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ABSTRACT

Techniques based on sparse and redundant representations are
at the heart of many state of the art denoising and deconvo-
lution algorithms. A very sparse representation of piecewise
polynomial images can be obtained by using a quadtree de-
composition to adaptively select a basis. We have recently
exploited this to restore images of this form, however the
same model can also provide very good sparse approxima-
tions of real world images. In this paper we take advantage of
this to develop both image denoising and deconvolution algo-
rithms suitable for real world images. We present results on
the cameraman image showing comparable performance with
soft thresholding using the undecimated wavelet transform in
the denoising case and iterative soft thresholding using the
undecimated wavelet transform in the deconvolution case.

Index Terms— Image restoration, piecewise polynomial
approximation, quadtrees, sparse matrices.

1. INTRODUCTION

Image restoration is a classic well studied problem that has
many practical applications. It is common to assume the fol-
lowing degradation model,

y=Hz+e, ey

where y is the noisy blurred image, H is the matrix represent-
ing the convolution, z is the desired image and e is additive
Gaussian white noise.

As sparsity is not normally present in the image domain
directly but in the transform domain, let us first define a lin-
ear transformation z = D§. D is the matrix reconstructing
the image from the transform coefficients 6. The columns of
D are the basis functions of the approximation space and D
can thus be thought of as a dictionary of basis functions. It
is expected that the coefficients vector 6 will be sparse. To
impose this we will usually assume that the probability den-
sity function (pdf) of 6 is p(#) = Kexp [—A[|0][5] (The K
is just a constant to ensure that the function is in fact a valid
pdf). Using this assumption the maximum a posteriori (MAP)

estimator of x is given by:
T = Dé, where

0 = argmaxp(0|H, D, y)

L p(y|H, D, 0)p(6)

= argmaxlin
0 p(y)
= argmin |y — HDY|3 + A|0][7. )

The p(y|H, D, 0) is known from the assumption of the struc-
ture of the noise e. The first term of (2) is the data misfit
term and the second term imposes sparsity. The choice of A
controls the importance of the two terms and p defines how
to enforce sparsity. When p = 0 the norm is defined as the
number of non zero coefficients of #: mathematically this is
not a norm however it does truly impose the sparsest solution.

The solution of (2) has received much recent research in-
terest. In the trivial case when ' = I and D is a unitary trans-
form the cost function is exactly minimised by simple shrink-
age (i.e. hard-thresholding for p = 0 and soft-thresholding
for p = 1). When 1 < p < 2 the more general case is ex-
actly solved by iteratively applying shrinkage functions. The
convergence of this iteration was first proved by Daubechies
et al [1] and the technique has produced many image restora-
tion algorithms [2, 3, 4]. Many of these algorithms were pro-
posed well before the proof of global convergence. For a good
overview of iterated shrinkage algorithms see [5]. Blumen-
sath and Davies [6] have proved that the iteration converges
to a local minimum in the non convex case (p < 1).

The choice of transformation D is of course critical to
the performance of the restoration method. Wavelets are
most commonly used and are the current standard in image
processing applications, despite this the quest for sparser
representations of images is still receiving much research
interest. The main problem with two-dimensional wavelets
is that they can only efficiently represent point singularities
and not higher order singularities such as edges which are
a key part of real world images. Motivated by this, Shukla
et al [7] developed a compression algorithm tailor made for
piecewise polynomial images. Their algorithm was based
around quadtree decomposition and was able to outperform
the JPEG2000 standard, due to the sparser representation



achieved by their transformation. Shukla et al also developed
a denoising algorithm [8] using the same piecewise polyno-
mial model and rate-distortion cost function as [7]. Recently
we proposed image denoising and deconvolution algorithms
suitable for piecewise polynomial images [9] using the same
model as [7, 8], but using a different cost function not based
on the rate which is more appropriate to compression. In
this paper we extend these ideas to the restoration of real
world images. The rest of the paper is organised as fol-
lows: in Section 2.1 the proposed quadtree decomposition
algorithm is introduced, then Section 2.2 uses this for image
denoising. Section 2.3 develops an iterative deconvolution
algorithm using the same model and a surrogate function. We
also develop a technique to perturbate from local minima to
an approximation with a smaller cost. Section 3 shows the
results of both denoising and deconvolution of the camera-
man image and deconvolution of a piecewise linear image:
the proposed algorithms are compared against wavelet based
methods. Finally Section 4 gives conclusions.

