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Abstract

Consider the problem of sampling signals that are nonbandlimited but have finite number of degrees of freedom

per unit of time and call this number the rate of innovation. Streams of Diracs and piecewise polynomials are the

examples of such signals, and thus are known as signals with finite rate of innovation (FRI) [3]. We know that

the classical (‘bandlimited-sinc’) sampling theory does not enable perfect reconstruction of such signals from their

samples since they are not bandlimited. However, the recent results on FRI sampling [3], [4] suggest that it is possible

to sample and perfectly reconstruct such nonbandlimited signals using a rich class of kernels.

In this paper, we extend the results of [4] in higher dimensions using compactly supported kernels that reproduce

polynomials (satisfy Strang-Fix conditions). In fact, the polynomial reproduction property of the kernel makes it

possible to obtain the continuous-moments of the signal from its samples. Using these moments and the annihilating

filter method (Prony’s method), the innovative part of the signal, and therefore, the signal itself is perfectly

reconstructed. In particular, we present local (directional derivatives based) and global (complex-moments, Radon

transform based) sampling schemes for classes of FRI signals such as sets of Diracs, bilevel and planar polygons,

quadrature domains (e.g. circles, ellipses, cardioids), 2-D polynomials with polygonal boundaries, and n-dimensional

Diracs and convex polytopes.

This research has been promisingly explored in super-resolution algorithms [5] and distributed compression [6],

and might find its applications in photogrammetry, computer graphics, and machine vision.
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I. INTRODUCTION

Sampling plays an important role in modern signal processing and communication applications. Shannon’s

classical sampling theory and its extensions are very powerful and have been extensively utilized for bandlimited

signals [7], [8]. Moreover, the classical sampling is also extended to the classes of non-bandlimited signals that

reside in a shift-invariant subspace [9], [8]. For a comprehensive account on the modern sampling developments,

we refer to [7], [8].

Recently, novel sampling schemes have been presented for larger classes of 1-D signals that are neither bandlimited

nor reside in a fixed subspace. Such signals enjoy a finite number of degrees of freedom (or rate of innovation)

and are classified as signals with Finite Rate of Innovation (FRI) [3]. Streams of Diracs, nonuniform splines, and

piecewise polynomials are examples of such signals. The key feature of [3] is perfect reconstruction of FRI signals

from a finite number of samples using annihilating filter method (Prony’s method). Subsequently, the schemes of [3]

are extended for the classes of 2-D FRI signals such as sets of 2-D Diracs, and polygons in [10] and [11]. The

schemes of [10] rely on global algorithms in Fourier domain, and can be unstable at times. Most importantly, all

these schemes [3], [10], [11] use infinite support sinc and Gaussian kernels, and therefore, are not convenient in

practice. However, the results of [12], [4] show that many 1-D FRI signals with local rate of innovation can be

sampled and perfectly reconstructed using compactly supported kernels (e.g. B-splines [13]) that satisfy Strang-Fix

conditions [14], and therefore, reproduce polynomials.

In this paper, we extend the results of [12], [4] for multidimensional FRI signals using local kernels that reproduce

polynomials. It is important to remember that the polynomial reproduction property of kernels plays a pivotal role in

our sampling schemes. In particular, it allows us to obtain the moments of the signals from their samples, and using

these moments the signals are reconstructed. In this paper, we propose local and global reconstruction schemes

with varying degrees of complexities. Our schemes are based on three different approaches:

1) Directional derivatives based approach: This is a local approach for reconstructing a planar polygon from its

corner points. It uses a link between continuous domain directional derivatives and discrete domain directional

differences based on the fundamentals of lattice theory [15], [16], [17].

2) Complex-moments based approach: In this global approach, we exploit complex-moments and show that it is

possible to reconstruct bilevel-convex polygons, sets of 2-D Diracs, polygonal lines, and quadrature domains

(e.g. ellipses, cardioids, and lemniscates) from their samples. Implicitly, we derive a sampling perspective to

the ‘shape from moments method’ of [18], [19], [20].

3) Tomographic approach: Finally, in the third approach, we integrate the moment property of Radon trans-
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form [19] in the framework of FRI sampling and derive an Annihilating-Filter-based-Back-Projection (AFBP)

algorithm, which allows us to sample more general FRI signals such as 2-D polynomials with polygonal

boundaries.

We show that, using these approaches, classes of multidimensional FRI signals can be sampled and perfectly

reconstructed from their samples. It is important to note that we concentrate on sampling and perfect reconstruction

theory, and therefore, throughout the paper we consider noiseless signals and measurements.

The paper is organized as follows: In the following section, we begin with the framework for sampling FRI signals,

and introduce a local reconstruction scheme for 2-D Diracs. In Section III, we extend the local reconstruction

of 2-D Diracs for planar polygons using directional derivatives based approach. We then show in Section IV

that the complex-moments can be used to derive global algorithms for sampling sets of 2-D Diracs, bilevel and

convex polygons, and quadrature domains. Finally, in Section V, we employ multidimensional Radon transform

and AFBP algorithm for sampling more general FRI signals such as 2-D polynomials with polygonal boundaries.

The concluding remarks are given in Section VI.

II. 2-D SAMPLING FRAMEWORK

In this section, we review the concept of signals with finite rate of innovation (FRI), and describe the sampling

setup and sampling kernels that we employ for the proposed schemes. We review an important tool: ‘annihilating

filter method’ [3] which is used extensively in subsequent sections. Finally, we close this section by introducing

a local reconstruction scheme for 2-D Diracs in order to demonstrate the role of polynomial reproduction in FRI

sampling.

A. FRI Signals

Consider a 1-D signal of the form [3]

g(t) =
N∑

i=0

∑
n∈Z

λi,n φi (t− tn) , (1)

where the set of functions {φi(t)}, i = 0, 1, . . . , N is known. Notice that the free parameters (degrees of freedom)

of g(t) are the time instants tn and coefficients λi,n.

It is therefore natural to introduce a counting function Cg(ta, tb) that counts the number of free parameters of

g(t) over an interval τ = [ta, tb]. The rate of innovation of g(t) is then defined as [3]

ρ = lim
τ→∞

1
τ

Cg

(
−τ

2
,
τ

2

)
. (2)

November 27, 2006 DRAFT



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. XX, NOVEMBER 2006

Definition 1 [3]: A signal with a finite rate of innovation is a signal that is characterized by (1) and with a finite

ρ as given in (2).

Moreover, the notion of FRI can be extended in 2-D (or in higher dimensions). In particular, a 2-D FRI signal

g(x, y) is given by

g(x, y) =
N∑

i=0

∑
j∈Z

∑
k∈Z

λi,j,k φi (x− xj , y − yk) , (3)

where the free parameters, in this case, are the shifts xj and yk and the coefficients λi,j,k. The local rate of

innovation is then given by ρxy = 1
τxτy

Cg

[
(− τx

2 , τx

2 ), (− τy

2 ,
τy

2 )
]

over the window of size τx × τy .

For instance, when φi (x, y) = δxy(x, y), and both xj − xj−1 and yk − yk−1 are i.i.d. random variables with

exponential density, then g(x, y) describes a separable 2-D Poisson process. A set of 2-D Diracs is one particular

realization of the 2-D Poisson process. Other examples of 2-D FRI signals include lines in 2-D, polygonal lines,

convex and bilevel polygons, and classes of algebraic curves (e.g. ellipses, cardioids, and lemniscates) [10], [18].

B. Sampling Setup

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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Fig. 1. A generic 2-D sampling setup: Continuous signal g(x, y) is convolved by a smoothing kernel ϕxy(x, y) and then sampled uniformly by
P

j∈Z
P

k∈Z δxy(x− jTx, y− kTy) to obtain the sampled signal gs(x, y). The block C/D represents continuous to discrete transformation

and corresponds to the read-out of sample values Sj,k, j, k ∈ Z from gs(x, y).

We consider a 2-D generic sampling setup as shown in Figure 1, where a continuous 2-D FRI signal g(x, y)

is prefiltered by a smoothing (sampling) kernel h(x, y) = ϕxy(−x/Tx,−y/Ty), and the filtered version g(x, y) ∗

ϕxy(−x/Tx,−y/Ty) is sampled uniformly to obtain the set of samples Sj,k given by

Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉

=
∫ ∫

R2
g(x, y) ϕxy(x/Tx − j, y/Ty − k) dx dy, (4)

where Tx, Ty ∈ R+ are sampling intervals along x and y directions respectively. For simplicity, we assume Tx =

Ty = 1 unless explicitly specified. Note that the setup of Figure 1 is typical for acquisition devices and processing

algorithms, and can be extended to higher dimensions (i.e. in 3-D and above) [8].

