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Abstract—We consider the spatiotemporal sampling of diffu-
sion fields induced by M point sources, and study the associated
inverse problem of recovering the initial parameters of the
unknown sources. In particular, we focus on characterising qual-
itatively the error of the obtained source estimates. To achieve
this, we obtain an expression with which we can trade the sensor
density for performance accuracy. In other words, by evaluating
the optimal sampling instant for a given sensor density—and
using the corresponding field samples at that instant—we can
expect to obtain an improvement in the estimation performance
when compared to an arbitrary sampling instant. Finally, several
numerical simulations are presented, to support the theoretical
results obtained.

I. INTRODUCTION

Diffusion is defined as the movement of particles from
regions of high concentrations to regions of lower concentra-
tions, until an equilibrium is established. Of huge importance
is its role as an accurate model for the transport mechanism
behind many naturally occurring phenomena. For example, it
models the evolution of the thermal field when a heat source
is applied to a conducting medium [1], the spreading of fungal
diseases in precision agriculture [2], as well as the propagation
of bio-chemical substances and leakages in environmental
monitoring [3]. In these examples, and beyond, a robust
approach for recovering the source given measurements of the
field has been a topic of great interest.

In a recent work [4], an efficient solution to the inverse
source problem (ISP) for a class of linear partial differential
equations (PDEs) was proposed. In that approach, a sequence
of general measurements is computed from a specific family
of weighted linear sums of the field samples. Specifically,
the desired sequence of weights, in the sums, are those that
reproduce a family of exponentials from weighted and summed
translates of the Green’s function for the underlying field’s
PDE model. Under this condition, the sequence of generalised
measurements obtained are of a Prony-type system, from
which we can recover the unknown sources.

The aim of this work is to analyse the accuracy of that
approach for diffusion fields. First we argue that performance,
given noiseless sensor measurements, is linked to the accuracy
of the exponential reproduction step. In other words, picking
coefficients that accurately reproduce exponentials means re-
liable source estimates can be obtained. Therefore by inves-

tigating the error associated with the function approximation,
we aim to gain a better understanding of how to achieve the
best estimation performance for a given sensor density. The
answer to such a question is paramount when designing a
sensor network for environmental monitoring [5], [6].

This remainder of this paper has been divided into four
main parts. First, we present an overview of the framework
for solving inverse diffusion source problems in Section II.
We then derive the desired error expressions in Section III
and present numerical results in Section IV to reinforce our
approach. The paper is then concluded in Section V.

II. SOLVING THE INVERSE DIFFUSION SOURCE PROBLEM

Mathematically a diffusion field u(x, t) over space and time,
induced by a source distribution f(x)δ(t), is governed by:

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x)δ(t),

where µ is the diffusivity of the medium and δ(t) is the Dirac
delta distribution. Under a Sommerfeld radiation condition, it
can be shown that the Green’s function for this PDE is [7],

g(x, t) =
1

(4πµt)d/2
e−
‖x‖2
4µt H(t), (1)

where d = {1, 2, 3} is used to indicate the number of spatial
dimensions—one, two or three, respectively—and H(t) is the
unit step function. Consequently, the solution to the forward
problem may be written as:

u(x, t) = g(x, t) ∗ f(x) =

∫
x′∈Rd

g(x− x′, t)f(x′)dx′.

The goal of the inverse diffusion source problem (IDSP) is
then to recover f(x) from a sequence of sensor measurements
{ϕn,l}n of the diffusion field u(x, t), where ϕn,l = u(xn, tl)
is the field sample obtained at time instant t = tl by the sensor
located at x = xn = n∆x, wherein we have used the multi-
index notation n = (n1, . . . , nd), and the sensor spacing in
each dimension is denoted by ∆x = (∆1, . . . ,∆d). Finally,
for notational simplicity we write n∆x = (n1∆1, . . . , nd∆d).



Our focus herein, will be on the recovery of source distri-
butions, f(x), which can be modelled as a superposition of
M Dirac deltas, i.e.

f(x) =

M∑
m=1

cmδ(x− ξm). (2)

Due to this parametrisation, i.e. Equation (2), recovering
f(x) amounts to finding the M pairs {(cm, ξm)}m. Note that,
although we focus on point sources, the framework can also
be applied to non-localized sources, such as convex polygonal
sources [8] or more generally sources whose spatial support
can be described by an FRI curve model [9]. We defer the
explicit treatment of the estimation errors for such sources to
future works in the area.

