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Abstract—The success of many image restoration al-
gorithms is often due to their ability to sparsely de-
scribe the original signal. In [3] Shukla et al. proposed
a compression algorithm, based on a sparse quadtree
decomposition model, which could optimally represent
piecewise polynomial images. In this paper we adapt this
model to image restoration by changing the rate-distortion
penalty to a description-length penalty. Moreover, one of
the major drawbacks of this type of approximation is
the computational complexity required to find a suitable
subspace for each node of the quadtree. We address this
issue by searching for a suitable subspace much more
efficiently using the mathematics of updating matrix fac-
torisations. Algorithms are developed to tackle denoising
and interpolation. Simulation results indicate that we beat
state of the art results when the original signal is in the
model (e.g. depth images) and are competitive for natural
images when the degradation is high.

Index Terms—Denoising, image models, interpolation,
piecewise polynomial approximation, quadtree, sparse reg-
ularisation.

I. INTRODUCTION

THE ability to accurately model images is key
to many image processing tasks including image

restoration. Recently the central ingredient in most mod-
elling techniques has been sparsity. This reduces the
complexity of an image to the linear combination of
a few functions and the fewer functions required, the
sparser the representation and the better the model.
Wavelets very efficiently represent one dimensional (1-
D) piecewise polynomial functions; however, due to their
separability in two dimensions (2-D) they struggle to
capture higher dimensional discontinuities such as edges
and contours in images. This problem has been noted
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many times in the literature and many improved trans-
forms have been suggested: e.g., Ridgelets [4], Curvelets
[5], Contourlets [6], Wedgelets [7] and Bandlets [8].
The latter two of these use a quadtree decomposition
to adaptively partition the image. This is the approach
we will take in this paper. However, unlike Bandlets
which uses a basis over each adaptive region, we will
approximate each region using a very low dimensional
model, specifically either a 2-D polynomial model or two
2-D polynomials separated by an edge discontinuity.

This model is an extension of Wedgelets, and is
similar to the model used in the compression algorithm
of Shukla et al. [3], which they also later extended to
denoising [9]. However, they retained the rate-distortion
structure which is not particularly suitable for denoising.
We instead replace the bit-rate constraint with a mini-
mum description length criterion that is more appropriate
to tackle image restoration problems. This model can
optimally represent piecewise polynomial images, which
are of particular interest because they occur in many real
world situations. For example, natural images are full
of approximately piecewise polynomial regions although
they also contain areas, such as texture, that cannot be
efficiently represented by this model. Because of this,
we expect our algorithms to perform well on large parts
of natural images; however, they may struggle in highly
textured areas.

A depth image has pixel values that correspond to the
distance from the camera image plane to the real object;
this is in contrast to natural images where the pixel value
corresponds to a colour or brightness value. An example
of such an image is shown in Fig. 1. It is clear that
depth images are inherently piecewise smooth and will
therefore be ideally suited to our image model and our
restoration algorithms.

Often one of the drawbacks of this type of approx-
imation is the computational cost required to find a
suitable edge discontinuity for each region. In this paper
we develop a novel technique based on modifying a
QR decomposition, see Daniel et al [11], that allows
us to efficiently find a suitable edge. This improved
efficiency allows us to compute fast approximations and
use cycle spinning [12] to further improve our restoration
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(a) A real complex scene (b) The resulting depth image

Fig. 1: An example depth image and its corresponding colour image
(these images are taken from the stereo data set [10]).

performance.
The rest of this paper is organised as follows: Section

II introduces the denoising and interpolation problems
and discusses the state of the art. Section III explains
our piecewise polynomial model and approximation al-
gorithm, first in the 1-D case and then the 2-D case.
Sections IV and V deal with denoising and interpolation
respectively: these are both solved using slight variants
of the approximation algorithm previously presented.
The simulation results are given in Section VI where
we compare the performance on both natural and depth
images. Finally we conclude in Section VII.

In this paper we use the following notation: scalars
are denoted by regular letters, vectors by lowercase bold
letters and matrices by uppercase bold. Subscripts and
superscripts are used to provide additional naming, e.g.,
IN is the N ×N identity. The only exception to this is
superscripts on scalars, which are used for powers.

II. PROBLEM SET UP AND STATE OF THE ART

The degradation process in the canonical denoising
set-up can be modelled as follows:

y = x+ z, (1)

where the vectors x,y, z ∈ RN are the desired, mea-
sured and noise images respectively (N is the number of
pixels). Often one assumes that z comes from a white
Gaussian distribution, z ∼ NN (0, σ2zIN ), and that x
has a sparse representation in a proper domain. That
is, x = Dθ where θ ∈ Rm has only a small number
of large or non zero entries and D ∈ RN×m is the
reconstruction transform (m is the maximum dimension
of the approximation). Based on these assumptions, a
possible solution, x̂ =Dθ̂, is found from

θ̂ = argmin
θ
‖y −Dθ‖22 + λ‖θ‖0, (2)

where ‖θ‖0 is the number of non zero entries in θ. When
D is an orthogonal transform (DTD = Im) the problem

separates and can be easily solved by projecting y onto
the column space of D and hard thresholding the result.
The convex relaxation of (2) is obtained by replacing
‖θ‖0 with ‖θ‖1: in this case the solution is identical
except that hard thresholding is replaced with the well
known soft thresholding operator.

In the more general case when D is not orthogonal
the problem is more complex because the equations are
coupled together: this occurs for example when D is an
over complete dictionary. Daubechies et al [13] showed
that iterative soft thresholding converges to the global
minimum of the more general convex relaxed problem.
In the non-convex case iterative hard thresholding con-
verges to a local minimum of (2). More information on
this well studied topic can be found in the literature [14]–
[18].

In this paper we search for a sparse solution by
minimising a cost function very similar to (2), but our
transform is nonlinear and we use a minimum description
length prior rather than a purely sparsity promoting prior.
Our model is an adaptive representation and fits into
the class of models reviewed in [19]. Similar to the
orthogonal linear transform case we can find a closed
form solution and do not have to resort to iterative
methods.

Alternatively, the image denoising problem can be
solved using nonlocal and adaptive restoration algo-
rithms [20]–[25]. These algorithms have been shown to
provide excellent results over a wide range of images;
however, it is possible that the added flexibility may
be detrimental when the original signal follows a much
simpler model. For example, depth images are inherently
piecewise smooth so a prior enforcing this might be more
appropriate for this class of images.

In the interpolation problem one tries to estimate
missing pixels using those available. The problem can
be formulated using the following degradation model:

y =Hx, (3)

where x ∈ RN is the complete image, y ∈ RNv is the
image of only known pixels and H ∈ RNv×N is the
identity matrix with N −Nv rows, corresponding to the
unknown pixels, removed (Nv is the number of visible
pixels). There are many possible interpolation setups and
the algorithm that we develop will be quite general.
Despite this we will present results for the problem of
interpolating from an irregularly sampled grid of data
points. This problem arises, for example, when trying
to infer the depth map of a scene from a cloud of
depth points. A very effective algorithm for this type of
problem was presented in [26]. In this work Takeda et al
extend classical kernel regression by adapting the shape
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(a) The binary tree at
its deepest depth.

