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Abstract—In this paper, we consider the sparse signal recovery
problem when the dictionary is a Fourier frame. Based on
the annihilation relation, the sparse signal recovery from noisy
observations is posed as a structured total maximum likelihood
(STML) problem. The recent structured total least squares
(STLS) approach for finite rate of innovation signal recovery
can be viewed as a particular version of our method. We
transform the STML problem which has an additional log-
det term into a form similar to the STLS problem. It can
be effectively tackled using an iterative quadratic maximum
likelihood like algorithm. From simulation results, our proposed
STML approach outperforms the STLS based algorithm and the
state-of-the-art sparse recovery algorithms.

Index Terms—Sparse representation, Finite Rate of Innovation,
Structured Total Least Squares, Structured Total Maximum
Likelihood

I. INTRODUCTION

Consider a standard sparse representation problem where
the goal is to find a K-sparse signal x ∈ CM from noisy
observation y ∈ CN :

y = Dx + n, (1)

where D ∈ CN×M is the dictionary with N < M , ||x||0 = K

with ||x||0
def
= #{n : |x[n]| 6= 0}, and n is complex-valued

additive white Gaussian noise.
As l0 norm is not convex, the original problem is intractable.

Instead, convex relaxation methods, such as Basis Pursuit
(BP) [1] and LASSO [2], relax the non-convex l0 norm to a
convex l1 norm. Greedy methods iteratively update non-zero
elements of the solution based on the correlation between the
residual signal and the dictionary. The state-of-the-art greedy
algorithms include Orthogonal Matching Pursuit (OMP) [3],
[4], [5], [6], Subspace Pursuit (SP) [7], and Compressive
Sampling Matching Pursuit (CoSAMP) [8].

Sparse signal recovery is also related to the finite rate of
innovation (FRI) theory [9], [10], [11], [12] and the super-
resolution for line spectral estimation [13], [14], [15]. Both ap-
proaches focus on continuous time sparse signals. In particular,
FRI theory shows that perfect reconstruction can be achieved
for classes of non-bandlimited signals including streams of
pulses, piecewise sinusoidal and piecewise polynomial signals.
When the dictionary D is a Fourier frame or a Gabor frame,
the observed signal is a superpostion of complex exponentials.
As the columns of the dictionary are highly coherent, the
conventional sparse recovery algorithms may not be applica-
ble. However, it is possible to solve the sparse representation

problem using variations of FRI signal recovery algorithms
[10], [16], [17], [18]. The sparse representation problem can
be considered as a discretized FRI signal recovery problem
where the pulse locations can only be on a uniform grid.

Recently, a model fitting based algorithm [19] tries to
recover the FRI signal using structured total least squares
(STLS) [20], [21]. The FRI model fitting problem is formu-
lated as minimizing the residual in the noisy observation with
a low rank constraint represented by an annihilation relation.
It achieves the best performance in FRI signal reconstruction
compared with state-of-the-art algorithms [10], [16], [17],
[22]. At the same time, Beck and Eldar [23] have proposed a
structured total maximum likelihood (STML) method as a way
to solve structured least square problems. They solved it by
using BFGS algorithm which is an iterative gradient descent
based method. However, the computational complexity is very
high.

In this paper, we try to solve the sparse signal recovery prob-
lem when the dictionary is a Fourier frame using the STML
framework. With an additional log-det term, the STML be-
comes more difficult to solve. Inspired by the linear constraint
proposed in [19], we transform the STML formulation with
the log-det term into a form similar to that of STLS. Using an
iterative algorithm similar to the iterative quadratic maximum
likelihood (IQML) [20] method, the sparse signal can be
effectively estimated using our proposed STML method. From
simulation results, our proposed STML algorithm achieves
more robust performance compared with the STLS based
methods and the state-of-the-art sparse recovery algorithms.

The rest of the paper is organized as follows: Section
2 formulates the problem of recovering sparse signal from
noisy observations observed with a Fourier frame. Section 3
reviews STLS approach [19] for FRI signal recovery. Section
4 introduces our proposed sparse signal recovery with STML
and a novel iterative algorithm. Section 5 presents simulation
results and Section 6 draws conclusions.

II. PROBLEM FORMULATION

We assume we observe y = Fx with F ∈ CN×M

being the Fourier frame and x ∈ CM is a K-sparse vector.
Consequently, y ∈ CN is the sum of K exponentials:

y[n] =
1√
N

K−1∑
k=0

aku
n
k , (2)



where 0 ≤ n < N , 0 ≤ m0 < ... < mK−1 < M , uk =
ej

2π
N mk , and ak are non-zero complex-valued weights. Hence,

the indices mk corresponds to the non-zero entries in x and
ak are the corresponding amplitudes.

