Diracs, and bilevel-convex polygons.

Sampling: Assume that g(z,y) = Zf;ol i:o bj.k xFy7=F is a 2-D polynomial of degree R — 1 with at most
R coefficients b; « inside the convex polygonal closure €2 with /N corner points. We observe the samples S j
of g(x,y) given by S;r = (9(,9), pay(x/Ts — j,y/T, — k)), where @, (z,y) is the sampling kernel that can
reproduce polynomials up to degree n along x and y directions.

Recall that in order to retrieve the corner points of the closure €2, we need to compute the moments ., of the
differentiated projections dERH) [R4(t,6)] from the moments 11, g of the differentiated polynomial d(gRH) [9(z, )]
as given in (36). Nevertheless, from lattice theory, it is possible to show that there exists a direction vector ¥ =
[vs,vy] along a chosen projection angle § = tan’l(zfi), Vg, Uy € Z such that the discrete domain directional
differences DéRH) [Sjk] and the continuous domain directional derivatives d(gR'H) [g(x,y)] are related by (see
Appendix-I):

R = DY (8] = (a0 lg(w,y) . Colw/Te = g/ T, = k) ) - 37

The new set of samples R;; = DéRH) [S;,k], obtained by the (R + 1)-order directional differences on the
set of samples S, is equivalent to one produced by the inner products between the differentiated polynomial
déRH) [9(z,y)] and the modified (directional) kernel (y(x,y). The kernel (y(x,y) is produced by R+ 1 successive
convolutions of zero-th order 1-D B-spline 39 (x, y) with the original sampling kernel ¢, (x,y) in the direction of
7. More precisely. Cp(,y) = [o] V) (105, (2.9) * A} (2. )).

It is important to note that the directional kernel also satisfies the polynomial reproduction property of (5). In
particular, if the sampling kernel ¢, (z,y) can reproduce polynomials up to degree n along x and y, then the
directional kernel (y(x,y) can reproduce polynomials up to degree n + R + 1 along .

In the light of link (37), equations (36) and (25) enable us to obtain the moments pu, of the projection

d,ERH) [Rq(t,0)] using linear combinations of samples R; ; and coefficients Cjak’@ as given by

n

o, = Z (Z) cos®(0) sin®(6) ; zk: Rji c;j;f . with a=n-—3, (38)

=0

where C;f;f are the coefficients associated with the kernel (y(x,y).

Since dERH) [Ry(t,0)] consists of at most N Diracs with N = N(R + 1) weights, the directional kernel ¢y(z, y)
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must allow us to retrieve 2N = 2N (R + 1) moments f,,,n = 0,1,...,2N(R+ 1) — 1, and thus it follows that
n+R+1>2NR+1)—-1 = n>@2N-1)(R+1) -1 39)

Therefore, a sampling kernel ¢, (x,y) that reproduces polynomial of degree n (with n satisfying (39)) allows
us to obtain the 2N (R + 1) moments of each of max(NN + 1, R) differentiated projections ngH) [Ry(t,01)], 1=
0,1,...,max(N+1, R)—1 from the samples R; j, = Déf?’ﬂ) [S;,k] using (38). Then following the steps (c) and (d)
of the AFBP algorithm, we retrieve the convex polygonal closure 2 of g(x,y). Finally, from step (e), we determine
the coefficients b; 5, of the polynomial of degree R — 1 inside €2, and thus the 2-D polynomial signal g(z,y) itself.
In summary, we have:

Proposition 4: Assume that g(z,y) is a 2-D polynomial of total degree R — 1 inside a convex polygonal closure
2 with IV corner points. A set of samples S, = (9(z,y), Yuy(x/Ty — §,y/T, — k)) is sufficient to determine
g(z,y) exactly, if the sampling kernel ¢, (x,y) can reproduce polynomials at least up to degree (2N —1)(R+1)—1
along both the coordinate axes = and y.

For the sake of completeness, we now show with a pseudo-algorithm how the reconstruction scheme operates.
Given a valid set of samples S, = (g(z,y), Yuy(x/Ty — §,y/T, — k)), the reconstruction of 2-D polynomial
g(z,y) = Zf;ol Zi:o bj.x xFy7=* of degree R — 1 inside the convex polygonal closure Q with N corner points
follows the following steps:

Algorithm: AFBP reconstruction of 2-D polynomial signal from its samples

1) For a chosen angle 6§ = tan_l(%), Vg, Vy € Z, compute the difference R; ) = DéRH) [S; k] given by (37).

2) Using (38), compute the first 2N (R + 1) moments p,,n = 0,1,...,2N(R + 1) — 1 of the projection
dERH) [Rq(t,0)] from the new set of samples R; ;, [recall step (b) of the AFBP algorithm].

3) From moments p,, using annihilating filter method, obtain the exact locations ¢;,7 = 1,2,..., N of the N
Diracs of dERH) [Ry(t,6)], and thus, the projection Ry(t,6) itself [step (c)].