(b) The pruned repre-
sentation.

(c) The prune-joined
representation.

Fig. 2: Comparison between the prune and prune-join algorithms for
a piecewise linear 1-D signal.

of the kernel locally depending on the structure of the
signal. Additionally, nonlocal algorithms have also been
applied to interpolation. For example, Li [27] utilised
state of the art nonlocal denoising, in an iterative fashion,
to achieve excellent interpolation results. These two ap-
proaches, as well as bi-cubic interpolation, will be used
to provide comparisons with the proposed interpolation
algorithm.

III. PIECEWISE POLYNOMIAL APPROXIMATION OF

1-D AND 2-D FUNCTIONS USING A BINARY OR

QUADTREE DECOMPOSITION

Our approach is based on the assumption that images
are 2-D piecewise smooth functions and can therefore
be sparsely described using a 2-D piecewise polynomial
model. In this section we present a fast algorithm that
finds the piecewise polynomial approximation of an
image using a quadtree decomposition. The accuracy of
the approximation is dependent on the complexity of the
decomposition. This algorithm is then used in the later
sections for image restoration.

A. 1-D Piecewise polynomial approximation using a
binary tree

The 2-D quadtree decomposition algorithm involves a
pruning and joining step. To clarify the notion of ‘prune’
and ‘join’ we first consider the 1-D case and approximate
a 1-D piecewise linear function.

We dyadically partition the signal space using a binary
tree, where each leaf represents a polynomial. Therefore,
to represent the 1-D piecewise linear signal shown in Fig.
2, we could use any of the trees shown in Figs. 2(a), 2(b)
or 2(c). To calculate these representations we define a
cost function that has two terms: the first is a two-norm
data fitting term and the second is a term to penalise
the description length. In 1-D we define the description
length to be the sum of the degrees of the polynomials
in the approximation; therefore, the cost function is

‖y − x‖22 + λ
∑
i∈T

di, (4)

(a) A possible tile
with an edge.

(b) The pruned rep-
resentation.

(c) The prune-joined
representation.

Fig. 3: Comparison between the prune and prune-join algorithms for
a piecewise linear 2-D signal.

where y is the 1-D signal we are trying to approximate,
T is the set of all leaves in the approximation x, and
di is the degree of the polynomial at node i. Here λ
is used to provide a tradeoff between the two terms: it
is set according to the quality of approximation that is
required and in later sections will be set depending on
the degradation of the restoration problem.

To obtain the deepest depth solution shown in Fig.
2(a) we visit each node at this deepest depth and min-
imise (4) locally: the approximation of a single node
is a simple linear approximation problem. The pruned
representation shown in Fig. 2(b) is obtained using a
bottom up approach that starts from the deepest depth
solution. The parent nodes of this deepest depth solution
are approximated using the same approach and then two
sibling leaves are pruned if the sum of their costs is
greater than the cost of their parent. This process is
repeated all the way up the tree to produce the final
pruned tree.

The pruned representation is suboptimal due to the
limitations of the binary tree structure: for example,
because of the location of the discontinuity in Fig. 2(b),
five regions are required to represent a piecewise linear
signal containing only one discontinuity. By allowing
neighbouring regions of the tree to jointly represent just
one polynomial region we can overcome this limitation,
as shown in Fig. 2(c). This prune-join representation is
calculated as follows: the leaves of the pruned tree are
visited, in a top-down left-right fashion, and tested to see
if they can be joined to neighbouring leaves which have
already been checked (i.e. nodes that are at a higher
depth, or the same depth but further to the left in the
tree). Two leaves are joined if their combined cost is less
than the sum of their individual costs. After two leaves
have been joined, the joined representation is used in
place of the individual leaves for the rest of the joining
algorithm.
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B. 2-D Piecewise polynomial approximation using a
quadtree

Now let us move to the 2-D case: a quadtree is
constructed where each leaf is either a global polynomial
or two polynomials separated by a continuous boundary.
Figure 3(a) shows a possible node which we will also call
a tile. Prune and prune-join representations are generated
in almost the same way as the 1-D case and examples
are shown in Figs. 3(b) and 3(c). In 2-D the penalty for
the description length, P x(x), is slightly more complex:
it is defined to be separable across each node so we can
write

P x(x) =
∑
i∈L

P xi (x), (5)

where x is the image vector, P xi (x) is the penalty of
tile i and L is the set of all leaves in the approximation.
In 1-D the description length of a tile is the degree of
the polynomial; in 2-D it is very similar: we penalise a
polynomial region of degree d by 2d+1 because this is
the dimension of the space of 2-D polynomials of degree
d. For example 2-D polynomials of degree one span the
space which can be defined by a constant basis function
and two linear basis functions, one per direction. The
total description length penalty also needs to deal with
the description of the edge discontinuity. This can be
done by defining the penalty for the i-th node to be

P xi (x) =

{
2d+ 1
2d1 + 2d2 + 2 + ln(Ni)

if a global tile,
if an edge tile,

where d1, d2 are the degrees of the polynomials either
side of the edge and Ni is the number of pixels in tile i.
Finally, ln(Ni) is present to penalise edges of larger tiles
more harshly because there are more possible discrete
edges to choose from.

Just like the 1-D case we use a two-norm data fitting
term producing the final cost function

‖y − x‖22 + λP x(x), (6)

which is separable over each tile. To find the best
approximation for a particular tile we exhaustively search
a dictionary of possible edges (including the global ‘no
edge’ case) and choose the edge with the cheapest (6).
This process is explained in detail in Section III-C. The
prune and prune-join algorithms are identical to the 1-D
case and their goal is to find

x̂ = argmin
x

{
‖y − x‖22 + λP x(x)

}
. (7)

The quadtree piecewise polynomial model is nonlinear
so we will use the notation x = D(θ) where θ is the
parameter set which describes the tile structure, edge
discontinuities and polynomial coefficients. We also use

× × × ×
× × × �
× × � �
� � � �

(a) First edge (e).

× × × ×
× × × �
× × � �
× � � �

(b) Second edge (ẽ).

Fig. 4: The two edges used for the example approximation.

the notation that the penalty P x (D(θ)) = P θ(θ) and
therefore (7) is equivalent to

θ̂ = argmin
θ

{
‖y −D(θ)‖22 + λP θ(θ)

}
.

C. Finding the best approximation for a node

The prune and prune-join algorithms assume we can
calculate an approximation for each node of the tree.
In 2-D this involves calculating a suitable edge discon-
tinuity, which may be ‘no edge’, and the polynomial
coefficients.