Given observation y, the sparse signal x is typically recov-
ered using convex relaxation techniques [1], [2]. More recent
work [24] has advocated the use of methods based on FRI
theory [9], [10], [19], [25], [26] as an alternative to solve the
sparsity recovery problem.

Central to FRI theory is the use of Prony’s method. Prony’s
method is based on the observation that when y is a sum of
exponentials as in Eqn. (2), then there exists an annihilating
filter h such that:

y ∗ h = 0. (3)

The filter satisfying the above equality has z-transform:

H(z) =
K−1∏
k=0

(z − uk). (4)

That is, the roots of H(z) correspond to the non-zero entries
of x. Therefore, the knowledge of h is sufficient to retrieve
x if 2K ≤ N .

Eqn. (3) can be written in matrix form as follows:

B(y)h = 0, (5)

where B(y) ∈ C(M−K)×(K+1) is the Toeplitz lifted matrix
for observation y with B(y)m,i = y[m− i].

In the noiseless case, B(y) is a rank-deficient matrix and
has constant values along its diagonals. The annihilating filter
h ∈ CK+1 belongs to the null-space of B(y). However, if
noise is present ỹ = y + n then B(ỹ) becomes full rank.
Here we assume complex-valued noise n with i.i.d. Gaussian
distribution in both the real and the imaginary parts with zero
mean and variance σ2

e/2.
The objective is to denoise the Toeplitz matrix (i.e. find an

approximated Toeplitz matrix which has minimum distance
with B(ỹ) and satisfies the low rank property). With the
corresponding annihilating filter, the non-zero elements in the
sparse signal x can be identified by retrieving the roots of
H(z). The amplitudes ak can then be estimated using least
squares.

III. FRI SIGNAL RECOVERY WITH STLS

In [19], FRI signal recovery is formulated as a model fitting
problem using structured total least squares (STLS) [21]:

(STLS) : min
y,h
||y− ỹ||22, s.t.B(y)h = 0, and ||h||2 = 1, (6)

where ỹ and y are the observed noisy exponentials and the
desired clean signal, and h ∈ CK+1 is the annihilating filter
for Toeplitz matrix B(y) ∈ C(M−K)×(K+1).

STLS is a non-convex problem. The constraints define a
non-convex set due to the rank deficiency requirement on
B(y). By introducing a vector-valued Lagrange multiplier u ∈
CM−K and a scalar Lagrange multiplier λ, the constrained

optimization problem can be reformulated as an unconstrained
one:

min
y,h

{
||y − ỹ||2 + 2R{uHB(y)h}+ λ(||h||2 − 1)

}
, (7)

where R(·) represents the real part of the argument.
As B(y)h represents y ∗ h and due to the commutativity

property of convolution, the right dual matrix R(·) of B(·) is
also a Toeplitz matrix and is defined as [19]:

B(y)h = R(h)y. (8)

Let us further define Dh = R(h)R(h)H . Based on the
optimality conditions of Eqn. (7), the l2 distance between y
and ỹ can be expressed as:

||y − ỹ||2 = hHS(h)h, (9)

where S(h) = B(ỹ)HD−1
h B(ỹ).

As S(h) depends on h, this problem cannot be directly min-
imized. The iterative quadratic maximum likelihood (IQML)
scheme [20], which assumes S(h) remains constant at each it-
eration and solves for h, can be applied to find an approximate
solution. Doǧan et al. [19] propose to modify the quadratic
constraint ||h||2 = 1 to a linear constraint lHh = 1 with
l = [1, 0, ...0]T which enforces the annihilating filter to be
updated on a hyper-plane and excludes the need of solving a
eigenvalue problem at each iteration. The annihilating filters
update is then given by:

h(i) =
S(h(i−1))−1l

lHS(h(i−1))−1l
. (10)

A randomized linear constraint where the coefficients of
l are randomly drawn from N (0, 1) + jN (0, 1) shows a
superior performance compared to the linear constraint. The
annihilating filter coefficients at the first iteration h(0) are
randomly generated. This randomized initialization scheme
enables a higher flexibility and improves the robustness of
the STLS algorithm.