DRAFT November 27, 2006



SHUKLA AND DRAGOTTI: SAMPLING SCHEMES FOR MULTIDIMENSIONAL SIGNALS WITH FINITE RATE OF INNOVATION 5

C. Sampling Kernels and their Properties

It is always desirable to have a freedom in selecting or designing a sampling kernel ϕxy(x, y) of choice. However,

in practice, the kernel results from the physical properties of a given acquisition device and does not allow desired

flexibility. Recall that the Shannon’s sampling theorem uses infinite support sinc kernel (ideal low-pass filter), while

the FRI schemes of [3], [10], [11] use infinite support sinc and Gaussian kernels, and for that reason, are not

convenient in practice.

For the proposed sampling schemes, we consider any compactly supported kernel that satisfies Strang-Fix

conditions [14] and therefore reproduces polynomials up to certain degree n. To be more precise, our sampling

kernel ϕxy(x, y) is given by the tensor product of two 1-D functions ϕ(x) and ϕ(y) that can reproduce polynomials

xα and yβ respectively, where α, β ∈ {0, 1, . . . , n} and x, y ∈ R. This means that there exists coefficients Cα,β
j,k

such that the kernel ϕxy(x, y) satisfies:

∞∑
j=−∞

∞∑
k=−∞

Cα,β
j,k ϕxy(x− j, y − k) = xα yβ , (5)

where α, β specify the degrees of polynomials that the kernel ϕxy(x, y) can reproduce along x and y directions

respectively. For instance, B-spline of order n can reproduce polynomial up to degree n, i.e. α, β ∈ {0, 1, . . . , n}.

Notice that Cα,0
j,k is responsible for the reproduction of a polynomial of degree α along x-axis, while C0,β

j,k is

responsible for the reproduction of a polynomial of degree β along y-axis.

Furthermore, for α = β = 0, if the kernel ϕxy(x, y) allows Cα,β
j,k = C0,0

j,k = 1, then (5) reduces to

∞∑
j=−∞

∞∑
k=−∞

ϕxy(x− j, y − k) = 1. (6)

Above equation states that the sum of shifted versions of sampling kernel produces unit amplitude polynomial of

degree zero, and is often acknowledged as ‘partition of unity’ in wavelet community.

Notice that the orthogonal Daubechies scaling functions [21] and biorthogonal B-splines [13] satisfy the properties

of (6) and (5) and therefore are valid sampling kernels. A simple illustration of partition of unity and polynomial

reproduction using B-spline sampling kernel is given in Figure 2.

D. Annihilating Filter Method

The annihilating filter method plays an important role in reconstruction of FRI signals [3]. Seeing its immediate

relevance in following sections, we briefly discuss its core formulation. For in-depth treatment, we recommend [3]

and [22]. This method (often termed as Prony’s method) is well known in error-correction coding [23] and spectral
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estimation [22]. In spectral estimation, it is common to observe a signal τ [n] that is composed of linear combinations

of exponentials such that

τ [n] =
N−1∑
i=0

ρi un
i , ρi ∈ C, ui ∈ C, n ∈ N, (7)

where ρi denotes weights, and ui denotes locations of the spectral components.

The annihilating filter method consists of two steps:

1) Design of the filter A[n] that annihilates signal τ [n], that is A[n] ∗ τ [n] = 0, ∀ n ∈ N.

2) Determination of the locations ui and weights ρi using filter A[n] and observed signal τ [n].

Consider the signal τ [n] of (7), and a filter A[n], n = 0, 1, . . . , N with z-transform

A(z) =
N∑

n=0

A[n] z−n =
N−1∏
i=0

(
1− ui z−1

)
, (8)

where ui’s are distinct. It then follows that

A[n] ∗ τ [n] =
N∑

l=0

A[l] τ [n− l] (9)

=
N∑

l=0

N−1∑
i=0

ρi A[l] un−l
i

=
N−1∑
i=0

ρi

( N∑
l=0

A[l]u−l
i

)
︸ ︷︷ ︸

=0 from (8)

un
i

= 0. (10)

Thus, the filter A[n] is called annihilating filter since it annihilates the observed signal τ [n]. Notice that A[n] is

unique for the observed signal τ [n], since the ui’s are distinct. Clearly, the knowledge of A[n] is sufficient to

retrieve the locations u0, u1, . . . , uN−1, since these locations are the roots of filter A(z) in (8).

Since there are N unknown coefficients of A[n] (recall that A[0] = 1), we need to solve a system of N linear

equations, and therefore, require at least 2N values of τ [n]. For instance, the observations τ [0], τ [1], . . . , τ [2N −1]

allow to describe the convolution A[n] ∗ τ [n] = 0 in matrix/vector form as:

τ [N − 1] τ [N − 2] · · · τ [0]

τ [N ] τ [N − 1] · · · τ [1]
...

...
. . .

...

τ [2N − 2] τ [2N − 3] · · · τ [N − 1]





A[1]

A[2]
...

A[N ]


= −



τ [N ]

τ [N + 1]
...

τ [2N − 1]


. (11)

The solution of this Yule-Walker system gives the filter coefficients A[n]. From equation (8), it is straightforward

to see that the roots of filter A(z) are the locations ui.
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Once the locations ui are known, the weights ρi are determined by solving equation (7) as follows



1 1 · · · 1

u0 u1 · · · uN−1

...
...

. . .
...

uN−1
0 uN−1

1 · · · uN−1
N−1





ρ0

ρ1

...

ρN−1


=



τ [0]

τ [1]
...

τ [N − 1]


. (12)

Given that all locations ui are distinct, the Vandermonde system of (12) is invertible and yields a unique solution

for the weights ρi.

Moreover, it is possible to show that the signals of form τ [n] =
∑N−1

i=0 ρi nR un
i are annihilated by the filter

A(z) =
∏N−1

i=0

(
1− uiz

−1
)R+1

[3]. This method has been successfully utilized for determining weights ρi and

locations ui of the streams of differentiated Diracs, and therefore, for the reconstruction of piecewise polynomial

signals [3], [12], [4].

E. Local Reconstruction of 2-D Diracs

Now to demonstrate the essential role of polynomial reproduction in the proposed FRI sampling, we begin with a

simple class of FRI signals. Consider a set of 2-D Diracs g(x, y) =
∑

i∈Z ai δxy (x− xi, y − yi), a, x, y ∈ R. It is

important to note that each 2-D Dirac can be parameterized by an amplitude ai and a coordinate position (xi, yi),

and thus has a finite number of degrees of freedom (or rate of innovation) which equals three.

We observe the samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, where Tx, Ty are the sampling intervals

and ϕxy(x, y) is the sampling kernel with compact support Lx × Ly . Assume that the Diracs in signal g(x, y) are

distributed in such a way that there is at most one Dirac in any given window of size (Lx +1)Tx× (Ly +1)Ty and

assume that the kernel ϕxy(x, y) can reproduce polynomials up to degree one, i.e. α, β ∈ {0, 1} in (5). Therefore,

from (6), an algebraic sum of shifted kernels is constant and equals to unity (see Figure 2 (b)). Whereas from (5),

the linear combinations of shifted kernels with coefficients C1,0
j,k and C0,1

j,k produce unit-slope linear functions along

x and y directions (see Figures 2 (c) and (d)). Moreover with above assumptions, we are sure that only Lx × Ly

inner products (or samples) Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 overlap in an arbitrary window of size

(Lx + 1)Tx × (Ly + 1)Ty that encloses a unique Dirac ap δxy(x− xp, y − yp), p ∈ Z.
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(a)

a
p
 δ

xy
(x−x

p
,y−y

p
)

(b)

a
p
 δ

xy
(x−x

p
,y−y

p
)

xy

(c)

a
p
 δ

xy
(x−x

p
,y−y

p
)

xy

(d)

Fig. 2. Local reconstruction of a 2-D Dirac ap δxy(x− xp, y− yp): The B-spline sampling kernel β3
xy(x, y) that can reproduce polynomials

up to degree 3 is given in part (a). The reproduction of polynomial of degree 0 (partition of unity), responsible for the determination of amplitude

ap is given in part (b), whereas the reproduction of polynomials of degree 1 along x and y directions, responsible for the determination of

coordinates xp and yp are given in part (c) and part (d) respectively.