The tile approximation given a particular edge is a
linear problem that is solved by projecting onto the poly-
nomial subspace and hard thresholding. Traditionally a
suitable edge is found by exhaustively searching a large
number of possible edge discontinuities by approximat-
ing each one using two linear projections, one either
side of the edge. The edge leading to the minimum cost
is chosen. This approach is inefficient and can become
unfeasible for large tiles. In this case, due to complexity,
the search space is reduced so that only a small number
of straight edges are tested. To overcome this limitation,
we present a fast method which allows us to exhaustively
search edges and also, if we wish, relax the constraint
that the edge be straight. Our inspiration comes from the
mathematics of updating matrix factorisations: it is often
more efficient to update a factorisation than recalculate it
from scratch if the original matrix has only undergone a
small change. We can use this to quickly check different
edges by changing just one pixel at a time. We will
see that the complexity of approximating a new edge
is independent of the tile size and instead depends only
on the maximum degree of the polynomials.

In what follows we demonstrate the process by ap-
proximating a 4×4 tile using the two edges shown in Fig.
4. We will first approximate the tile using the edge shown
in Fig. 4(a) by calculating the QR decomposition from
scratch and then update this factorisation to approximate
the tile using the edge shown in Fig. 4(b).

Both approximations will require a vector representa-
tion for the tile which is obtained by lexicographically
stacking the tile into a vector t ∈ RNi (Ni = 16 in this
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example):

t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

⇒ t =



t11
t21
...
t41
t12
...
t44


.

1) Approximating the tile using the edge of Fig. 4(a)
by computing the QR decomposition: Let the maximum
degree of the polynomials be one, resulting in polyno-
mial subspaces of dimension three. We lexicographically
stack the three biorthogonal linear polynomial basis
functions either side of the edge and use these vectors
as the columns of two matrices Be1 and Be2. We then
calculate the thin QR decomposition for these matrices.
For the first side of the edge we have

1 1 1 1

1 1 1 �
1 1 � �
� � � �

1 2 3 4

1 2 3 �
1 2 � �
� � � �

1 1 1 1

2 2 2 �
3 3 � �
� � � �

⇒ Be1 =



1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 4 1


,

Be1 =



1
3 −

√
5
6 −3

√
3

10
1
3 −

√
5
6 −

√
3

30
1
3 −

√
5
6

7
√
3

30
1
3 −

√
5

60 −13
√
3

60
1
3 −

√
5

60

√
3

20
1
3 −

√
5

60
19
√
3

60
1
3

4
√
5

30 −2
√
3

15
1
3

4
√
5

30
2
√
3

15
1
3

17
√
5

60 −
√
3

20



 3 19
3

16
3

0 4
√
5

3 −5
√
5

12

0 0 5
√
3

4



= Qe1R
e
1

and Be2 = Qe2R
e
2 is constructed in the same way for

the other side. Having the orthogonal Q matrices makes
approximating t using this edge easy. We first split t into
two corresponding vectors, te1 and te2, either side of the
edge. We will use the notation te1 ∪ te2 = t to allow us
to combine vectors from different regions of the image;
similarly, we use ‘∩’ for the intersection of two image

vectors. Since te1 ∩ te2 = �, the approximation can be
found independently for each side:

t̂e1 = Qe1θ̂Qe
1

where θ̂Qe
1
= Qe1

T te1,

and t̂e2 = Qe2θ̂Qe
2

where θ̂Qe
2
= Qe2

T te2.

The error is

‖t− t̂e‖ = ‖te1 − t̂
e
1‖

2
2 + ‖te2 − t̂

e
2‖

2
2

= ‖t‖22 − ‖θ̂Qe
1
‖22 − ‖θ̂Qe

2
‖22, (8)

which can be simplified by neglecting the ‖t‖22 term
when comparing the errors of different edges for the
same tile.

2) Approximating the tile using the edge of Fig. 4(b)
by updating the previous QR decomposition: For sim-
plicity we will just consider the first side of the edge: we
constructBẽ1 as we did before but we do not calculate the
QR decomposition. Instead we proceed as follows: we
first modify the matrices Qe1 and Re1 so that the equality
still holds after the new row is added (the new row of
scalar values has been shown in bold for emphasis; this
goes against the convention of the rest of the paper where
lowercase bold is reserved for vectors):

1 1 1 1

1 1 1 �
1 1 � �
1 � � �

1 2 3 4

1 2 3 �
1 2 � �
1 � � �

1 1 1 1

2 2 2 �
3 3 � �
4 � � �

⇒ Bẽ1 =



1 1 1
1 1 2
1 1 3
1 1 4
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 4 1


,

Bẽ1 =



1
3 −

√
5
6 −3

√
3

10 0
1
3 −

√
5
6 −

√
3

30 0
1
3 −

√
5
6

7
√
3

30 0
0 0 0 1
1
3 −

√
5

60 −13
√
3

60 0
1
3 −

√
5

60

√
3

20 0
1
3 −

√
5

60
19
√
3

60 0
1
3

4
√
5

30 −2
√
3

15 0
1
3

4
√
5

30
2
√
3

15 0
1
3

17
√
5

60 −
√
3

20 0




3 19

3
16
3

0 4
√
5

3 −5
√
5

12

0 0 5
√
3

4
1 1 4



= Q̃ẽ1R̃
ẽ
1.

Currently, Bẽ1 is factored into an orthogonal matrix,
Q̃ẽ1, multiplied by a matrix, R̃ẽ1, which is not upper
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triangular. To get the factorisation into the desired thin
QR form we introduce an orthogonal matrix, G ∈ R4×4,
which is the product of three Givens rotation matrices:
G = G3G2G1. Since GTG = I4, we can write

Bẽ1 = Q̃ẽ1G
TGR̃ẽ1.

The aim of G is to make GR̃ẽ1 upper triangular. To do
this the three Givens rotation matrices are constructed
to reflect

[
1 1 4

]
into the diagonal entries of Re1.

The first rotation matrix, G1, reflects the first element
of
[
1 1 4

]
into the top left element of Re1:

G1 =


3
√
10

10 0 0
√
10
10

0 1 0 0
0 0 1 0√
10
10 0 0 −3

√
10

10


so that

G1


3 19

3
16
3

0 4
√
5

3 −5
√
5

12

0 0 5
√
3

4
1 1 4

 =


√
10 2

√
10 2

√
10

0 4
√
5

3 −5
√
5

12

0 0 5
√
3

4

0
√
10
3 −2

√
10
3

 .
Similarly G2 and G3 are constructed to reflect the

second and third elements into the other two diagonal
elements of Re1 leading to

G


3 19

3
16
3

0 4
√
5

3 −5
√
5

12

0 0 5
√
3

4
1 1 4

 =


√
10 2

√
10 2

√
10

0
√
10 −

√
10
2

0 0
√
30
2

0 0 0

 .
We see that the Givens matrices have ‘zeroed’ the bottom
row so that GR̃ẽ1 is upper triangular:

GR̃ẽ1 =

[
Rẽ1
0T

]
,

where Rẽ1 ∈ R3×3 is, as we will see, the desired upper
triangular matrix.

The product Q̃ẽ1G
T
=
[
Qẽ1 q

]
is orthogonal (since

both G and Q̃ẽ1 are orthogonal) so Bẽ1 is now factored
into an orthogonal matrix times an upper triangular
matrix:

Bẽ1 =
[
Qẽ1 q

] [ Rẽ1
0T

]
;

the full expansion of this equation, for our example, is
given in (9).