A. Source recovery framework: a review

We now outline the framework formally presented by the
authors in [4], [10], where it was shown that the unknown
source parameters, i.e. {cm, ξm}Mm=1 in (2), can be recovered
from the multidimensional sequence1,

R(k)
def
= 〈f(x),Ψk(x)〉x∈Rd , (3)

by using multidimensional variations of Prony’s method [11],
if Ψk(x) is carefully chosen to be the multidimensional
imaginary exponential Ψk(x) = ejk·x, where k ∈ Zd. To see
this, observe that substituting Ψk(x) = ejk·x into (3) yields

R(k) =

M∑
m=1

cme
jk·ξm . (4)

Hence according to (4), R(k) is governed by a power-sum
series. This system can thus be solved for {cm, ξm}Mm=1, given
access to the exact multidimensional sequence {R(k)}Kk=0

where K = (K1,K2, . . . ,Kd) and Ki ≥ 2M − 1 for all
i = 1, 2, . . . , d (see [4], [11], [12]).

Moreover, the sequence (4) can be evaluated from linear
combinations of the sensor measurements. Specifically, for∑

n∈Zd
wn(k, l)ϕn,l = R(k), (5)

to hold true, then it must be required:∑
n∈Zd

wn(k, l)g(xn − x, tl) = Ψk(x). (6)

Naturally, it is necessary to understand whether the so called
exponential reproduction problem—when Ψk(x) = ejk·x in
(6)—is at all possible. To this end, by leveraging from certain
results in function approximation theory, it can be shown that
(6) is exact if and only if g(x, tl) satisfies the generalised
Strang-Fix conditions [4], [13], [14]:

G(−jk, tl) 6= 0 and (7)

G(−jk + j2π`/∆x, tl) = 0 ∀` ∈ Zd\{0}, (8)

1The inner product here is the usual one defined on L2, i.e. the space of
square-integrable functions.

where G(s, tl) =
∫
x∈Rd g(x, tl)e

−s·xdx is the multidimen-
sional (spatial) Laplace transform of g(x, tl). However, when
g(x, tl) does not satisfy the Strang-Fix conditions—as in the
case of the Green’s function (1)—it has been shown that an
approximate exponential reproduction can be achieved [15].
In particular provided G decays fast enough, the coefficients

wn(k, l) =

d∏
i=1

∆xi

ejk·(n∆x)

G(−jk, tl)
, (9)

provides a good approximation to Ψk(x) [15], i.e.

Ψ̂k(x, tl)
def
=
∑
n∈Zd

wn(k, l)g(n∆x − x, tl) ≈ Ψk(x). (10)

Remark 1: The approximation of Ψk(x) with Ψ̂k(x, tl)
depends on the choice of coefficients wn(k, l). For instance,
besides (9) there exists coefficients that ensures a minimum
L2-norm approximation of Ψk(x) [16], whilst another choice
exists which ensures that Ψ̂k(x, tl) interpolates Ψk(x), i.e.
they coincide at x = xn [16]. However, the coefficients (9)
is obtained by simply assuming that the second requirement
of the Strang-Fix condition (8) is approximately satisfied,
meaning G(−jk + j2π`/∆x, tl) ≈ 0, ∀` ∈ Zd\{0}. We will
see later on that G(s, tl) decays exponentially fast with `, for
s = −jk + j2π`/∆x. Qualitatively speaking—if Strang-Fix
is not exactly satisfied—demanding a fast decay will give a
better approximation.
This paper aims to study the accuracy of this approximation
in the specific IDSP set up; in so doing, we will be able to:

1) Understand the extent of the average error introduced in
the computation of the sequence R(k), and;

2) Optimise the sampling instant for a fixed topology when
solving the IDSP, by choosing a tl that minimises the
average approximation error.

III. EXPONENTIAL APPROXIMATION USING TRANSLATES
OF THE GREEN’S FUNCTION

Note that solving the inverse source problem using the
framework above involves three simple steps:

1) Find the exponential reproducing coefficients wn,l(k);
2) Using these coefficients, and the spatial sensor samples,

compute the sequence R(k) using (5), and;
3) Estimate the desired source parameters from {R(k)}k

using multidimensional Prony-like methods.
By studying (3) and also recalling that f(x) is a super-

position of highly localised Dirac delta distributions, we can
conclude that (in addition to the effect of sensor noise) the
errors in the terms of {R(k)} is directly dependent on the
pointwise accuracy of the exponential reproduction. Specifi-
cally, if the pointwise errors of the exponentials reproduced
by using (6) at the precise source locations are large, so too
will the error in {R(k)}k, and vice versa for small errors.

Consequently in order to understand, at least qualitatively,
the errors in the estimates of f(x) from employing the
framework outlined in the previous section, it is useful to



characterise the average approximation error obtained when
we use Ψ̂k(x, tl) as an approximation for Ψk(x). Let

εk(x, tl) = Ψk(x)− Ψ̂k(x, tl),

then by noting that wn(k, l) = w0(k, l)ejk·(n∆x) and writing
the approximation for (6) as

Ψ̂k(x, tl) = ejk·x
∑
n

w0(k, l)ejk·(n∆x−x)g(n∆x − x, tl),

finally leads to the following expression:

εk(x, tl)=e
jk·x

(
1−w0(k, l)

∑
n

ejk·(n∆x−x)g(n∆x−x, tl)

)
.