4) Tterate steps 1, 2, and 3 for N + 1 distinct projection angles 6;,/ = 0,1,..., N, and then by back-projecting
N + 1 sets of dirac locations t;, retrieve the convex polygonal closure 2 of g(x,y) [step (d)].

5) From the knowledge of the closure 2 and Radon projections R,(t,6;),l = 0,1,..., R — 1, determine the
coefficients b; 5, of the polynomial g(z,y) by solving a system of R linear equations [step (e)].

6) Since the closure 2 and the coefficients b; ;, are known, it is easy to reconstruct the 2-D polynomial g(z,y).

A simple simulation result is shown in Figure 8. In this case, g(x,y) is a 2-D polynomial of degree R —

1 =0 (e g(r,y) = bp,) inside a convex polygonal closure 2 with N = 3 corner points. In part (a), the
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original polynomial g(z,y) is shown with the reconstructed corner points (marked with +). The samples S; ;, =
(9(2,v), pay(x/Ty — j,y/T, — k)) are shown in part (b), where ¢, (x,y) is a B-spline sampling kernel that can
reproduce polynomials up to degree n = (2N — 1)(R+ 1) — 1 = 9 along = and y directions, and therefore, the
associated directional kernels (g, (x,y) can reproduce polynomials up to degree n+ R+ 1 = 11 along 6;. The sets of
differentiated samples R, = Dgl [S;,k] along four distinct angles 0y = 0,0, = 7,0 = tan—1(2) and 65 = 7 are
shown in parts (c), (d), (e), and (f). The AFBP reconstruction of the corner points (marked with o) using N +1 =4
back-projections is shown in part (g), and is exact to machine precision. These corner points can uniquely recover
the convex closure 2. Form the knowledge of €2 and any one projection R,(t,6;), we can uniquely retrieve the

coefficient by o, and thus the polynomial g(z,y) itself.

In this case, the benefit of reconstructing more general signals comes with the price of higher computational
cost. For instance, for a 2-D polynomial of degree R — 1 = 0 inside a convex polygon with N corner points, the
computational cost is of the order of O(N*). This is due to the fact that the cost of finding the roots of each Radon

projection is O(N?3) and we need O(N) projections to reconstruct the polynomial.

2 A
00 - aw.
a / /
=00 E / /
3 / Iy
« / ;S
| / e

W0 00 B0 20 B0 @0 %0 B 0 w0 mm 50 w0 A0 %0 0

() (b) (&

B B

() (d) (e) ®

Fig. 8. Simulation: The original planar triangle g(x,y), and the reconstructed corner points A, B, and C' (marked with +) are given in part (a).
The set of samples S produced by the B-spline sampling kernel Bgy is given in part (b). The N + 1 = 4 sets of differentiate samples
R, = D§2) [S;,%] along four angles 6 = 0, %,tan_l(Q), and 7 are given in parts (c), (d), (e), and (f). The AFBP reconstruction of the

corner points A, B, and C is illustrated in part (g).
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VI. CONCLUSION

In this paper, we have presented various schemes for sampling and perfect reconstruction of multidimensional
FRI signals using kernels that reproduce polynomials. In particular, we offer local and global reconstruction methods

with varying complexities as summarized in Table I. The issues of model mismatch and noise effects are beyond

the scope of this paper but are still open for further investigation.

TABLE I

COMPARATIVE SUMMARY

Approach Signals Merits Computational Limitations
cost
Directional Planar polygons. Local O(N) for polygon Finite orientations
derivatives reconstruction, with N corner of polygonal sides,
(Local) local points. i.e. tan(f) € Q.
complexity.
Complex-moments Convex and bilevel Reconstruction O(NS) for Numerically unstable

n-D Diracs, and

degree R — 1 = 0

(Global) polygons, Quadrature of corner bilevel-convex for closely spaced
domains (e.g. ellipses, points with any polygon with N corner points.
cardioids), Polygonal coordinates. corner points.
lines, and 2-D Diracs.

Tomographic 2-D polynomials with Multidimensional. O(N4) for 2-D Numerical

(Global) polygonal boundaries, polynomial of instability in

computation of

n-D bilevel-convex inside convex higher order moments

polytopes. polygon with N with directional

corner points. kernels.

In Section III, we described a directional derivatives based local approach for reconstruction of planar polygons
from their samples using lower order kernels that satisfy partition of unity. This scheme has a local complexity
irrespective of the number of corner points in a given polygon. In Section IV, we presented a complex-moments
based global reconstruction scheme for convex and bilevel polygons, and extended it for quadrature domains that are
capable of approximating arbitrary planar shapes with closed boundaries. Finally, we presented a Radon transform
based scheme for sampling more general FRI signals such as 2-D polynomials with polygonal boundaries in
Section V. Since the Radon transform is multidimensional, it is straightforward to extend the AFBP algorithm for
sampling bilevel-convex polytopes and Diracs in higher dimensions (i.e. in 3-D and above).

The proposed schemes may find their applications in vectored graphics, computer animations, and machine vision.