Since the bottom row of the upper triangular matrix
is zero we can simplify to Bẽ1 = Qẽ1R

ẽ
1, which is the

required thin QR decomposition.
One may be tempted to calculate the polynomial

coefficients by using the updated Qẽ1 to directly calculate
Qẽ1

T
t; there is, however, a much more efficient way.

Since[
Qẽ1 q

]T
tẽ1 =

([
Qe1 0
0T 1

]
GT

)T [
te1
t41

]
,

we can calculate the coefficients from

θ̂Qẽ
1
= Qẽ1

T
tẽ1 = G

[
θ̂Qe

1

t41

]
, (10)

where G is G with the last row removed. This is the
key result because it allows us to update the coefficients
without calculating Qẽ1. All that is needed is to construct
the Givens matrices using Re1 and then the updated
coefficients and upper triangular matrix are easily found.
Once the coefficients have been calculated the error can
efficiently be calculated from (8). The computational cost
of the update is independent of the tile size and instead
dependent on the degree of the polynomials used, which
in our case is very small. This is because we require
d Givens matrices, constructed to reflect the new row
into the diagonal elements of Re1 ∈ Rd×d, to update the
coefficients.

So far we have only told half the story: we also need to
be able to calculate the coefficients θ̂Qẽ

2
for the other side

Bẽ1 =



1 1 1
1 1 2
1 1 3
1 1 4
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 4 1


=



√
10
10 −

√
10
10 −

√
30
10 −

√
2

10√
10
10 −

√
10
10 −

√
30
30

√
2

10√
10
10 −

√
10
10

√
30
30

3
√
2

10√
10
10 −

√
10
10

√
30
10 −5

√
2

10√
10
10 0 −

√
30
15 −

√
2

10√
10
10 0 0

√
2

10√
10
10 0

√
30
15

3
√
2

10√
10
10

√
10
10 −

√
30
30 −

√
2

10√
10
10

√
10
10

√
30
30

√
2

10√
10
10

√
10
5 0 −

√
2

10




√
10 2

√
10 2

√
10

0
√
10 −

√
10
2

0 0
√
30
2

0 0 0

 =
[
Qẽ1 q

] [ Rẽ1
0T

]
(9)



IEEE TRANSACTIONS ON IMAGE PROCESSING 7

(a) The start of a possible 4× 4 dictionary of edges.

(b) The end of a possible 4× 4 dictionary of edges.

Fig. 5: Part of a possible dictionary of 4 × 4 edge tiles that can be
searched with the proposed strategy.

of the edge. This is done by updating the factorisation
after a row has been removed from Be2. The process is
almost the same as adding a row although we have the
additional complication that the matrix may become rank
deficient. The details of removing a row and maintaining
full rank are given in Appendix A.

We search for the best edge using the above derivation
as follows: we construct a dictionary of straight edges
such that each edge differs from the previous entry by
only one pixel. Constructing the dictionary in this way
allows it to be exhaustively searched efficiently using the
updating algorithm just described. Once all edges have
been searched, the edge leading to the smallest (8) is
selected.

There are many possible ways to construct a dictionary
of edges that meet the above requirement. Figure 5 shows
part of a possible dictionary of 4×4 tiles. This dictionary
is created by initialising the tile so that all pixels are
on the same side of the edge (the global ‘no edge’
case). Then, a straight line is rotated clockwise around
a particular point on the boundary and when the line
crosses the centre point of a pixel it is moved to the other
side of the edge. When all pixels have been moved to
the other side of the edge, we are back to the global
‘no edge’ case. The point of rotation is then moved
one discrete step clockwise around the tile boundary and

the process repeated. For example, the first two rows of
Fig. 5(a) correspond to rotating the line around the top
left corner, (0, 0), and the next two rows correspond to
rotating the edge around the point, (0, 1), one step to the
right.

Note that it is possible to check all these edges in one
continuous chain; however, resetting to the ‘no edge’
case, when possible, reduces rounding errors. Addition-
ally this strategy allows the dictionary size to be reduced.
As previously proposed, the dictionary has 4n3 edges for
an n× n tile, since there are 4n rotation points and n2

edges per point. This can be reduced to 2n3 + n2/2 if
we stop rotating the edge when we reach a boundary
point we have already used as a rotation point. The
intuition is that, since we have already checked edges
starting and ending from approximately these locations,
the vast majority of future edges will already have
been checked. Figure 5(b) shows the last few edges
of the same dictionary, when this strategy is employed.
Despite the reduced size, the number of edges still has
cubic growth, so we only exhaustively search tiles up
to a size of 32 × 32. Larger tiles are down sampled
and then exhaustively searched. This produces a rough
approximation of the edge discontinuity which is refined
at the larger, original tile size.

As can be seen in Fig. 5, constructing a dictionary
of edges such that each edge differs from the previous
entry in only one pixel results in checking some edges
more than once. The reduced dictionary, just described,
reduces this replication but it is still present. However,
since the computational cost of moving a pixel from one
side of the edge to the other is so cheap, we can tolerate
this replication.

In many cases, we can further reduce the computation
by pre-computing and storing the Givens matrices, for
the whole dictionary of possible edges, offline. This
makes the computation required to update the coeffi-
cients from one edge to the next very small. In practise
we precompute and store these Givens matrices for
square tiles up to 32×32 used in the pruning algorithm,
but not for the more flexible regions that can be obtained
when joining.

D. Example speed and sparsity of our approximation
algorithm for a natural image

To conclude this section we show an example of the
speed improvement that is obtained by updating the
QR decomposition in the way that we have presented.
We also use the example to demonstrate the sparsity
of our model. Figure 6 shows two approximations of
the cameraman image that have a peak signal-to-noise
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(a) Reconstruction using the
prune model only.

(b) Reconstruction using the
prune-join model.

Fig. 6: Approximation of the cameraman image to a PSNR of 30dB
using the prune and prune-join models.

ratio (PSNR1) of 30dB. The first approximation was
calculated in 1.0 seconds using the prune only model
and the second was calculated in 8.3 seconds using
the more complex prune-join model2; for comparison
these approximations would take around 100 and 10000
seconds if we calculated the QR decomposition from
scratch each time.

For a rough comparison of sparsity, the prune and
prune-join models use 3602 and 2753 polynomial co-
efficients respectively, whereas a Daubechies 4 tap
wavelet decomposition would require 4712 coefficients
to achieve the same approximation error. This greater
sparsity should aid us in restoration, particularly in cases
of high degradation where a strong prior is required.

IV. DENOISING

In this section we will adapt the previously presented
approximation algorithm to tackle the well studied de-
noising problem. Over the years there has been such a
vast amount of research in this area that a comparison
to the state of the art will provide a very stringent test
of our modelling technique.

We define the denoising problem as approximating x
from y where

y = x+ z

and z is white Gaussian noise.
We approximate x from y by solving (7) using our

prune-join algorithm, which can be interpreted as a max-
imum a posteriori (MAP) estimator using a probabilistic

1All PSNRs in this paper are calculated as
10 log10

(
2552

1
N
‖x1−x2‖22

)
.