IV. SPARSE SIGNAL RECOVERY WITH STRUCTURED
TOTAL MAXIMUM LIKELIHOOD

Inspired by [23], a structured total maximum likelihood
(STML) expression for sparse signal recovery is proposed in
this section. It shows that STLS can be derived from STML
and provides an easier derivation for STLS compared with that
in [19]. Based on the (randomized) linear constraint scheme,
we propose an effective IQML-like iterative algorithm for the
STML formulation.

A. Structured Total Maximum Likelihood Formulation

By assumption, the residual n = ỹ − y is a zero mean
normal random variable with variance σ2

e .
Proposition 1: If h is the optimal annihilating filter for B(y),
B(ỹ)h follows a normal distribution:

B(ỹ)h ∼ N
(
0, σ2

eDh

)
.



Algorithm 1 Sparse Signal Recovery with STML
Input: Noisy observation ỹ, dictionary D, and K > 0.
Output: K-sparse signal x̂

1: for i = 1 to numberofinitializations do
2: Randomly initialize h(0), initialize l, set σ2

e = 0
3: for j = 1 to numberofiterations do
4: Build SE(h(j−1)) as in Eqn.(15)
5: Solve for h(j) as in Eqn.(16)
6: Estimate σ(j)2

e as in Eqn.(17)
7: Find the roots u(j) of h(j) as in Eqn.(4)
8: Retrieve the K-sparse signal x(j) = S(u(j))
9: Reconstruction error e(j) = ||ỹ −Dx(j)||2

10: if e(j) < emin then
11: emin=e(j)

12: x̂ = x(j)

13: end if
14: if |e(j−1) − e(j)|/e(j) < ε then
15: Terminate the inner loop
16: end if
17: end for
18: end for

Proof : If the annihilating filter h is in the null-space of a
rank-deficient matrix B(y), we can decompose B(ỹ)h into
B(ỹ)h = B(y)h + B(n)h = R(h)n.

V ar(B(ỹ)h) = E{R(h)nnHR(h)H} = σ2
eDh. (11)

Thus, its mean and variance are µ(B(ỹ)h) = 0, and
V ar(B(ỹ)h) = σ2

eDh, respectively. �
The annihilating filter h which maximizes the likelihood of

observation ỹ is:

ĥML = argmax
h

f(ỹ|h), (12)

where f(ỹ|h) =
exp(hHB(ỹ)HD−1

e B(ỹ)h)√
det(2πDe)

, and De = σ2
eDh.

The maximum likelihood estimator can be found by mini-
mizing the negative log likelihood:

(STML) : min
h
{hHS(h)h + σ2

e logdet(σ2
eDh)}. (13)

Compared with Eqn.(9), there is a logarithmic regularization
term in Eqn. (13) which could serve to stabilize the solution.
If De in the log-det term is regarded as a constant during
each iteration, the optimization for STML and STLS become
the same. As the log-det will be zero when there is no noise
(i.e. σ2

e = 0), the STML formulation in Eqn. (13) reduces to
the STLS formulation in noiseless case. Bresler and Macovski
[20] gave the insight that the STLS formulation in Eqn. (9)
is the negative log likelihood for w = D

− 1
2

h B(ỹ)h which
follows N (0, σ2

e), and it is not injective for the mapping from
ỹ to w. The conditional density of ỹ could be different from
that of w, while our STML formulation considers the direct
negative log likelihood for ỹ.

B. Iterative Algorithm for STML

The log-det term is smooth yet non-convex and usually
taken as the surrogate of rank. With one more non-convex
term, STML seems more difficult to solve. We propose an
IQML-like iterative algorithm using the (randomized) linear
constraint. Based on the negative log likelihood obtained in
Eqn. (13), and the linear constraint lHh = 1, we modify the
STML formula as follows:

hHS(h)h + σ2
e logdet(σ2

eDh)

=hH
{
S(h) + llHσ2

e logdet(σ2
eDh)

}
h. (14)

The regularized optimization problem has been transformed
into something similar to Eqn. (9) in STLS method:

min
h

hHSE(h)h, s.t.lHh = 1, (15)

where SE(h) = S(h) + E(h) with E(h) = llHσ2
e logdet(σ2

e

Dh) which is a weighted rank-1 matrix llH weighted by
the log-det term. Since logdet(Dh) is not invariant to the
magnitude of h, we use the normalized ĥ = h/||h||2 to
construct Dĥ for SE(h).