In fact, the proposed schemes have been promisingly explored for super-resolution algorithms [5] and distributed
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compression [6]. Finally, the use of the corner reconstruction algorithm for super-resolution photogrammetry is

under investigation.
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APPENDIX I

CONNECTION BETWEEN DIRECTIONAL DIFFERENCES AND DERIVATIVES: EQUATION (18)

Consider the set of samples S; i = (9(z,Yy), uy(x/Ty — 5,y/T, — k) of a planar polygon g(z,y), where
Yay(x,y) is the sampling kernel, and let the sampling intervals T, = T,, = 1. Now apply a pair of finite differences
Dé}) [[] and Déi) [-] on samples S; i, first along the lattice direction ¢ and then along ¥ to obtain the new set of

samples I; ;. given by

1 1
Rj,k = DéQ) [Dél) [Sj,k]} = {S(j+vz,1+v1,1),(k+vz,2+vl,z) - S(j+1)z,1),(k+1)2,2)} - {S(j+1)1,1),(k'+v1,2) - Sj-,k}
= <9(11?7y), {%cy (2= (+ve1+vi1),y— (k+wvao+v12)) = Quy(r— (G +v21),y — (k+ 112,2))} -

{om(a— (G412 — (k4 012) —guy(z— Gy~ 1) }).

Using Parseval’s identity, it follows that

B = (om0t ([ {(nrtmienttinstna)  milmsectins) |

)

= 4%<§(wm,wy)»¢xy(wmwy) - twertkwy) (e’i(vl*l“’””lvz“’y) — 1) : (e*i(vz’l“’”*”z*Z“y) — 1)>,
7

where i = /-1, and §(w,,w,) and Ggy(wy,wy) are the 2-D Fourier transforms of g(z,y) and ¢, (z,y)
respectively. After multiplying and dividing by the same factors, we have that

1

R, = 47T2<Q(wm,wy), Gy (W, wy) - e iwathwy) (i(m,u% + v1,2wy)) ) (i(vz,w}x + vz,zwy)) .

(40)

(efi(v171wz+v1,2wy) o 1) (efi(vgylwer’Ugvgwy) o 1) >
(i(vl,lwm - vl,zwy)) (Z (v2 1wz + vz,zwy)) .

Now recall that 3°(w) = % is a frequency domain representation of the zero-th order 1-D B-spline 3%(t).
This representation can be extended for 1-D directional B-spline in 2-D plane as given by

(1 o e*i(vlylwervl,gwy)) (1 o 672’(’02’1(4)14'1)2'2&}1/))

Bgl(wszy) = ) 1332(wm7wy) = s (41)

Z.(ULlqu + U172wy) Z'(U271wx + ’U272wy)
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where Bgl and 332 are the 1-D B-splines of order zero in 2-D plane along orientations ; = tan~! (Zi—f) and

02 = tan~" (£22) respectively. For simplicity, let

591,92 (wxa wy) = @wy(wm Wy) /331 (w:ru Wy) 332 (w:m wy)' (42)
Replacing (41) and (42) in the formulation of (40), and then multiplying and dividing by a factor |v;||va|, we
have
"01”1)2‘ ~ £ —t(Jwy+kw,
Rj’k - 472 g(wx’wy)’£91ﬁ2(wrva) € (s they) .

. 21,1 V2,1 . . (U1,1 V2,2 + V1,2 1)2,1) . 21,2 U2,2}
Wy =+ (2wy ) (2w + (wy ) ———F— .
e I L e ) Jorllea

Using the identities V1,1 = |’U1‘ COS(91), V1,2 = |’01‘Sin(91), V2,1 = ‘1}2|COS(92)7 Vg2 = \1}2|sin(02), |det(VA)| =

, and |vp||va] = % in the righthand side of the above equation, we have

|’U1,1 V22 — V12021

|det(Va)|

R.
Ik A2[sin(05 — 61))

<g(wz’wy)7501,02 (wmawy) e iwethwy) |

{(z’wm)Q cos(61) cos(82) + (iwy) (jw,) sin(fy + 02) + (iwy)? sin(61) sin(ﬁg)}>.

Using Parseval’s identity, we have

det (V] 0?
R = |Si|n(e;2(_A)9|l)|<g(»’C’ Y), { cos(61) COS(%)@ (591,92 (x—jy— k)) +

sin(6 + 92)% (% (fghgz (x—j,y— k‘))) + sin(6y) sin(@g)aa;2 (591,92 (x —j,y — k)) }>

Comparing the righthand side of the above equation with the continuous directional derivative model given in

equation (17), it follows that

J 0 (0 _
Ideii‘ﬁA)I - |sir1(021—01)|<9($’y)5392(591(fel,ez(w—J,y—k)))>
(i) <3802<8891(9(56,y)))a m@hgz(m -y — k)>

<6862(8(31(g(x,y))),Cel,og(fC—j»y—k)>a (43)

where equality (@) is obtained using integration by parts, and (g, 0,(z,y) = % =
0 * 0
(%y(gw?:fle(lg(i?éi))| Pop (2:9) is the modified directional kernel.
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