2All calculations were made in MATLAB on a 2.2GHz Intel Core
i7 Macbook Pro with 4GB of RAM (no multi-threading).

framework. If we define the probability of a particular
image x occurring to be

p(x) = Aexp

[
−ζP

x(x)

2

]
,

where P x(x) is given in (5) and A is a constant so that∑
x∈RN

Aexp

[
−ζP

x(x)

2

]
= 1,

then the MAP estimator is

x̂ = argmin
x

{
‖y − x‖22 + ζσ2zP

x(x)
}
. (11)

Equation (11) is equivalent to (7) with λ = ζσ2z . We have
replaced the unknown constant λ with another unknown
constant ζ. However, ζ is independent of σz so can be
tuned experimentally just once (in all our simulations
ζ = 3.3).

A. Cycle spinning

Our quadtree decomposition approximation algorithm
is shift variant allowing us to construct multiple ap-
proximations from different shifts of the image. Cycle
spinning [12] is the process of averaging these shifts to
construct a better approximation and improved results
can be obtained by performing weighted averaging [28].

We can reduce the complexity of computing an ap-
proximation for each new shift by noticing that Ni×Ni

tiles only have N2
i unique shifts. For example 2×2 tiles

only have four unique shifts. This means that only the
first four shifts have to calculate 2×2 tiles and all future
shifts can simply look up these results from previous
trees.

B. Example tilings

Figure 7 shows examples of the tilings generated by
four different denoising experiments, calculated using
256 shifts of cycle spinning and the prune-only model.
Note that there is a slightly different tiling for each shift
but the figure just shows one of these tilings. One can
see that, even in the presence of noise, the adaptive
regions sensibly fit the data and, since λ is proportional
to the noise variance, a coarser model is used in higher
degradation cases.

V. INTERPOLATION

With very minor modifications, the previously de-
scribed approximation algorithm can be used for inter-
polation. We model the problem by setting

y =Hx,
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(a) Tiling with σz = 25. (b) Tiling with σz = 50.

(c) Tiling with σz = 75. (d) Tiling with σz = 100.

Fig. 7: Example tilings for the denoising algorithm with different
noise levels.

where H ∈ RNv×N is the identity matrix but with
the rows corresponding to the unknown pixels removed.
Here x ∈ RN is the desired image and y ∈ RNv is
a truncated vector over just the, Nv, known or visible
pixels. We will assume that we know H which is equiv-
alent to saying we know the locations of the available
samples. The approximation problem in this framework
can be posed as follows:

θ̂ = argmin
θ

[
‖y −HD(θ)‖22 + λP̃ θ(θ)

]
= argmin

θ

[
‖y −Dv(θ)‖22 + λP̃ θ(θ)

]
, (12)

where Dv is the corresponding truncated quadtree repre-
sentation over just the visible pixels given the parameters
θ. This truncated quadtree representation can be calcu-
lated by putting holes in the polynomial subspace basis
functions where there is a missing pixel. Interpolation
is achieved by reconstructing with the corresponding
functions with no holes.

Equation (12) uses a modified penalty, P̃ θ(θ), that
is almost identical to the previous described penalty,
P θ(θ). The only difference is that the cost of a poly-
nomial region is increased by a factor of Ni

Nv
i

, where
Ni and Nv

i are the number of pixels and the number
of visible pixels in the i-th region respectively. This
modification increases the penalty on regions with fewer

(a) Tiling with 75% missing. (b) Tiling with 85% missing.

(c) Tiling with 90% missing. (d) Tiling with 95% missing.

Fig. 8: Example tilings for the interpolation algorithm with different
percentages of missing pixels.

known pixels resulting in a sparser model, and obviously
when Ni = Nv

i the penalty is as previously defined.
Modifying the penalty in this way allows successful

interpolation over a wide range of images and sampling
rates with a fixed λ, chosen once experimentally. In
the following simulations λ = 50; however, in some
cases we could have obtained more accurate results by
optimising λ for the particular experiment.

A. Example tilings

Figure 8 shows examples of the tilings generated by
four different interpolation experiments, calculated using
256 shifts of cycle spinning and the full prune-join
model. Like the denoising case, a coarser model is used
in high degradation cases, i.e. when less samples are
available, and the regions fit the data, even with missing
pixels.

VI. SIMULATION RESULTS

In this section we test the performance of the proposed
algorithms on artificially degraded natural and depth
images and provide comparisons to the state of the art3.

3The depth images were obtained from the stereo data set
[10] and then truncated and downsampled to the given dimen-
sions. In the aid of reproducible research, exact copies of the
images and the executables of our code are available from
http://www.commsp.ee.ic.ac.uk/%7Eajs03/.
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Degradation PSNR Denoising Results SSIM Index Denoising Results
Image σz Degraded BM3DSAPCA Proposed PLOW KSVD Proposed BM3DSAPCA KSVD PLOW
Boat 10 28.14 34.10 33.34 33.02 33.69 0.8763 0.8923 0.8834 0.8661

(512× 512) 25 20.18 30.03 29.35 29.53 29.34 0.7832 0.8039 0.7723 0.7909
50 14.16 26.89 26.55 26.60 25.92 0.6905 0.7082 0.6571 0.6910
75 10.63 24.92 25.01 24.69 24.02 0.6341 0.6276 0.5812 0.6024
100 8.14 23.69 23.97 23.33 22.85 0.5948 0.5789 0.5286 0.5308

Cameraman 10 28.10 34.59 33.24 33.17 33.74 0.9261 0.9352 0.9270 0.9187
(256× 256) 25 20.14 29.81 29.00 28.59 29.00 0.8484 0.8642 0.8402 0.8400

50 14.12 26.58 26.05 25.61 25.76 0.7834 0.7868 0.7497 0.7453
75 10.60 24.41 24.35 23.61 23.41 0.7442 0.7051 0.6636 0.6224
100 8.10 22.88 23.08 22.22 21.56 0.7102 0.6445 0.5775 0.5294

Hill 10 28.14 33.83 33.05 32.62 33.38 0.8683 0.8896 0.8778 0.8565
(512× 512) 25 20.18 29.96 29.36 29.56 29.22 0.7522 0.7788 0.7392 0.7633

50 14.16 27.20 26.94 26.95 26.30 0.6559 0.6756 0.6222 0.6567
75 10.63 25.42 25.63 25.24 24.89 0.6034 0.5983 0.5644 0.5764
100 8.14 24.27 24.66 24.06 24.01 0.5654 0.5492 0.5279 0.5171

Lena 10 28.14 36.07 35.24 35.32 35.57 0.9075 0.9183 0.9118 0.9077
(512× 512) 25 20.18 32.22 31.40 31.87 31.37 0.8517 0.8650 0.8436 0.8571