Therefore, for a given Dirac (assuming Tx = Ty = 1), it follows that

Lx∑
j=1

Ly∑
k=1

Sj,k =

〈
apδxy(x− xp, y − yp),

Lx∑
j=1

Ly∑
k=1

ϕxy(x− j, y − k)

〉

=

∞∫
−∞

∞∫
−∞

apδxy(x− xp, y − yp)

 Lx∑
j=1

Ly∑
k=1

ϕxy(x− j, y − k)

 dx dy

= ap

Lx∑
j=1

Ly∑
k=1

ϕxy(xp − j, yp − k)

= ap (from equation (6)) (13)

and

Lx∑
j=1

Ly∑
k=1

C1,0
j,k Sj,k =

〈
apδxy(x− xp, y − yp),

Lx∑
j=1

Ly∑
k=1

C1,0
j,k ϕxy(x− j, y − k)

〉

=

∞∫
−∞

∞∫
−∞

apδxy(x− xp, y − yp)

 Lx∑
j=1

Ly∑
k=1

C1,0
j,k ϕxy(x− j, y − k)

 dx dy

= ap

Lx∑
j=1

Ly∑
k=1

C1,0
j,k ϕxy(xp − j, yp − k)

= apxp (from equation (5)). (14)

DRAFT November 27, 2006



SHUKLA AND DRAGOTTI: SAMPLING SCHEMES FOR MULTIDIMENSIONAL SIGNALS WITH FINITE RATE OF INNOVATION 9

Similarly, it is straightforward to arrive at
Lx∑
j=1

Ly∑
k=1

C0,1
j,k Sj,k = ap yp in the line of above derivation.

Thus, the amplitude ap of a given Dirac is retrieved using

ap =
Lx∑
j=1

Ly∑
k=1

Sj,k, (15)

and the position (xp, yp) is retrieved using

xp =

 Lx∑
j=1

Ly∑
k=1

C1,0
j,k Sj,k

 /
ap,

yp =

 Lx∑
j=1

Ly∑
k=1

C0,1
j,k Sj,k

 /
ap, (16)

where the coefficients C1,0
j,k and C0,1

j,k are identified from equation (5).

Hence, a local reconstruction scheme for 2-D Diracs follows

Proposition 1: Assume a sampling kernel ϕxy(x, y) with support Lx × Ly that can reproduce poly-

nomials of degree zero and one along the Cartesian axes x and y. A set of finite amplitude 2-D

Diracs g(x, y) =
∑

i∈Z ai δxy (x− xi, y − yi) is uniquely determined from its samples defined by Sj,k =

〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, if there is at most one Dirac in any distinct window of size (Lx + 1)Tx ×

(Ly + 1)Ty .

III. DIRECTIONAL DERIVATIVES BASED APPROACH

The contribution of this section is two-fold: 1) We extend the local reconstruction scheme of 2-D Diracs for planar

polygons and develop an algorithm useful for super-resolution corner reconstruction; 2) In developing this algorithm,

we derive a link between continuous domain directional derivatives and discrete domain directional differences based

on the fundamentals of lattice theory [17], which in turn, provides a background for the tomographic approach of

Section V.

Consider a planar polygon g(x, y) with N corner points as shown in Figure 3(a). The sides of the polygon are

identified by the 2-D lines:

yi = tan(θi) xi + bi, i = 1, 2, . . . , N,

where bi are the shifts and θi are the orientations.

For this N sided polygon, consider an arbitrary corner point (e.g. point A in Figure 3) formed by two sides with
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1θ

2θ

y)
g(x,

A
A

][)1(
1

⋅θd ][)1(
2

⋅θd

)(a )(b )(c

Fig. 3. For a given planar polygon g(x, y), a pair of two successive first order directional derivatives d
(1)
θ1

[·] and d
(1)
θ2

[·] decomposes a corner

point A into a 2-D Dirac.

orientations θ1 and θ2. A pair of first order directional derivatives d
(1)
θ1

[·] and d
(1)
θ2

[·] on g(x, y) can be written as

d
(1)
θ2

[
d
(1)
θ1

[g(x, y)]
]

= cos(θ1) cos(θ2)
∂2

∂x2

(
g(x, y)

)
+ sin(θ1 + θ2)

∂

∂y

( ∂

∂x

(
g(x, y)

))
+

sin(θ1) sin(θ2)
∂2

∂y2

(
g(x, y)

)
. (17)

Clearly, this pair of directional derivatives produces a 2-D Dirac at the corner point A (see Figures 3(b) and (c)).

Likewise, we can ‘turn’ other corner points into Diracs by selecting proper pairs of derivatives. This suggests that

the local reconstruction scheme of Diracs, described in previous section, can be tailored for reconstructing corner

points of planar polygons.

However, the practical difficulty is that instead of a direct access to the polygon g(x, y), we only have access to

its samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, where ϕxy(x, y) is a sampling kernel that can reproduce a

polynomial of degree zero. Fortunately, discrete equivalent to the directional derivatives is directional differences,

and directional differences can be connected to the corresponding continuous derivatives. This connection is based

on the fundamentals of lattice theory, and in particular, involves subsampling over rectangular lattices. Since we

are dealing with a finite number of samples Sj,k, j, k ∈ Z over a uniform rectangular grid, we focus onto the 2-D

integer lattices. For further details on lattice theory, we refer to [15], [16], [17].

For a given corner point, assume that the orientations θ1 and θ2 of the two adjacent polygonal sides are such

that θ1 = tan−1
(

v1,2
v1,1

)
and θ2 = tan−1

(
v2,2
v2,1

)
where v1,1, v1,2, v2,1, v2,2 ∈ Z. Let the corresponding base lattice

Λ be given by Λ = {λ : λ = n1~v1 + n2~v2}, where ~vi = [vi,1, vi,2], i = 1, 2 are its basis vectors. The lattice Λ is

characterized by a sampling matrix VΛ =

 v1,1 v1,2

v2,1 v2,2

 with determinant det(VΛ).

Now compute the finite differences of the samples Sj,k, first along the lattice direction ~v1 and then along ~v2.
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Assuming Tx = Ty = 1, it then follows that

Rj,k = D(1)
θ2

[
D(1)

θ1
[Sj,k]

]
=

{
S(j+v2,1+v1,1),(k+v2,2+v1,2) − S(j+v2,1),(k+v2,2)

}
−

{
S(j+v1,1),(k+v1,2) − Sj,k

}
=

〈
g(x, y),

{
ϕxy

(
x− (j + v2,1 + v1,1), y − (k + v2,2 + v1,2)

)
− ϕxy

(
x− (j + v2,1), y − (k + v2,2)

)}
−{

ϕxy

(
x− (j + v1,1), y − (k + v1,2)

)
− ϕxy

(
x− j, y − k

)}〉
,

and by using Parseval’s identities, and after certain manipulations (refer Appendix-I), we derive that

Rj,k

|det(VΛ)|
=

D(1)
θ2

[
D(1)

θ1
[Sj,k]

]
|det(VΛ)|

=

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
, ζθ1,θ2(x− j, y − k)

〉
, (18)

where ζθ1,θ2(x, y) =
(
ϕxy(x,y)∗β0

θ1
(x,y)

)
∗β0

θ2
(x,y)

| sin(θ2−θ1)| is a modified kernel, and β0
θ1

(x, y) and β0
θ2

(x, y) are the 1-D

B-splines of order zero in xy-plane along orientations θ1 and θ2 respectively. For example, assuming that the

original kernel ϕxy(x, y) is a Haar scaling function (see Figure 4(a)), the modified kernel ζθ1,θ2(x, y) is shown in

Figure 4(b). Since the skewness of the modified kernel depends on orientations θ1 and θ2, we denote the modified

kernel as ‘directional kernel’.

(a) (b)

Fig. 4. Original and directional kernels: (a) ϕxy(x, y) is a Haar scaling function with support 1× 1, (b) Directional kernel ζθ1,θ2 (x, y) with

support 4× 4 for a given corner point of the polygon g(x, y) formed by the two sides with orientations tan(θ1) = 2/1 and tan(θ2) = −1/2.

The kernel ζθ1,θ2(x, y) is of compact support Lx,θ1,θ2 ×Ly,θ1,θ2 = (|v1,1|+ |v2,1|+ Lx)× (|v1,2|+ |v2,2|+ Ly),

where Lx×Ly is the support of the original sampling kernel ϕxy(x, y). The skewed shape of kernel ζθ1,θ2(x, y), and

the factors 1
|det(VΛ)| and 1

| sin(θ2−θ1)| in equation (18) are due to subsampling over integer lattices. It is important to

note that there exists an independent directional kernel ζθi,θi+1(x, y), i = 1, 2, . . . , N for each independent corner

point of the polygon g(x, y), where θi+N = θi.

Equation (18) states that the new samples Rj,k given by the finite differences along ~v1 and ~v2 are equivalent to

those obtained by sampling d
(1)
θ2

[
d
(1)
θ1

[g(x, y)]
]

with the directional kernel ζθ1,θ2(x, y). Moreover, if all the corner

points of the polygon g(x, y) are sufficiently apart such that there is at most one corner point in any distinct window
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of size (Lx,θi,θi+1 + 1)Tx × (Ly,θi,θi+1 + 1)Ty , i = 1, 2, . . . , N , then it is possible to reconstruct the corner points

using local reconstruction scheme of 2-D Diracs as given in Section II-E.