Then the average approximation error,

Ek(tl) =

∫
x

|εk(x, tl)|2 dx

=

∫
x

∣∣∣∣∣1−w0(k, l)
∑
n

ejk·(n∆x−x)g(n∆x−x, tl)

∣∣∣∣∣
2

dx

=

∫
x

∣∣∣∣∣1−w0(k, l)∏
i ∆xi

∑
`

G(2πj
`

∆x
−jk, tl)e

−2πj `
∆x
·x

∣∣∣∣∣
2

dx

=

∫
x

∣∣∣∣∣1− 1

G(−jk, tl)

∑
`

G(2πj
`

∆x
−jk, tl)e

−j2π `
∆x
·x

∣∣∣∣∣
2

dx,

where the penultimate equality follows by applying the Pois-
son summation formula, whilst the last follows by substituting
w0(k, l) =

∏
i ∆xi

ejk·(n∆x)

G(−jk,tl)
.

Lemma 1 (Laplace transform of g(x, tl) [4]): The bi-lateral
Laplace transform of the Green’s function (1) is:

G(s, tl) = eµtl‖s‖
2

. (11)

Before proceeding we observe that, by putting s = −jk +
j2π`/∆x into (11), as previously mentioned G does indeed
decay exponentially fast, with ‖`‖2.

Now substituting (11) into the above expression for Ek(tl)
produces

Ek(tl)=

∫
x

∣∣∣∣∣∣1−eµtl‖k‖2
∑
`∈Zd

e−µtl‖2π(`/∆x)−k‖2−j2π `
∆x
·x

∣∣∣∣∣∣
2

dx

=

∫
x

∣∣∣∣∣1−∑
`

e−µtl‖2π(`/∆x)‖2−4π(`/∆x)·k−j2π `
∆x
·x

∣∣∣∣∣
2

dx

=

∫
x

∣∣∣∣∣1−∑
`

αk(`, tl)e
−j2π `

∆x
·x

∣∣∣∣∣
2

dx.

Therefore,

Ek(tl)=

∫
x

1+
∑
`

(βk(`, tl)−αk(`, tl)−αk(−`, tl)) ej2π `
∆x
·xdx,

(12)
where,

αk(̀ , tl) = e−µtl‖2π(̀ /∆x)‖2−4π(`/∆x)·k

βk(`, tl) =
∑

¯̀

αk(¯̀)αk(̀ − ¯̀).

True Exponential Approximation Green's function g(x; tl)

(c)

(b)

(a)

Reconstruction region of Interest

Fig. 1. Exponential reproduction using uniform translates of 1-D Gaussian
prototype function g(x, tl), shown in (a). The reproduced exponential is ej9x,
i.e. k = 9, using ∆x = 0.15 and tl = 60. (b) <{ej9x}, and (c) ={ej9x}.
The dashed curves show the shifted and weighted versions of g(x, tl).

This expression may be evaluated numerically over several
values of tl for fixed k and ∆x. Since the summations in (12)
are over infinite number of terms, in order to make proper
use of (12), its convergence properties must be understood.
However by incorporating the interesting fact that: for the
sensor network applications, n = 0, . . . ,N is finite and by
virtue, so are the sums in (5) and (10). In the next section,
we study the case where the summation in (5) (and (10)) in
finite.

A. The finite sum case

In reality, since the number of sensors used is finite the
exponential reconstruction is only local. This is easily seen
by observing that, in (10), we are only summing weighted
translates of the Green’s function centred at the sensor loca-
tions. Hence the approximation Ψ̂k(x, tl) will be effectively
zero outside a certain interval, especially since g(x, tl) has
fast decay. We show a 1-D illustration of this in Figure 1, the
Gaussian prototype function (and translates) decay rapidly and
so does Ψ̂k(x, tl) outside the region of interest. This therefore
motivates our study of the approximation error, over a specific
region of interest, for example the region enclosed by the
convex hull of the sensor locations, i.e. the interior of the
d-cube Ω = [0, X1]× [0, X2]× · · · × [0, Xd]. Under this new
set up, the square absolute error can be derived as shown in
the following proposition.