50 14.16 29.07 28.65 28.66 27.82 0.7962 0.8014 0.7612 0.7754
75 10.63 26.83 27.11 26.55 25.82 0.7597 0.7247 0.6973 0.6943
100 8.14 25.37 26.00 25.08 24.54 0.7317 0.6747 0.6451 0.6312

Man 10 28.14 34.25 33.57 32.98 33.64 0.9008 0.9125 0.9020 0.8879
(512× 512) 25 20.18 29.81 29.39 29.33 29.12 0.7961 0.8111 0.7798 0.7967

50 14.16 26.94 26.75 26.56 26.08 0.6995 0.7107 0.6652 0.6858
75 10.63 25.13 25.28 24.86 24.44 0.6421 0.6308 0.5967 0.6002
100 8.14 23.96 24.31 23.68 23.42 0.6049 0.5793 0.5502 0.5397

Peppers 10 28.10 34.94 34.45 33.60 34.29 0.9272 0.9287 0.9241 0.9186
(256× 256) 25 20.14 30.43 30.11 29.63 29.71 0.8710 0.8690 0.8563 0.8571

50 14.12 27.00 26.83 26.38 26.08 0.8039 0.7942 0.7715 0.7570
75 10.60 24.74 24.94 24.26 23.64 0.7575 0.7220 0.6906 0.6595
100 8.10 23.24 23.61 22.76 21.96 0.7207 0.6726 0.6237 0.5901

Average 28.29 28.04 27.68 27.49 0.7602 0.7551 0.7244 0.7222

TABLE I: PSNR and SSIM index comparisons of the proposed denoising algorithm for natural images. The denoising algorithms used for
comparison are BM3DSAPCA [22], PLOW [29] and KSVD [30] . The best result is shown in bold and σz denotes the standard deviation
of the noise.

(a) Original. (b) Noisy, σz = 75. (c) Denoised as proposed. (d) Denoised with [22].

Fig. 9: Visual comparison of the proposed denoising algorithm with the BM3D-SAPCA algorithm [22] for the Lena natural image.

The PSNR and SSIM index [31] objective measures are
quoted for all simulations.

A. Denoising

We tested the denoising algorithm on a range of
natural and depth images with additive white Gaussian
noise as given by the degradation model (1). The results

for natural and depth images are presented in Tables
I and II respectively. Visual comparisons can be made
from Figs. 9 and 10. All these results were calculated
without joining and using 256 shifts of cycle spinning.

We see that, although natural images have many
complex structures, such as texture, which are not well
approximated by our model, we still perform competi-
tively. In particular when the noise level is high we often
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Degradation PSNR Denoising Results SSIM Index Denoising Results
Image σz Degraded Proposed BM3DSAPCA KSVD PLOW Proposed BM3DSAPCA KSVD PLOW
Aloe 10 28.14 41.83 42.35 41.16 36.17 0.9908 0.9901 0.9832 0.9699

(512× 512) 25 20.18 35.51 34.24 32.91 31.84 0.9652 0.9549 0.9308 0.9263
50 14.16 30.91 30.00 28.77 28.91 0.9202 0.8949 0.8438 0.8386
75 10.63 28.80 27.50 26.64 27.07 0.8866 0.7910 0.7683 0.7454
100 8.14 27.57 25.95 25.27 25.76 0.8636 0.7298 0.7039 0.6790

Art 10 28.14 41.80 42.82 41.08 36.58 0.9930 0.9917 0.9854 0.9771
(512× 512) 25 20.18 35.58 34.77 33.65 31.17 0.9725 0.9634 0.9465 0.9293

50 14.16 30.33 29.35 28.11 28.23 0.9277 0.8959 0.8465 0.8397
75 10.63 28.17 27.03 26.06 26.50 0.8947 0.7985 0.7721 0.7474
100 8.14 26.81 25.59 24.84 25.28 0.8674 0.7421 0.7106 0.6838

Baby 10 28.14 45.40 44.65 42.73 39.57 0.9958 0.9941 0.9878 0.9851
(512× 512) 25 20.18 38.44 37.08 35.71 35.88 0.9825 0.9733 0.9542 0.9572

50 14.16 34.44 32.62 31.53 32.27 0.9634 0.9301 0.8894 0.8846
75 10.63 32.89 29.67 29.20 30.05 0.9518 0.8309 0.8233 0.8066
100 8.14 31.77 27.72 27.49 28.58 0.9421 0.7635 0.7562 0.7535

Bowling ball 10 28.14 45.91 46.23 44.12 39.80 0.9953 0.9947 0.9873 0.9862
(512× 512) 25 20.18 39.75 38.07 36.24 34.93 0.9858 0.9777 0.9558 0.9540

50 14.16 34.72 32.71 31.25 31.62 0.9673 0.9342 0.8853 0.8829
75 10.63 32.69 29.81 28.82 29.44 0.9550 0.8362 0.8136 0.8007
100 8.14 31.33 27.99 27.04 27.88 0.9438 0.7820 0.7422 0.7339

Average 34.91 33.59 32.40 31.56 0.9482 0.8885 0.8643 0.8541

TABLE II: PSNR and SSIM index comparisons of the proposed denoising algorithm for depth images. The denoising algorithms used for
comparison are BM3DSAPCA [22], PLOW [29] and KSVD [30] . The best result is shown in bold and σz denotes the standard deviation
of the noise.

(a) Original. (b) Noisy, σz = 25. (c) Denoised as proposed. (d) Denoised with [22].

Fig. 10: Visual comparison of the proposed denoising algorithm with the BM3D-SAPCA algorithm [22] for the bowling ball depth image.

outperform the current state of the art because, in these
situations, it is only possible to restore a coarse version
of the image, which is very often piecewise smooth.

For depth images, which are of course much closer to
our model, we outperform the current state of the art in
almost all cases.

B. Interpolation from irregularly sampled data

We tested our interpolation algorithm by randomly
removing between 75% and 95% of the image pixels.
Tables III and IV show the interpolation results for
natural and depth images respectively and Figs. 11 and
12 provide visual comparisons. For natural images we
used the full prune-join algorithm with 256 shifts of
cycle spinning and for depth images we, again, used the

full prune-join algorithm, but with just 64 shifts. The
proposed method and non local interpolation algorithm
are unsupervised, since we use a fixed λ. In order for
a fair comparison we used the fixed parameters, given
in the kernel regression software, whenever possible.
However, in order to produce competitive results in high
degradation cases, we tuned the kernel size when 95%
of the pixels were removed.