2. PROPOSED IMAGE RESTORATION
ALGORITHMS

2.1. Piecewise polynomial model using a quadtree decom-
position

A quadtree decomposition dyadically partitions an image into
a tree structure. The whole image is represented by the root of
the tree; the image is then split into four equal quadrants that
correspond to the four children of the root node. The splitting
process is recursively iterated on each leaf in the tree resulting
in many small regions corresponding to the leaves at the deep-
est depth in the tree. The flexibility in the approach comes
from the fact the algorithm chooses which nodes in the tree to
use depending on the signal that is being approximated. In the
piecewise polynomial model of [7, 8, 9] each image region is
approximated by either a polynomial or two polynomials sep-
arated by a continuous boundary. Figure 1a shows an example
of how this model can approximate a piecewise linear image
where all the boundaries are straight edges. For simplicity in
the rest of this paper we will assume this simpler model for
the boundaries, however the ideas easily extend to the more
general cases.

One problem with just using the regions from a dyadic
partition is that neighbouring regions can only be jointly rep-
resented if they have the same parent. To overcome this we
first find the best dyadic regions and then look to join neigh-
bouring regions. This results in the partitions of Figure 1b.

2.2. Denoising algorithm using the piecewise polynomial
model

To denoise we assume that the original image is well approx-
imated by a representation that is sparse in the transform do-
main. To impose this we use the cost function given in (3);

(b) Prune-join partitions

(a) Prune partitions

Fig. 1: Example of prune and prune-join partitions

this minimises a tradeoff between the data misfit term and so-
lutions with minimum description length.

6 = argmin||ly — D(6)|3 + AP (6), 3)

where D(0) is the image representation with coefficients 0 (as
the decomposition is nonlinear we use D(#) rather than D).
P(0) is the function to penalise the description length of the
approximation and is defined in the following way:

2d 4+ 1
2dy + 2ds + 2 + In(a)

if global piece
if two pieces

SOR 7
where d, dq, dy are the degrees of the polynomials over the
global region or either side of the edge and a is the area of
tile ¢. P; is the penalty associated with the representation of
tile ¢ and the global penalty is simply given by the sum over
all tiles, P(§) = >, P;(¢). The 2d + 1 term is basically
equivalent to a zero norm term, for example a globally lin-
ear term would require three basis functions, a constant and a
linear function in both the x and y directions. When there is
an edge these terms are present for both of the regions. Since
the number of possible discrete edges for a particular tile size
is proportional to a we use the In(a) term to represent this
description cost.

2.3. Deconvolution algorithm using the piecewise polyno-
mial model

To use the piecewise polynomial model for deconvolution we
simply need to insert the the blurring matrix H into the de-
noising cost function (3):

0 = argmin |y — HD(0)|3 + AP(0). €

Unfortunately the H causes all the basis functions in our
transformation to overlap which means that we cannot locally
look for the best tile. To solve this we take inspiration from
the linear transform case and use a surrogate function and the
MM philosophy to decouple these equations, for a good in-
troduction to MM algorithms see [10]. Equations (5) and (6)



show the original cost function C' and surrogate cost function
Clqr respectively.

C(D(0)) = |y — HD(O)|3 + AP(0) ®)

Cour(D(0) | @) = C(D(0)) — ||HD(0) — Hall3
+al|D(0) — all3 (6)

It can easily be shown that the surrogate function is a max-
imiser of C(D(9)) if a > || H||. Le.