Assuming that the kernel ϕxy(x, y) satisfies partition of unity (6), the directional kernel ζθ1,θ2(x, y) always

satisfies partition of unity (6) and reproduces polynomials up to degree one (5) along both x and y directions.

These properties of the directional kernel ζθ1,θ2(x, y) enable us to determine the amplitude ap and the coordinate

position (xp, yp) of the resultant 2-D Dirac apδxy(x− xp, y − yp) at the given corner point using a finite number

of samples Rj,k. In fact, we only need a small isolated group of samples (i.e. Lx,θ1,θ2 × Ly,θ1,θ2 samples) in the

vicinity of the given corner point. Hence the local reconstruction scheme of (15) and (16), for the given corner

point (e.g. point A) leads to the following identities

ap =

∑
j

∑
k Rj,k

|det(VΛ)|
, (19)

xp =

∑
j

∑
k C1,0

j,k Rj,k

ap |det(VΛ)|
, yp =

∑
j

∑
k C0,1

j,k Rj,k

ap |det(VΛ)|
, (20)

where C1,0
j,k and C0,1

j,k are the coefficients of kernel ζθ1,θ2(x, y), identified from equation (5).

Clearly, the coordinate pair (xp, yp) gives the position of the given corner point (e.g. point A), whereas ap gives

the amplitude of the planar polygon g(x, y). It is straightforward to see that this reconstruction scheme applies

equally to all the corner points of g(x, y) using appropriate directional kernels ζθi,θi+1(x, y), i = 1, 2, . . . , N . From

the knowledge of the corner points and directions, it is possible to reconstruct the polygon g(x, y). To summarize,

we have

Proposition 2: Assume an N sided planar polygon g(x, y) with the orientations θi, i = 1, 2, . . . , N of its sides

satisfying tan(θi) ∈ Q, and that the kernel ϕxy(x, y) can reproduce polynomial of at least degree zero, a set of

samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 is sufficient to reconstruct the polygon g(x, y) provided that

there is at most one corner point in any distinct window of size (Lx,θi,θi+1 + 1)Tx × (Ly,θi,θi+1 + 1)Ty , where

Lx,θi,θi+1 × Ly,θi,θi+1 is the support of the directional kernel ζθi,θi+1(x, y), and θi+N = θi.

In practice, the orientations of the polygonal sides are not known in advance. However, if we assume that the

sides of the N sided planar polygon g(x, y) take only a finite number of orientations θi, where tan(θi) ∈ Q. Then

by trying all possible orientations we can retrieve the correct ones. More precisely, given a large enough set of

samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, the reconstruction of g(x, y) is realized by the following steps.
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Algorithm- Reconstruction of planar polygon using directional derivatives

1) Apply a distinct pair of finite differences D(1)
θ1

[·] and D(1)
θ2

[·] over the set of samples Sj,k and obtain a new

set of samples Rj,k = D(1)
θ2

[
D(1)

θ1
[Sj,k]

]
.

2) Check whether at least one isolated group of samples in Rj,k is segmented. If yes, then using the local

reconstruction scheme of (19) and (20), determine the amplitude ap and the position (xp, yp) of the Dirac,

and therefore, the corner point.

3) Reiterate from step 1 (with a new pair) until all N corner points are determined.

4) Using the recovered corner points and the successful pairs of orientations, reconstruct the polygon g(x, y).
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Fig. 5. Simulation result for the planar triangle g(x, y) with three corner points A, B, and C such that its sides AB, BC, and CA are

oriented at tan(θ1) = 2, tan(θ3) = −∞, and tan(θ2) = − 1
2

respectively: The original image of size 2500× 2500 pixels as given in part (a)

is filtered with the Haar kernel ϕxy(x, y) of size 100× 100, and a set of 25× 25 samples Sj,k is obtained as given in part (b). A set of new

samples Rj,k that isolates corner point A, using a pair of directional differences D(1)
θ1

[·] and D(1)
θ2

[·] along the sides AB and AC, is given in

part (c). Similarly, other two sets of differentiated samples Rj,k that isolate corner points B and C are given in parts (d) and (e) respectively.

Using the local reconstruction scheme of (19) and (20), the reconstructed corner points A, B, and C (marked with +) are given in part (a).

We conclude this section with a simple numerical example. Consider the case, where g(x, y) is a planar triangle

ABC with its sides AB, BC, and CA oriented along tan(θ1) = 2, tan(θ3) = −∞, and tan(θ2) = −1/2

respectively. The simulation results are shown in Figure 5. The original polygon g(x, y) is given in part (a). The set

of samples Sj,k obtained using the Haar kernel is given in part (b). The new set of samples Rj,k = D(1)
θ2

[
D(1)

θ1
[Sj,k]

]
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derived from Sj,k using a pair of finite differences D(1)
θ1

[·] and D(1)
θ2

[·] is given in part (c). Similarly, the sets of

samples Rj,k obtained by the differences D(1)
θ3

[
D(1)

θ1
[Sj,k]

]
and D(1)

θ3

[
D(1)

θ2
[Sj,k]

]
are given in parts (d) and (e)

respectively. The small isolated groups of samples in parts (c), (d), and (e) represent three 2-D Diracs that correspond

to the corner points A, B, and C respectively. These corner points are retrieved using the local reconstruction scheme

of (19) and (20) and are marked with + in Figure 5(a). The reconstruction of the corner points is exact to machine

precision. The computational cost of this local reconstruction algorithm is linear with the number N of corner

points, that is, of the order of O(N).

IV. COMPLEX-MOMENTS BASED APPROACH

In the previous section we have shown that planar polygons can be reconstructed locally if the corner points are

sufficiently apart. In this section, we present a global scheme which includes polygons with close corner points. In

particular, we show that bilevel and convex polygons, sets of Diracs, polygonal lines, and quadrature domains (e.g.

ellipses, and cardioids) are perfectly reconstructed from their samples using complex-moments and annihilating

filter method. Implicitly, we provide a sampling perspective to the ‘shape from moments method’ of [18], [20].

A. Background

The relationship between shapes and moments finds its application in many diverse fields such as computer

tomography, geophysical inversion, thermal imaging, and pattern recognition [19], [20], [24]. In fact, the general

formulation of recovering shapes from their moments is highly ill-posed problem [18], [20]. However, it has been

shown that certain classes of shapes such as binary polygons and quadrature domains are uniquely determined by

a finite number of moments [25], [18].

Formally, the geometric moments µα,β of order n = (α + β) of a 2-D function g(x, y) in the closure Ω ∈ R2

are defined as [24], [26]

µα,β =
∫ ∫

Ω

g(x, y)xα yβ dx dy, (21)

where α, β ∈ {0, 1, . . . , n}. Similarly, the complex-moments τα,β of order n = (α + β) of g(x, y) are defined

as [27]

τα,β =
∫ ∫

Ω

g(x, y) (x + iy)α (x− iy)β dx dy, (22)

where i =
√
−1. Sometimes, it is convenient to use simple complex-moment τn of order n = (α + β) as given

by [19]

τn =
∫ ∫

Ω

g(x, y) (x + iy)n dx dy. (23)
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Note that the binomial expansion of (x + iy)n in (23) facilitates to retrieve an nth order complex-moment τn from

the nth order geometric moments µα,β using:

τn =
n∑

β=0

(
n

β

)
iβ µα,β , with α = n− β. (24)

Now assume that we observe a sampled version of g(x, y), that is, we observe samples Sj,k =

〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, where the kernel ϕxy(x, y) can reproduce polynomials along x and y directions.

By using polynomial reproduction property of ϕxy(x, y), we can show that it is possible to retrieve the moments

µα,β of g(x, y) from its samples Sj,k accurately. In fact, we have that

µα,β =
∫ ∫

Ω

g(x, y)xα yβ dx dy

(a)
=

∫ ∫
Ω

g(x, y)
∑

j

∑
k

Cα,β
j,k ϕxy(x− j, y − k) dx dy

=
∑

j

∑
k

Cα,β
j,k

∫ ∫
Ω

g(x, y) ϕxy(x− j, y − k) dx dy

(b)
=

∑
j

∑
k

Cα,β
j,k Sj,k, (25)

where the equalities (a) and (b) are obtained from (5) and (4) respectively.

This result is at the heart of our sampling schemes. With the ‘sample-moment’ connection (25) at our disposal,

we now begin with the global reconstruction of bilevel polygons.

B. Bilevel Polygons

Let g(x, y) be a bilevel, simply connected, and non-degenerate polygon with N corner points (vertices) zl, l =

1, 2, . . . , N in the complex plane z = x + iy. For such a polygon, Davis’s theorem [25] states that∫ ∫
Ω

g(x, y) h(2)(z) dx dy =
N∑

l=1

ρlh(zl), (26)

where h(z) is an analytic function in a closure Ω, h(2)(z) is the second order derivative of h(z), and ρl are complex

coefficients.