Like denoising we are behind non local methods on
natural images in low degradation cases; however, when
the degradation is high, we often produce state of the art
results. Finally, for depth images we produce the best
performance in all cases.
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Degradation PSNR Interpolation Results SSIM Index Interpolation Results
Image % Degraded NL Proposed KR Bi-Cubic NL Proposed KR Bi-Cubic
Boat 75 6.60 29.38 28.67 27.84 27.41 0.8573 0.8323 0.8153 0.8065

(512× 512) 80 6.32 28.28 27.69 27.19 26.57 0.8286 0.7991 0.7910 0.7762
85 6.05 26.79 26.40 26.04 25.57 0.7878 0.7534 0.7554 0.7382
90 5.80 25.14 25.14 23.96 24.34 0.7329 0.6970 0.6908 0.6863
95 5.56 23.10 23.39 21.40 22.52 0.6406 0.6055 0.5901 0.6067

Cameraman 75 6.83 25.33 24.95 24.73 23.88 0.8677 0.8459 0.8379 0.8253
(256× 256) 80 6.56 24.19 24.16 23.90 23.11 0.8399 0.8210 0.8146 0.7996

85 6.29 22.94 23.15 22.63 22.05 0.8032 0.7856 0.7812 0.7639
90 6.04 21.86 22.42 20.95 21.14 0.7599 0.7476 0.7302 0.7221
95 5.81 20.13 20.81 17.68 19.36 0.6915 0.6744 0.6430 0.6551

Hill 75 7.62 30.44 29.91 29.44 28.99 0.8487 0.8181 0.8113 0.8117
(512× 512) 80 7.34 29.42 29.08 28.76 28.19 0.8188 0.7865 0.7869 0.7813

85 7.08 28.19 28.06 27.73 27.31 0.7781 0.7448 0.7518 0.7424
90 6.83 26.89 26.96 25.82 26.25 0.7253 0.6886 0.6878 0.6920
95 6.59 24.99 25.19 23.84 24.22 0.6406 0.6030 0.5987 0.6167

Lena 75 6.93 33.18 32.21 32.10 31.31 0.9102 0.8945 0.8967 0.8885
(512× 512) 80 6.65 31.80 31.07 31.37 30.20 0.8924 0.8754 0.8834 0.8702

85 6.38 30.24 29.74 30.09 29.00 0.8711 0.8499 0.8626 0.8472
90 6.14 28.36 28.11 27.13 27.48 0.8373 0.8117 0.8127 0.8124
95 5.90 25.67 26.14 24.91 24.94 0.7793 0.7551 0.7587 0.7548

Man 75 7.70 29.49 29.12 28.99 28.49 0.8700 0.8407 0.8415 0.8445
(512× 512) 80 7.42 28.47 28.26 28.24 27.58 0.8424 0.8103 0.8197 0.8153

85 7.15 27.37 27.23 27.19 26.66 0.8078 0.7692 0.7886 0.7799
90 6.91 26.02 26.03 25.08 25.46 0.7562 0.7144 0.7284 0.7288
95 6.67 24.18 24.30 22.50 23.55 0.6699 0.6305 0.6301 0.6476

Peppers 75 6.83 29.37 27.22 25.78 26.71 0.9091 0.8926 0.8922 0.8783
(256× 256) 80 6.55 27.80 26.07 25.10 25.56 0.8838 0.8701 0.8751 0.8547

85 6.29 26.67 24.84 24.14 24.50 0.8657 0.8427 0.8491 0.8278
90 6.04 25.18 23.40 21.93 23.44 0.8312 0.7980 0.7897 0.7896
95 5.81 22.65 21.60 20.15 21.35 0.7597 0.7170 0.7081 0.7150

Average 26.78 26.38 25.55 25.57 0.8036 0.7758 0.7741 0.7693

TABLE III: PSNR and SSIM index comparisons of the proposed interpolation algorithm for natural images. The interpolation algorithms
used for comparison are NL, the non-local algorithm presented in [27], KR, adaptive kernel regression [26], and bi-cubic interpolation. The
best result is shown in bold and % denotes the percentage of pixels that have been randomly removed.

(a) Original. (b) 90% Missing Pixels. (c) Interpolated as preposed. (d) Interpolated with [27].

Fig. 11: Visual comparison of the proposed interpolation algorithm with the non-local algorithm presented in [27] for the hill natural image.

VII. CONCLUSION

We have presented a novel quadtree structured image
approximation algorithm, which can be used for image
denoising and interpolation. The algorithm achieves state
of the art performance when the original image is very
close to our piecewise polynomial model and is very
competitive for natural images in high degradation cases.

The efficiency of our algorithm has been vastly improved
by exploiting the mathematics of updating matrix factori-
sations.

Simulation results suggest that this framework would
be ideal for depth image applications; however, we note
that in many practical depth sensing setups a colour
image is obtained as well as a depth image. Exploiting
the additional information provided by this colour image
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Degradation PSNR Interpolation Results SSIM Index Interpolation Results
Image % Degraded Proposed NL KR Bi-Cubic Proposed NL KR Bi-Cubic
Aloe 75 11.17 31.05 30.60 30.73 29.32 0.9532 0.9516 0.9491 0.9303

(512× 512) 80 10.89 30.42 29.87 29.89 28.77 0.9454 0.9426 0.9390 0.9202
85 10.62 29.64 28.82 28.54 27.97 0.9344 0.9283 0.9243 0.9062
90 10.37 28.72 27.83 26.79 27.15 0.9193 0.9099 0.8952 0.8883
95 10.14 27.21 26.23 25.61 25.60 0.8871 0.8767 0.8700 0.8584

Art 75 6.67 29.76 29.03 29.33 28.13 0.9469 0.9433 0.9411 0.9257
(512× 512) 80 6.39 29.11 28.19 28.37 27.42 0.9392 0.9337 0.9319 0.9153

85 6.12 28.42 27.65 27.48 27.02 0.9286 0.9241 0.9200 0.9054
90 5.88 27.52 26.76 25.47 26.21 0.9122 0.9080 0.8951 0.8886
95 5.64 26.03 25.24 24.67 24.37 0.8784 0.8768 0.8701 0.8600

Baby 75 11.80 35.97 34.82 35.58 34.19 0.9774 0.9738 0.9759 0.9691
(512× 512) 80 11.52 35.45 34.15 34.91 33.63 0.9745 0.9699 0.9723 0.9651

85 11.25 34.50 33.15 33.62 32.83 0.9700 0.9633 0.9656 0.9594
90 11.01 33.81 32.29 32.04 32.16 0.9649 0.9563 0.9557 0.9530
95 10.77 32.53 30.65 31.20 30.97 0.9540 0.9456 0.9465 0.9422

Bowling ball 75 7.50 34.59 32.94 33.73 32.14 0.9789 0.9758 0.9767 0.9691
(512× 512) 80 7.22 33.88 32.07 32.88 31.35 0.9757 0.9710 0.9725 0.9643

85 6.95 33.36 31.41 31.54 30.82 0.9720 0.9665 0.9658 0.9592
90 6.70 32.21 30.43 29.31 29.93 0.9656 0.9586 0.9542 0.9507
95 6.46 30.34 29.11 29.39 27.89 0.9497 0.9480 0.9482 0.9397

Average 31.23 30.06 30.05 29.39 0.9464 0.9412 0.9385 0.9285

TABLE IV: PSNR and SSIM index comparisons of the proposed interpolation algorithm for depth images. The interpolation algorithms used
for comparison are NL, the non-local algorithm presented in [27], KR, adaptive kernel regression [26], and bi-cubic interpolation. The best
result is shown in bold and % denotes the percentage of pixels that have been randomly removed.