Csur(D(0) | @) > C(D(9)) VO (7
Csur(a ] a) = C(a). 8)

The surrogate function has the advantage that the || H D(6)||3
terms cancel essentially decoupling the equations:

Csur(D(8) | a) = |lyll3 — 2D(0)" HTy + | HD(0)]13
— |HD(9)||3 +2D(0)" H  Ha
— || Hal3 + ol D)3 + aflal3

—2aD(0)Ta+ A\P(0) )
T 2

M_ a—l—H—(y—Ha)—D(H) +j\p(9)
«@ Q 5

+ terms independent of 6. (10)

We can see that the minimisation of the surrogate function is
equivalent to minimising the denoising cost function (3) with
y replaced with a + HTT (y — Ha).The MM approach suggests
to thus solve the problem with the iteration:

) X HT )
0'*! = Denoise (D(Hz) + T(y — HD(G’))) . 3an

From the inequalities of a maximiser we know that
C(DO™) < Cour(DOF) | D()  (12)
Caur(D(0) | D(07)) = C(D(0")). (13)

Therfore if the denoising algorithm guarantees that
Cour(D(OY) | D(6)) < Cyur(D(Y) | D(6)) then the
sequence will always be decreasing. As the previously in-
troduced denoising algorithm only approximately solves (3)
then this is not guaranteed in its current state. To guarantee
this we use an update algorithm which starts looking for the
best approximation from the current representation 6°.

When this iteration has converged we look to escape from
the local minimum by updating a single tile or pruning four
children to their parent. This is possible by noticing that
although all the basis functions in (5) overlap preventing a
closed form solution, it is still possible to update only one
whilst fixing all the others. We try this for all the individual
tiles and update the single representation that results in the
greatest decrease in cost.

As with the denoising case, we first assume the simpler
prune only model and introduce deconvolution joining algo-
rithms when the pruning algorithms have converged.

(b) Degraded, PSNR=16.08 dB

(d) Reconstructed with proposed
algorithm, PSNR=26.99 dB

(c) Reconstructed with wavelets,
PSNR=26.62 dB

Fig. 2: Denoising of cameraman image (512x512)

3. EXPERIMENTAL RESULTS

In the following experiments the proposed algorithms were
implemented with polynomials of maximum degree 1.

Figure 2 shows the result of denoising the cameraman im-
age that has been degraded by additive white Guassian noise
of standard deviation 40 resulting in a PSNR of 16.08 dB. The
proposed denoising algorithm is compared against wavelet
soft thresholding using the undecimated wavelet transform.
The Daubechies 4 tap filter was used to a depth of 6. In this
case the performance of the techniques are comparable how-
ever our algorithm suffers in areas with high texture such as
the grass. This suggests that adding a different tile model to
our representation may significantly improve our algorithm in
areas that are not well approximated by piecewise polynomi-
als.

Figures 3 and 4 show the results of deconvolving a piece-
wise polynomial image and a real world image. The piece-
wise polynomial image was degraded by blurring with a 7
by 7 quadratic spline followed by additive white Gaussian
noise of standard deviation 0.1. The cameraman image was
degraded by blurring with a 25 by 25 11th order spline fol-
lowed by additive white Gaussian noise of standard deviation
5. In both cases the proposed deconvolution algorithm was
compared against iterated soft thresholding using the undeci-
mated wavelet transform. The Daubechies 4 tap wavelet was
used to a depth of 3 for the piecewise polynomial image and
a depth of 6 for the cameraman image.



(a) Original (b) Degraded, PSNR=16.47 dB

(c) Reconstructed with wavelets, (d) Reconstructed with proposed
PSNR=27.38 dB algorithm, PSNR=50.22 dB

Fig. 3: Deconvolution of piecewise polynomial images

4. CONCLUSIONS

We have proposed image restoration algorithms based on a
sparse approximation using a quadtree decomposition. Pre-
liminary results suggest that the performance of the denoising
algorithm is comparable to soft thresholding of the undeci-
mated wavelet transform on real world images and the decon-
volution algorithm can outperform iterated soft thresholding
when the variance of the noise is quite large. We are currently
investigating adding different tile models to improve both al-
gorithms performance in regions of texture and also generally
improving the deconvolution algorithm. We are also inter-
ested in the computational complexity of the algorithms and
possible speed ups particularly in the deconvolution case.
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