In [19], Milanfar et al. re-examined Davis’s work (26) and employed a specific analytic function h(z) = zn.

Assuming that the corner points zl (with z∗l as their complex conjugates) are arranged in counter-clockwise direction

in order of increasing index and satisfy the modulo operation zl = zl+N , it was shown that the complex coefficients

ρl are given by [19]:

ρl =
i

2

(
z∗l−1 − z∗l
zl−1 − zl

−
z∗l − z∗l+1

zl − zl+1

)
, l = 1, 2, . . . , N,
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and that

N∑
l=1

ρl zn
l =

∫ ∫
Ω

g(x, y) h(2)(z) dx dy

=
∫ ∫

Ω

g(x, y)(zn)(2) dx dy

= n(n− 1)
∫ ∫

Ω

g(x, y)(x + iy)n−2 dx dy

= τ̂n ∀n ≥ 2, (27)

where τ̂n is the complex-moment with weight n(n− 1), and is related to the simple complex-moment τn of (23)

by τ̂n = n(n− 1)τn−2. Note that τ̂0 = τ̂1 = 0 by definition.

From equation (27), it is clear that the weighted complex-moments τ̂n are the linear combinations of exponentials

zn
l . Therefore, the annihilating filter method, described in Section II-D, can be employed to retrieve the N corner

points zl of g(x, y) from the 2N complex-moments τ̂n, n = 0, 1, . . . 2N−1. Moreover, if the bilevel polygon g(x, y)

is convex, it can be uniquely reconstructed from the retrieved corner points zl [19]. Note that the relationship among

the weighted complex-moments τ̂n, simplex complex-moments τn, and the geometric moments µα,β facilitates to

obtain the weighted complex-moments τ̂n up to order 2N − 1 from the geometric moments µα,β of order 2N − 3.

Let us now return to the sampling setup of Figure 1, where g(x, y) is a bilevel and convex polygon with N

corner points zl = (xl + iyl), l = 1, 2, . . . , N . Clearly, the rate of innovation of g(x, y) is 2N . Assume that we

observe samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 produced by the kernel ϕxy(x, y) that can reproduce

polynomials up to degree 2N − 3 along x and y directions. The polynomial reproduction property of ϕxy(x, y)

allows us to obtain the moments µα,β of g(x, y) from its samples Sj,k. Therefore, by a suitable adaption of (25)

and (24) in the formulation of (27), we can obtain the complex-moments τ̂n, n = 2, 3, . . . , 2N − 1 of g(x, y)

from the samples Sj,k. More precisely, the geometric moments µα,β are given by: µα,β =
∑

j

∑
k Cα,β

j,k Sj,k

with α, β ∈ {0, 1, . . . , 2N − 3} (see eq. (25)). The knowledge of µα,β then allows us to retrieve the complex-

moments τn using (24). Finally, the weighted complex-moments τ̂n of (27) are given by τ̂n = n(n− 1)τn−2 with

n = 2, 3, . . . , 2N − 1 and τ̂0 = τ̂1 = 0.

By using 2N complex-moments τ̂n in the annihilating filter method, we design a filter A[n] such that the

convolution τ̂n ∗A[n] = 0. The N complex roots of the annihilating filter A(z) provide positions (in x + iy form)

of the N corner points of the polygon g(x, y). Assumption of convexity and bilevelness1 guarantees a uniqueness

1If the convex polygon is large enough such that there is at least one sample enclosed within the polygonal boundary then we can reconstruct

its amplitude as well.
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of polygonal reconstruction. Consequently, it follows that

Proposition 3: A bilevel and convex polygon g(x, y) with N corner points is uniquely determined from its

samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 provided that the sampling kernel ϕxy(x, y) can reproduce

polynomials up to degree 2N − 3 along both the Cartesian axes x and y.

500 1000 1500 2000 2500 3000 3500

500

1000

1500

2000

2500

3000

3500

(a)

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

(b)

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

(c)

500 1000 1500 2000 2500 3000 3500

500

1000

1500

2000

2500

3000

3500

(d)

Fig. 6. Simulation: (a) The original image g(x, y) consists of three bilevel polygons: triangle, rectangle, and pentagon. (b) The set of samples

Sj,k produced by the inner product between g(x, y) and a B-Spline sampling kernel β7
xy(x, y) that can reproduce polynomials up to degree

seven. (c) Sampled version of the pentagon. (d) Original pentagon and five reconstructed corner points (marked with +).

Simulation result, for a simple scenario, is shown in Figure 6. Figure 6(a) shows a bilevel image g(x, y) that

consists of three polygons: triangle, rectangle, and pentagon. Assume that the polygons are enough apart such that

in the sampled version of g(x, y) as shown in part (b), they do not overlap. From these samples, by computing

sufficient complex-moments τ̂n, we can retrieve the exact locations of the corner points for each polygonal shape

individually. For instance, a set of samples around the pentagon is given in part (c). The reconstructed corner

points of the pentagon are indicated with + in part (d) and the reconstruction is exact to machine precision. The

computational cost of this global reconstruction is influenced by the cost of root finding and is of the order of

O(N3) where N is the number of corner points.
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C. Diracs, Polygonal Lines, and Quadrature Domains

Together with bilevel polygons there are other 2-D signals that are uniquely determined by a finite number of

moments. We now investigate sampling of such signals.

Diracs: Assume g(x, y) is a set of N 2-D Diracs in the closure Ω, that is g(x, y) =
∑N

l=1 alδxy(x− xl, y− yl),

where al denotes amplitudes and zl = xl + iyl denotes positions. Clearly, g(x, y) is not regular in Ω, therefore we

cannot apply Davis’s theorem. However, it is possible to compute the simple complex-moments τn of g(x, y) as

given by

τn =
∫ ∫

Ω

g(x, y) (x + iy)n dx dy

=
∫ ∫

Ω

N∑
l=1

alδxy(x− xl, y − yl)(x + iy)n dx dy

=
N∑

l=1

al zn
l , where zl = xl + iyl. (28)

The amplitudes al and positions zl of the Diracs are accurately retrieved from 2N complex-moments τn, n =

0, 1, . . . , 2N − 1 using the annihilating filter method.

Since we have access to g(x, y) in form of its samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, the moments

τn of Diracs are obtained from their samples Sj,k using (24) and (25), where α, β ∈ {0, 1, . . . , 2N − 1}. Thus,

Proposition 3 can be extend for the set of N 2-D Diracs provided that the kernel ϕxy(x, y) can reproduce polynomials

up to degree 2N − 1 alon both the coordinate axis x and y.

Polygonal lines: Now consider g(z) = g(x, y) to be a set of N unit amplitude polygonal lines representing the

boundary dΩ of the convex polygonal closure Ω. The closed set of polygonal lines g(z) join the corner points

zl, l = 1, 2, . . . , N in counter-clockwise direction such that zl = zl+N , and is regular over dΩ. Consider an analytic

function h(z) in the closure Ω such that Green’s theorem with the help of Cauchy-Riemann equations satisfies [25]∫ ∫
Ω

g∗(z)h(1)(z) dx dy =
i

2

∫
dΩ

g∗(z)h(z) dz∗, dz∗ = dx− idy, (29)

where g∗(z) = g(z) = 1 for the set of unit amplitude polygonal lines.

Furthermore, the equation of an arbitrary line PQ joining two points P (z1) and Q(z2) in the complex Cartesian

plane (z = x + iy) is given by [25]

z∗ =
(

z∗1 − z∗2
z1 − z2

)
z +

(
z1z

∗
2 − z2z

∗
1

z1 − z2

)
= Mz + B, (30)
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where z∗ is the complex conjugate of z, M = z∗1−z∗2
z1−z2

is a slope, and B = z1z∗2−z2z∗1
z1−z2

is a shift.

From (30), it follows that

dz∗ = Mdz. (31)

Now by employing h(z) = zn, n ∈ N in (29) and using (30), (31), we have

i

2

[
N∑

l=1

Ml

∫ zl+1

zl

zn dz

]
=

i

2

∫
dΩ

g∗(z)h(z) dz∗

=
∫ ∫

Ω

g(z)h(1)(z) dx dy

= n

∫ ∫
Ω

g(x, y) (x + iy)n−1 dx dy

= τ̂n, n ≥ 1, (32)

where τ̂n is a complex-moment with weight n, and in this case it is related to τn by τ̂n = nτn−1 with τ̂0 = 0. The

coefficient Ml denotes the slope of the polygonal line joining corner points zl and zl+1.