(a) Original. (b) 90% Missing Pixels. (c) Interpolated as preposed. (d) Interpolated with [27].

Fig. 12: Visual comparison of the proposed interpolation algorithm with the non-local algorithm presented in [27] for the aloe depth image.

is an area of potential future work. Further research into
improved regularisation parameter selection may also
produce improved results, particularly for interpolation.

APPENDIX A
UPDATING A QR DECOMPOSITION

In Section III-C we gave an example of approximating
a tile using two similar edges: the first approxima-
tion was calculated using the orthogonal matrix of the
thin QR decomposition to directly calculate the inner
products; the second approximation was calculated, at
much reduced computational cost, by applying rank one
updates to the first QR decomposition. We only gave
an example of adding a row and neglected removing a
row and the additional complications of maintaining full

rank, which we will now address. In what follows we
assume we have the thin QR decomposition of a full
rank matrix B ∈ RN×d:

B = QR,

where Q ∈ RN×d is orthogonal and R ∈ Rd×d is upper
triangular. In the next four subsections we summarise
how to update the QR decomposition when we add a
row to B, remove a row from B, add a column to
B and remove a column from B. This is covered in
detail in [11] as well as many text books (e.g. [32] and
[33]). In each of these subsections we will also derive
the formulas to update the coefficientsQT t: this material
is a simple extension of the updating formulas however
we have never seen it in print. In the fifth and final
subsection of this appendix we will explain how we can
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add and remove rows to B, whilst preventing B from
becoming rank deficient. This is done by adding and
removing columns at the correct moment.

A. Adding a row to B

The row βT =
[
β1 β2 . . . βd

]
can be added to

B using

B+ =

[
B

βT

]
= Q+R+,

where

Q+ =

[
Q 0
0T 1

]
GT and R+ = G

[
R

βT

]
.

G ∈ R(d+1)×(d+1) is the product of d Givens matrices
G = GdGd−1 . . .G1 which reflect βT into the diagonal
elements of R. G1 reflects β1 into r11, G2 reflects β2
into r22 and so on:

GdGd−1 . . .G1

[
R

βT

]
=

[
R+

0T

]
.

The coefficients Q+
T t+ for a tile vector t+ ∈ RN+1

can be calculated from

Q+
T t+ =

([
Q 0
0T 1

]
GT

)T
t+

= G

[
QT 0
0T 1

] [
t

t+[N + 1]

]
= G

[
QT t

t+[N + 1]

]
.

B. Removing a row from B

Let βT be the last row of the matrix B and B− ∈
R(N−1)×d be the the remainder of the matrix; i.e.,

B =

[
B−
βT

]
.

We can remove this row using

B− = Q−R−

where

Q− =
[
Q̃− − Q̃−ρ

rdd

]
GT and R− = G

[
R
0T

]
.

Here, ρT =
[
ρ1 ρ2 . . . ρd

]
is the last row of Q

and Q̃− is the remainder of the matrix; i.e.,

Q =

[
Q̃−
ρT

]
and rdd =

√
1− ρTρ.

G ∈ R(d+1)×(d+1) is the product of d Givens matrices
G = GdGd−1 . . .G1 which reflect the elements of ρ

into rdd. G1 reflects ρd into rdd, G2 reflects ρd−1 into
the modified rdd and so on. This has the effect that[

Q̃− − Q̃−ρ
rdd

ρT rdd

]
GT =

[
Q− 0
0T ±1

]
.

If t− ∈ RN−1 is the tile vector over the reduced
region, i.e.

t =

[
t−
t[N ]

]
,

then the expression for the coefficients, Q−
T t−, can be

derived as[
Q− 0
0T ±1

]T
t =

([
Q̃− − Q̃−ρ

rdd
ρT rdd

]
GT

)T
t

= G

[
Q̃−

T
ρ

−ρ
T Q̃−

T

rdd
rdd

]
t

= G

[
QT t

r2ddt[N ]−ρT (QT t−ρt[N ])
rdd

]

Q−
T t− = G

[
QT t

t[N ]−ρTQT t√
1−ρTρ

]
. (13)

C. Adding a column to B

To add a column bi into the i-th position of B we first
need to split B into two matrices BL and BR where
BL contains the first i − 1 columns of B and BR the
last d− i+ 1 columns. We use similar notation to split
R:

B ≡
[
BL BR

]
= Q

[
RL RR

]
≡ QR. (14)

The new column bi is inserted using

B+ ≡
[
BL bi BR

]
= Q+R+,

where

Q+ =
[
Q bi−QQT bi

rdd

]
GT ,

R+ = G

[
RL QTbi RR
0T rdd 0T

]
and

rdd =

√
‖bi‖2 − ‖QTbi‖2.

G ∈ R(d+1)×(d+1) is the product of d − i Givens
matrices, G = Gd−iGd−i−1 . . .G1, constructed to

introduce zeros in the bottom d− i entries of
[
QTbi
rdd

]
.

G1 reflects rdd into QTbi[d−1], G2 reflects the updated
QTbi[d− 1] into QTbi[d− 2] and so on.



IEEE TRANSACTIONS ON IMAGE PROCESSING 15

To calculate the coefficients Q+
T t for a tile vector

t ∈ RN we can use

Q+
T t =

([
Q bi−QQT bi

rdd

]
GT
)T

t

= G

[
QT t(

bi−QQT bi
rdd

)T
t

]

= G

[
QT t

bi
T t−(QT bi)

TQT t√
‖bi‖2−‖QT bi‖2

]
.

D. Removing a column from B

To remove the i-th column, bi, from B we need to
split B and R:

B ≡
[
BL bi BR

]
= Q

[
RL ri RR

]
≡ QR

(15)
where BL and BR are the first i − 1 and last d − i
columns of B respectively and similarly for RL, RR
and R.

We can remove bi from the system using

B− ≡
[
BL BR

]
= Q−R−,

where

Q− = QGT and R− = G
[
RL RR

]
.

G ∈ Rd×d is the product of d − i Givens matrices,
G = Gd−iGd−i−1 . . .G1, constructed to reflect the
d−i entries of

[
RL RR

]
that are below the diagonal

into the diagonal. G1 reflects rdd into rd−1d, G2 reflects
rd−1d−1 into rd−2d−1 and so on.

The calculation of the coefficients, Q−
T t, for a tile

vector t ∈ RN is very simple in this case:

Q−
T t = (QGT )T t = GQT t.

E. Maintaining full rank when adding and removing
rows

When moving a pixel from one side of the edge to
the other, we need to add a row to one QR decom-
position and remove a row from another. This process
can produce a rank deficient system, if we do not take
preventative measures.

We can see from (13) that removing a row will be
problematic if ρTρ = 1. We must therefore check, before
removing a row, that ρTρ < 1. If this is not the case we
remove a column from the system to maintain full rank.

When adding a row the system cannot become rank
deficient; however, it is possible that adding a row will
allow a previously removed column to be added back to
the system whilst maintaining full rank. A column b can
be added to a QR decomposition without causing rank
deficiencies if ‖b‖2 > ‖QTb‖2.
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