Similar to IQML algorithm [20] and Doǧan et al.’s approach
[19], we use an iterative method to consistently improve esti-
mation for h by assuming that SE(h) remains constant during
each iteration and is constructed using previous estimates of
h. The updated annihilating filter h(i) at iteration i is therefore
given by:

h(i) =
SE(h(i−1))−1l

lHSE(h(i−1))−1l
. (16)

As σ2
e corresponds to the variance of the residual signal

which cannot be annihilated by h, the noise variance at
iteration i can be updated using Eqn. (17). This helps our
algorithm get rid of the requirement of a prior knowledge on
σ2
e :

σ(i)2

e = h(i−1)HS(h(i−1))h(i−1). (17)

Algorithm 1 summarizes our proposed iterative approach
for sparse signal recovery using structured total maximum
likelihood. In [19], the use of multiple random initializations
increases the probability of finding a good annihilating filter
and enhances the robustness of the algorithm. The same
strategy is also used here. For each random initialization,
the initial annihilating filter is randomly generated. At each
iteration, an annihilating filter is estimated according to (16)
by using the filter estimated during the previous iteration.
With the updated filter, its roots can be retrieved and the
corresponding sparse signal can be estimated. Let us denote
S(u) as the corresponding K-sparse signal of the roots u.
The reconstruction error has been taken as the selection
criterion for the best K-sparse signal x̂. The inner loop will
be terminated if the percentage of the difference between
consecutive reconstruction error is smaller than a small number
ε. By default, we set the number of initializations to 5, the



(a) SNR = 20 dB (b) SNR = 30 dB (c) SNR = 40 dB

Fig. 1. Probability of exact support retrieval of different algorithms when the dictionary is a Fourier frame with size of 128× 256.

(a) SNR = 20 dB (b) SNR = 30 dB (c) SNR = 40 dB

Fig. 2. Probability of exact support retrieval of different algorithms when the dictionary is a Fourier frame with size of 128× 512.

number of iterations to 50, and ε = 0.01. If linear constraint
is applied, we set l = [1, 0, ...0]T . For randomized linear
constraint, l is randomly generated.

V. SIMULATION RESULTS

We compare our proposed STML algorithm with the STLS
based method [19] and the state-of-the-art sparse recovery
algorithms including OMP, SP, and BPDN. We implemented
STLS and OMP. The code of SP used for testing was
downloaded from author’s website. BPDN was realized using
CVX package. Randomized linear constraint is applied for
both STLS and STML as it provides better performance than
linear constraint. For each sparsity level and (signal-to-noise
ratio) SNR, 100 different sparse signals have been generated.
The SNR (dB) is defined as 10log10( 1

M ||y||
2)/σ2. Fig. 1

and Fig. 2 show the simulation results on the probability of
retrieving the exact sparse signal by different algorithms. The
dictionary is a Fourier frame with size 128 × 256 and size
128× 512 in Fig.1 and in Fig.2, respectively. The amplitudes
of the sparse signal are drawn from N (0, 1) for both real
and imaginary part. Complex additive white Gaussian noise,
which follows N (0, σ2/2) + jN (0, σ2/2), is added into the
clean superimposed exponential samples. Three different SNR
scenarios were evaluated, including 20 dB, 30 dB and 40 dB.

In Fig. 1, the dictionary is a 2× over-complete DFT matrix.
All methods have a high probability of success when the
sparsity level is low. Their performances will be significantly
deteriorated as the sparsity level increases. In general, BPDN
has better performance than OMP and SP. STML outperforms
STLS in most cases and leads other methods with a large
margin at SNR = 30 dB and 40 dB. At lower SNR, it is not as

good as the conventional algorithms. In Fig. 2, the dictionary
is a 4× over-complete DFT matrix and has stronger coherence.
Due to the increased coherence, performance of methods based
on convex relaxation deteriorates. BPDN can hardly recover
the correct sparse signal even at very low sparsity level. We
found that the exact support retrieval probability of OMP
gradually decreases as the sparsity level increases while SP
has a sudden drop on the probability of support retrieval when
the sparsity level exceeds 8. In general, STML achieves the
best performance in most cases.

VI. CONCLUSIONS

In this paper, we considered the sparse signal recovery
problem over an over-complete Fourier frame. A novel STML
method has been presented for sparse signal recovery lever-
aging the idea from FRI signal recovery. It can be interpreted
as a generalization of the recent STLS based method. Based
on a linear constraint, STML problem has been converted
into a similar form as the STLS which could be iteratively
solved using an IQML-like method. From simulation results,
our proposed STML method outperforms the state-of-the-art
algorithms for highly coherent dictionaries.

For future works, the STML algorithm should be further
improved at low SNR scenarios.
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