The left-hand side of (32) reveals that the moments τ̂n are in form of linear combinations of the powers of

zl. Therefore, the annihilating filter method can retrieve the N corner points zl using 2N complex moments

τ̂n, n = 0, 1, . . . , 2N − 1. Recall that the moments τ̂n = nτn−1 of g(x, y) are computed from its samples Sj,k

using (24) and (25) with α, β ∈ {0, 1, . . . , 2N − 2}. Hence, Proposition 3 can be extend for the convex set of N

polygonal lines g(x, y) provided that the kernel ϕxy(x, y) can reproduce polynomials up to degree 2N − 2 along

x and y.

Quadrature domains: Finally, we consider a class of bounded planar domains in the complex plane z = x+ iy.

A quadrature domain Ω is a planar domain that has real algebraic boundary determined by a polynomial equation:

Ω = {z ∈ C;P (z, z∗) < 0}, where P (z, z∗) is a polynomial of degree less than or equal to N in each variable, and

N denotes the order of the quadrature domain [18]. The examples of quadrature domains are circles and ellipses

(with N = 1), and cardioids and lemniscates (with N = 2). For a complete treatment on quadrature domains, we

refer to [28], [29].

In particular, consider the quadrature domain g(x, y) ⊂ Ω whose boundary is expressed by the algebraic equation

P (x, y) = P (z, z∗) = 0, with x =
z + z∗

2
, y =

z − z∗

2i
. (33)

In [18], it was shown that the domain g(x, y) satisfying (33) can be uniquely reconstructed from its finite complex-

moments τα,β , α, β ≤ N as defined in (22), where N is the order of the domain g(x, y). In fact, the reconstruction

involves complex mapping (i.e. exponential transformation) of the moments τα,β , α, β ≤ N to derive an annihilating
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filter A[l], l = 0, 1, . . . , N such that its coefficients produce a polynomial

p(z) = A[0]zN + A[1]zN−1 + . . . + A[N ]z0. (34)

The polynomial manipulations of p(z) give the expression P (z, z∗) = 0 that characterizes a given quadrature

domain g(x, y). Moreover, any bounded planar domain can be approximated by a sequence of quadrature domains,

and therefore can be approximated by a finite number of moments [18].

Since it is possible to obtain the moments of g(x, y) from its samples Sj,k, Proposition 3 can be extended for

the quadrature domain of order N provided that the kernel can reproduce polynomials up to degree N along x and

y directions.

V. TOMOGRAPHIC APPROACH

Before we present the last approach, we would like to mention that there are many interesting papers in computed

tomography (CT) that exploit Radon transform for parametric and nonparametric estimation of multidimensional

shapes and contours from noisy tomographic data (e.g. [19], [30], [31]). In particular, the approach of [30] considers

estimation of polygonal and polyhedral corner points in Bayesian framework, where as the focus of [31] is on

information-theoretic issues in nonparametric boundary estimation.

In this section, we concentrate on sampling and perfect reconstruction of multidimensional FRI signals using the link

between Radon transform projections and moments [19]. In particular, we show that, in addition to polygons and

Diracs, it is possible to reconstruct more general FRI signals such as 2-D polynomials with polygonal boundaries

from their samples. The key feature of the proposed scheme is an annihilating-filter-based-back-projection (AFBP)

algorithm.

A. 2-D Polynomials with Polygonal Boundaries

Radon transform: Let g(x, y) be a 2-D square-integrable function within a compact region Ω over the Euclidean

space R2. Then, the conventional Radon transform projection of g(x, y) is defined as [32] (see Figure 7(b)):

Rg(t, θ) =
∫ ∫

Ω

g(x, y) δ (t− x cos(θ)− y sin(θ)) dx dy, (35)

where the projection angle θ ∈ [0, π), and lt,θ = δ (t− x cos(θ)− y sin(θ)) is a straight line of integration at an

angle θ + π
2 with the x-axis and at a radial distance t away from the origin. The projections Rg(t, θ) are square

integrable 1-D functions with finite support. The original function g(x, y) can again be reconstructed from its

projections Rg(t, θ) using filtered back-projection (FBP) reconstruction [32].
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AFBP Algorithm: Consider a specific case, where g(x, y) is a 2-D polynomial of total degree R − 1 inside a

convex polygonal closure Ω with N corner points. To be more precise, g(x, y) =
∑R−1

j=0

∑j
k=0 bj,k xkyj−k [33],

[34]. In this case, we observe that

(a) Each projection Rg(t, θ) is a 1-D piecewise polynomial of maximum degree R and with at most N

discontinuities. Therefore, the (R + 1)-order derivative of such projection leads to a stream of at most

N differentiated Diracs d
(R+1)
t [Rg(t, θ)] = dR+1

dtR+1 [Rg(t, θ)] =
∑N−1

i=0

∑R
r=0 ai,rδ

(r)(t − ti), where ti

are locations and ai,r are weights. It means that d
(R+1)
t [Rg(t, θ)] represents at most N Diracs with

N̂ = N(R + 1) weights [12], [4]. A simple illustration of this scenario is given in Figure 7.
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Fig. 7. AFBP reconstruction: The polynomial g(x, y) of degree R − 1 = 0 inside a convex polygon with N = 5 corner points (i.e. bilevel

pentagon) is shown in part (a). The Radon transform projection Rg(t, θ) along an angle θ = 0 is shown in part (b). Note that Rg(ti, θ) is a

single-valued line-integral at an arbitrary t = ti within the support of Rg(t, θ). Since this projection Rg(t, θ) is a piecewise polynomial of

degree R = 1, the R + 1 = 2-nd order derivative can decompose it in a stream of differentiated Diracs d
(2)
t [Rg(t, θ)] as shown in part (d).

In this case d
(2)
t [Rg(t, θ)] represents N Diracs with N̂ = N weights.

(b) Moreover, following the connection between Radon projections and moments [19], the moments µn, n ∈ N
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of the differentiated Diracs d
(R+1)
t [Rg(t, θ)] are obtained by

µn =
∫

d
(R+1)
t [Rg(t, θ)] tn dt

=
∫ ∫

Ω

d
(R+1)
θ [g(x, y)] (x cos(θ) + y sin(θ))n

dx dy

=
n∑

β=0

(
n

β

)
cosα(θ) sinβ(θ) µα,β , with α = n− β, (36)

where µα,β =
∫ ∫

Ω
dR+1

dθR+1 [g(x, y)] xαyβ dxdy are the geometric moments of the polynomial g(x, y)

differentiated R + 1 times along the direction of θ.

(c) Since the projection d
(R+1)
t [Rg(t, θ)] consists of at most N Diracs with N̂ = N(R + 1) weights, the

2N̂ = 2N(R + 1) moments µn, n = 0, 1, . . . , 2N(R + 1) − 1 are sufficient to retrieve the locations ti

and weights ai,r of the Diracs d
(R+1)
t [Rg(t, θ)] (and therefore the piecewise polynomial signal Rg(t, θ)

itself) using annihilating filter method [12], [4].

(d) By iterating the steps (a), (b), and (c) over N +1 distinct projection angles θl, l = 0, 1, . . . , N , it is possible

to retrieve the N + 1 sets of Dirac locations ti. By back-projecting the N + 1 sets of Dirac locations ti,

the N corner points of the convex closure Ω are uniquely determined, and therefore, the closure of g(x, y)

itself [11], [35].

(e) From the knowledge of closure Ω and Radon projection Rg(t, θ), we have access to the single-valued

line-integral Rg(ti, θ) for an arbitrary t = ti within the support of Rg(t, θ) (see Figure 7(b)). In fact,

Rg(ti, θ) =
∫

lti,θ
g(x, y) dl =

∫
lti,θ

(∑R−1
j=0

∑j
k=0 bj,k xkyj−k

)
dl is an equation with R̂ = R(R + 1)/2

unknown coefficients bj,k. Clearly, the coefficients bj,k can be determined by solving a system of R̂

such equations (i.e. a generalized Vandemonde system). Fortunately, the theory of bivariate polynomial

interpolation [33], [34] assures a unique solution if at least R distinct projections Rg(t, θ) are known.2

Since N + 1 projections are required for recovering the closure Ω, and R projections are required for

determining the coefficients bj,k, we are sure that max(N +1, R) projections are sufficient for the unique

reconstruction of g(x, y).

To summarize, if g(x, y) is a 2-D polynomial of degree R− 1 inside a convex polygonal closure Ω with N corner

points, then from the moments µn we can retrieve the projection Rg(t, θ) and from max(N +1, R) such projections

we can retrieve the polygonal closure Ω first and the coefficients bj,k next. Notice that the crucial part of above

2 In fact, R projections Rg(t, θ) are exploited to obtain R̂ = R(R + 1)/2 line-integrals Rg(ti, θ) using arithmetic progression [33]. It is

straightforward to obtain a unique (but suboptimal) solution by directly using R̂ distinct projections Rg(t, θ) [36].

DRAFT November 27, 2006



SHUKLA AND DRAGOTTI: SAMPLING SCHEMES FOR MULTIDIMENSIONAL SIGNALS WITH FINITE RATE OF INNOVATION 23

reconstruction is the recovery of corner points. Since the retrieval of corner points is based on annihilating filter, we

denote the proposed reconstruction as: annihilating filter based back projection (AFBP) algorithm. Equipped with

the Radon-moment connection (36) and AFBP algorithm, we now show that the 2-D polynomials with polygonal

boundaries can be uniquely reconstructed from their samples. Similar results can be obtained for other 2-D FRI

signals such as sets of 2-D Diracs, and bilevel-convex polygons.

Sampling: Assume that g(x, y) =
∑R−1

j=0

∑j
k=0 bj,k xkyj−k is a 2-D polynomial of degree R − 1 with at most

R̂ coefficients bj,k inside the convex polygonal closure Ω with N corner points. We observe the samples Sj,k

of g(x, y) given by Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, where ϕxy(x, y) is the sampling kernel that can

reproduce polynomials up to degree n along x and y directions.

Recall that in order to retrieve the corner points of the closure Ω, we need to compute the moments µn of the

differentiated projections d
(R+1)
t [Rg(t, θ)] from the moments µα,β of the differentiated polynomial d

(R+1)
θ [g(x, y)]

as given in (36). Nevertheless, from lattice theory, it is possible to show that there exists a direction vector ~v =

[vx, vy] along a chosen projection angle θ = tan−1( vy

vx
), vx, vy ∈ Z such that the discrete domain directional

differences D(R+1)
θ [Sj,k] and the continuous domain directional derivatives d

(R+1)
θ [g(x, y)] are related by (see

Appendix-I):

Rj,k = D(R+1)
θ [Sj,k] =

〈
d
(R+1)
θ [g(x, y)] , ζθ(x/Tx − j, y/Ty − k)

〉
. (37)

The new set of samples Rj,k = D(R+1)
θ [Sj,k], obtained by the (R + 1)-order directional differences on the

set of samples Sj,k, is equivalent to one produced by the inner products between the differentiated polynomial

d
(R+1)
θ [g(x, y)] and the modified (directional) kernel ζθ(x, y). The kernel ζθ(x, y) is produced by R+1 successive

convolutions of zero-th order 1-D B-spline β0
θ (x, y) with the original sampling kernel ϕxy(x, y) in the direction of

~v. More precisely, ζθ(x, y) = |v|(R+1)
(
ϕxy(x, y) ∗ βR

θ (x, y)
)
.

It is important to note that the directional kernel also satisfies the polynomial reproduction property of (5). In

particular, if the sampling kernel ϕxy(x, y) can reproduce polynomials up to degree n along x and y, then the

directional kernel ζθ(x, y) can reproduce polynomials up to degree n + R + 1 along θ.

In the light of link (37), equations (36) and (25) enable us to obtain the moments µn of the projection

d
(R+1)
t [Rg(t, θ)] using linear combinations of samples Rj,k and coefficients Cα,β

j,k as given by

µn =
n∑

β=0

(
n

β

)
cosα(θ) sinβ(θ)

∑
j

∑
k

Rj,k Cα,β
j,k

 , with α = n− β, (38)

where Cα,β
j,k are the coefficients associated with the kernel ζθ(x, y).

Since d
(R+1)
t [Rg(t, θ)] consists of at most N Diracs with N̂ = N(R + 1) weights, the directional kernel ζθ(x, y)
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must allow us to retrieve 2N̂ = 2N(R + 1) moments µn, n = 0, 1, . . . , 2N(R + 1)− 1, and thus it follows that

n + R + 1 ≥ 2N(R + 1)− 1 ⇒ n ≥ (2N − 1)(R + 1)− 1. (39)

Therefore, a sampling kernel ϕxy(x, y) that reproduces polynomial of degree n (with n satisfying (39)) allows

us to obtain the 2N(R + 1) moments of each of max(N + 1, R) differentiated projections d
(R+1)
t [Rg(t, θl)] , l =

0, 1, . . . ,max(N +1, R)−1 from the samples Rj,k = D(R+1)
θl

[Sj,k] using (38). Then following the steps (c) and (d)

of the AFBP algorithm, we retrieve the convex polygonal closure Ω of g(x, y). Finally, from step (e), we determine

the coefficients bj,k of the polynomial of degree R− 1 inside Ω, and thus the 2-D polynomial signal g(x, y) itself.

In summary, we have:

Proposition 4: Assume that g(x, y) is a 2-D polynomial of total degree R− 1 inside a convex polygonal closure

Ω with N corner points. A set of samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 is sufficient to determine

g(x, y) exactly, if the sampling kernel ϕxy(x, y) can reproduce polynomials at least up to degree (2N−1)(R+1)−1

along both the coordinate axes x and y.

For the sake of completeness, we now show with a pseudo-algorithm how the reconstruction scheme operates.

Given a valid set of samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉, the reconstruction of 2-D polynomial

g(x, y) =
∑R−1

j=0

∑j
k=0 bj,k xkyj−k of degree R − 1 inside the convex polygonal closure Ω with N corner points

follows the following steps:

Algorithm: AFBP reconstruction of 2-D polynomial signal from its samples

1) For a chosen angle θ = tan−1( vy

vx
), vx, vy ∈ Z, compute the difference Rj,k = D(R+1)

θ [Sj,k] given by (37).

2) Using (38), compute the first 2N(R + 1) moments µn, n = 0, 1, . . . , 2N(R + 1) − 1 of the projection

d
(R+1)
t [Rg(t, θ)] from the new set of samples Rj,k [recall step (b) of the AFBP algorithm].

3) From moments µn, using annihilating filter method, obtain the exact locations ti, i = 1, 2, . . . , N of the N

Diracs of d
(R+1)
t [Rg(t, θ)], and thus, the projection Rg(t, θ) itself [step (c)].

4) Iterate steps 1, 2, and 3 for N + 1 distinct projection angles θl, l = 0, 1, . . . , N , and then by back-projecting

N + 1 sets of dirac locations ti, retrieve the convex polygonal closure Ω of g(x, y) [step (d)].

5) From the knowledge of the closure Ω and Radon projections Rg(t, θl), l = 0, 1, . . . , R − 1, determine the

coefficients bj,k of the polynomial g(x, y) by solving a system of R̂ linear equations [step (e)].

6) Since the closure Ω and the coefficients bj,k are known, it is easy to reconstruct the 2-D polynomial g(x, y).

A simple simulation result is shown in Figure 8. In this case, g(x, y) is a 2-D polynomial of degree R −

1 = 0 (i.e g(x, y) = b0,0) inside a convex polygonal closure Ω with N = 3 corner points. In part (a), the
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original polynomial g(x, y) is shown with the reconstructed corner points (marked with +). The samples Sj,k =

〈g(x, y), ϕxy(x/Tx − j, y/Ty − k)〉 are shown in part (b), where ϕxy(x, y) is a B-spline sampling kernel that can

reproduce polynomials up to degree n = (2N − 1)(R + 1) − 1 = 9 along x and y directions, and therefore, the

associated directional kernels ζθl
(x, y) can reproduce polynomials up to degree n+R+1 = 11 along θl. The sets of

differentiated samples Rj,k = D2
θl

[Sj,k] along four distinct angles θ0 = 0, θ1 = π
4 , θ2 = tan−1(2) and θ3 = π

2 are

shown in parts (c), (d), (e), and (f). The AFBP reconstruction of the corner points (marked with ◦) using N +1 = 4

back-projections is shown in part (g), and is exact to machine precision. These corner points can uniquely recover

the convex closure Ω. Form the knowledge of Ω and any one projection Rg(t, θl), we can uniquely retrieve the

coefficient b0,0, and thus the polynomial g(x, y) itself.

In this case, the benefit of reconstructing more general signals comes with the price of higher computational

cost. For instance, for a 2-D polynomial of degree R − 1 = 0 inside a convex polygon with N corner points, the

computational cost is of the order of O(N4). This is due to the fact that the cost of finding the roots of each Radon

projection is O(N3) and we need O(N) projections to reconstruct the polynomial.
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Fig. 8. Simulation: The original planar triangle g(x, y), and the reconstructed corner points A, B, and C (marked with +) are given in part (a).

The set of samples Sj,k produced by the B-spline sampling kernel β9
xy is given in part (b). The N + 1 = 4 sets of differentiate samples

Rj,k = D
(2)
θ [Sj,k] along four angles θ = 0, π

4
, tan−1(2), and π

2
are given in parts (c), (d), (e), and (f). The AFBP reconstruction of the

corner points A, B, and C is illustrated in part (g).
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VI. CONCLUSION

In this paper, we have presented various schemes for sampling and perfect reconstruction of multidimensional

FRI signals using kernels that reproduce polynomials. In particular, we offer local and global reconstruction methods

with varying complexities as summarized in Table I. The issues of model mismatch and noise effects are beyond

the scope of this paper but are still open for further investigation.

TABLE I

COMPARATIVE SUMMARY

Approach Signals Merits Computational

cost

Limitations

Directional

derivatives

(Local)

Planar polygons. Local

reconstruction,

local

complexity.

O(N) for polygon

with N corner

points.

Finite orientations

of polygonal sides,

i.e. tan(θ) ∈ Q.

Complex-moments

(Global)

Convex and bilevel

polygons, Quadrature

domains (e.g. ellipses,

cardioids), Polygonal

lines, and 2-D Diracs.

Reconstruction

of corner

points with any

coordinates.

O(N3) for

bilevel-convex

polygon with N

corner points.

Numerically unstable

for closely spaced

corner points.

Tomographic

(Global)

2-D polynomials with

polygonal boundaries,

n-D Diracs, and

n-D bilevel-convex

polytopes.

Multidimensional. O(N4) for 2-D

polynomial of

degree R − 1 = 0

inside convex

polygon with N

corner points.

Numerical

instability in

computation of

higher order moments

with directional

kernels.

In Section III, we described a directional derivatives based local approach for reconstruction of planar polygons

from their samples using lower order kernels that satisfy partition of unity. This scheme has a local complexity

irrespective of the number of corner points in a given polygon. In Section IV, we presented a complex-moments

based global reconstruction scheme for convex and bilevel polygons, and extended it for quadrature domains that are

capable of approximating arbitrary planar shapes with closed boundaries. Finally, we presented a Radon transform

based scheme for sampling more general FRI signals such as 2-D polynomials with polygonal boundaries in

Section V. Since the Radon transform is multidimensional, it is straightforward to extend the AFBP algorithm for

sampling bilevel-convex polytopes and Diracs in higher dimensions (i.e. in 3-D and above).

The proposed schemes may find their applications in vectored graphics, computer animations, and machine vision.

In fact, the proposed schemes have been promisingly explored for super-resolution algorithms [5] and distributed
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compression [6]. Finally, the use of the corner reconstruction algorithm for super-resolution photogrammetry is

under investigation.
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APPENDIX I

CONNECTION BETWEEN DIRECTIONAL DIFFERENCES AND DERIVATIVES: EQUATION (18)

Consider the set of samples Sj,k = 〈g(x, y), ϕxy(x/Tx − j, y/Ty − k〉 of a planar polygon g(x, y), where

ϕxy(x, y) is the sampling kernel, and let the sampling intervals Tx = Ty = 1. Now apply a pair of finite differences

D(1)
θ1

[·] and D(1)
θ2

[·] on samples Sj,k, first along the lattice direction ~v1 and then along ~v2 to obtain the new set of

samples Rj,k given by

Rj,k = D(1)
θ2

[
D(1)

θ1
[Sj,k]

]
=

{
S(j+v2,1+v1,1),(k+v2,2+v1,2) − S(j+v2,1),(k+v2,2)

}
−

{
S(j+v1,1),(k+v1,2) − Sj,k

}
=

〈
g(x, y),

{
ϕxy

(
x− (j + v2,1 + v1,1), y − (k + v2,2 + v1,2)

)
− ϕxy

(
x− (j + v2,1), y − (k + v2,2)

)}
−{

ϕxy

(
x− (j + v1,1), y − (k + v1,2)

)
− ϕxy

(
x− j, y − k

)}〉
.

Using Parseval’s identity, it follows that

Rj,k =
1

4π2

〈
ĝ(ωx, ωy), ϕ̂xy(ωx, ωy) · e−i(jωx+kωy) ·

({
e−i

(
(v2,1+v1,1)ωx+(v2,2+v1,2)ωy

)
− e−i

(
v2,1ωx+v2,2ωy

)}
−{

e−i
(
v1,1ωx+v1,2ωy

)
− 1

})〉
=

1
4π2

〈
ĝ(ωx, ωy), ϕ̂xy(ωx, ωy) · e−i(jωx+kωy) ·

(
e−i

(
v1,1ωx+v1,2ωy

)
− 1

)
·
(
e−i

(
v2,1ωx+v2,2ωy

)
− 1

)〉
,

where i =
√
−1, and ĝ(ωx, ωy) and ϕ̂xy(ωx, ωy) are the 2-D Fourier transforms of g(x, y) and ϕxy(x, y)

respectively. After multiplying and dividing by the same factors, we have that

Rj,k =
1

4π2

〈
ĝ(ωx, ωy), ϕ̂xy(ωx, ωy) · e−i(jωx+kωy) ·

(
i
(
v1,1ωx + v1,2ωy

))
·
(
i
(
v2,1ωx + v2,2ωy

))
·

(
e−i

(
v1,1ωx+v1,2ωy

)
− 1

)(
e−i

(
v2,1ωx+v2,2ωy

)
− 1

)
(
i
(
v1,1ωx + v1,2ωy

))(
i
(
v2,1ωx + v2,2ωy

))
〉

. (40)

Now recall that β̂0(ω) = 1−e−iωt

iω is a frequency domain representation of the zero-th order 1-D B-spline β0(t).

This representation can be extended for 1-D directional B-spline in 2-D plane as given by

β̂0
θ1

(ωx, ωy) =

(
1− e−i(v1,1ωx+v1,2ωy)

)
i(v1,1ωx + v1,2ωy)

, β̂0
θ2

(ωx, ωy) =

(
1− e−i(v2,1ωx+v2,2ωy)

)
i(v2,1ωx + v2,2ωy)

, (41)
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where β̂0
θ1

and β̂0
θ2

are the 1-D B-splines of order zero in 2-D plane along orientations θ1 = tan−1
( v1,2

v1,1

)
and

θ2 = tan−1
( v2,2

v2,1

)
respectively. For simplicity, let

ξ̂θ1,θ2(ωx, ωy) = ϕ̂xy(ωx, ωy) β̂0
θ1

(ωx, ωy) β̂0
θ2

(ωx, ωy). (42)

Replacing (41) and (42) in the formulation of (40), and then multiplying and dividing by a factor |v1||v2|, we

have

Rj,k =
|v1||v2|

4π2

〈
ĝ(ωx, ωy), ξ̂θ1,θ2(ωx, ωy) · e−i(jωx+kωy) ·

{
(iωx)2

v1,1 v2,1

|v1||v2|
+ (iωx)(iωy)

(v1,1 v2,2 + v1,2 v2,1)
|v1||v2|

+ (iωy)2
v1,2 v2,2

|v1||v2|

}〉
.

Using the identities v1,1 = |v1| cos(θ1), v1,2 = |v1| sin(θ1), v2,1 = |v2| cos(θ2), v2,2 = |v2| sin(θ2), |det(VΛ)| =

|v1,1 v2,2 − v1,2 v2,1|, and |v1||v2| = |det(VΛ)|
| sin(θ2−θ1)| in the righthand side of the above equation, we have

Rj,k =
|det(VΛ)|

4π2| sin(θ2 − θ1)|

〈
ĝ(ωx, ωy), ξ̂θ1,θ2(ωx, ωy) · e−i(jωx+kωy) ·

{
(iωx)2 cos(θ1) cos(θ2) + (iωx)(jωy) sin(θ1 + θ2) + (iωy)2 sin(θ1) sin(θ2)

}〉
.

Using Parseval’s identity, we have

Rj,k =
|det(VΛ)|

| sin(θ2 − θ1)|

〈
g(x, y),

{
cos(θ1) cos(θ2)

∂2

∂x2

(
ξθ1,θ2(x− j, y − k)

)
+

sin(θ1 + θ2)
∂

∂y

( ∂

∂x

(
ξθ1,θ2(x− j, y − k)

))
+ sin(θ1) sin(θ2)

∂2

∂y2

(
ξθ1,θ2(x− j, y − k)

)}〉
.

Comparing the righthand side of the above equation with the continuous directional derivative model given in

equation (17), it follows that

Rj,k

|det(VΛ)|
=

1
| sin(θ2 − θ1)|

〈
g(x, y),

∂

∂θ2

( ∂

∂θ1

(
ξθ1,θ2(x− j, y − k)

))〉

(a)
=

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
,

1
| sin(θ2 − θ1)|

ξθ1,θ2(x− j, y − k)

〉

=

〈
∂

∂θ2

( ∂

∂θ1

(
g(x, y)

))
, ζθ1,θ2(x− j, y − k)

〉
, (43)

where equality (a) is obtained using integration by parts, and ζθ1,θ2(x, y) = ξθ1,θ2 (x,y)

| sin(θ2−θ1)| =(
ϕxy(x,y)∗β0

θ1
(x,y)

)
∗β0

θ2
(x,y)

| sin(θ2−θ1)| is the modified directional kernel.
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