Proposition 1: The approximation error for the exponential
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Fig. 2. The variation of the average approximation error over the interval
x ∈ [0, 2] using k = 10, we show plots for several values of ∆x and for
tl ∈ [0, 200].

approximation problem (10) using the coefficients (9) is:

|εk(x, tl)|2=1−
2
∏d
i=1 ∆xi

e−µtl‖k‖2

N∑
n=0

gn cos (k · (n∆x − x))

+

∏d
i=1 ∆2

xi

e−2µtl‖k‖2

(
2

N∑
n=1

bn cos (k · n∆x) + b0

)
,

where we use gn = g(n∆x − x, tl), bn =
∑N
n̄=n gn̄−ngn̄

and gn̄−ngn̄ = 1
(4πµtl)d

e
‖n∆x‖2

4µtl e
− ‖(n̄−n/2)∆x−x‖2

2µtl .
Proof: From |εk(x, tl)|2=εk(x, tl)ε

∗
k(x, tl), it follows

that:

|εk(x, tl)|2=

∣∣∣∣∣ejk·x−
∏
i ∆xi

G(−jk)

N∑
n=0

ejk·(n∆x)gn

∣∣∣∣∣
2

,

from this we can then derive the following expansion,

|εk(x, tl)|2=1−
∏d
i=1 ∆xi

e−µtl‖k‖2

N∑
n=0

gn

(
ejk·(n∆x−x)+ejk·(x−n∆x)

)
+

∏d
i=1 ∆2

xi

e−2µtl‖k‖2

(
N∑
n=0

ejk·n∆xgn

)(
N∑
n=0

e−jk·n∆xgn

)
.

Finally by using the fact that 2 cos(x) = ejx + e−jx and by
applying the discrete convolution formula to the sums in the
last term, we obtain,

|εk(x, tl)|2=1−
2
∏d
i=1 ∆xi

e−µtl‖k‖2

N∑
n=0

gn cos (k · (n∆x−x))

+

∏d
i=1 ∆2

xi

e−2µtl‖k‖2

(
N∑
n=1

bn
(
ejk·n∆x+e−jk·n∆x

)
+

N∑
n=0

g2
n

)
.

From here, the required result follows immediately.
Then the average error Ek(tl) =

∫
x∈Ω
|εk(x, tl)|2dx can be

computed using numerical techniques.

TABLE I
ESTIMATED SOURCE PARAMETERS (c1, ξ1) FOR SOME (∆x, tl)-PAIRS.

THE EXPONENTIALS USED HERE ARE {ejkx} FOR k = 9, 10.

∆x

0.05 0.15 0.20

tl

4 (0.99975, 1.78613) (1.00710, 1.80000) (1.00710, 1.80000)
40 (1.00030, 1.78550) (1.01182, 1.79325) (1.05116, 1.80416)
90 (1.00874, 1.79835) (1.00459, 1.79921) (1.03292, 1.80201)

IV. NUMERICAL SIMULATIONS

A. Single source simulations

In the following simulations, we study the 1-D set-up
because its numerical results are relatively easier to present
graphically. First we provide plots, in Figure 2, of the be-
haviour of the average error over a finite region x ∈ [0, 2],
as the sampling instant tl increases. Each line in Figure 2
corresponds to a value of specific sensor spacing value ∆x ∈
{0.05, 0.1, 0.15, 0.2, 0.25} for a fixed k = 10. As expected we
can observe that the average error Ek(tl) =

∫
x
|εk(x, tl)|2dx

is a convex function. Moreover as ∆x increases, so does the
minimum average error Ek(t◦l ) and its location t◦l .

TABLE II
LOCATION ESTIMATION ERRORS FOR SOME (∆x, tl)-PAIRS. THE

EXPONENTIALS USED HERE ARE {ejkx} FOR k = 9, 10.

∆x

0.05 0.10 0.15

tl

4 0.01329 0.07669 0.11952
20 0.05345 0.03100 0.06979
40 0.09295 0.06380 0.03267

1) Estimation error: We now simulate a single source dif-
fusion field in 1-D with (c1, ξ1) = (1, 1.785s) and examine the
error in the source estimates, when the field is sampled using
a sensor network with spacing ∆x = {0.05, 0.15, 0.20}m
and time instant tl = {4, 40, 90}s. For each sensor spacing-
sampling instant pair, we obtain the diffusion field samples
and estimate (c1, ξ1) using the approach in Section II.

We show the normalized absolute error (i.e. |ξ1 − ξ̂1|/ξ1)
of the location estimates in Table II. This result is obtained by
averaging the errors obtained over 20, 000 independent trials,
where each trial uses a new source location drawn uniformly at
random from the interval [0, 2]m. In line with expectation, we
notice that the setup having (∆x, tl) = (0.05m, 4s) produces
the smallest error on average.

B. Multiple source simulations

In this section, we perform further numerical investigations
using a multiple source diffusion field. We consider the diffu-
sion field induced by four (i.e. M = 4) sources and investigate
the estimation performance in such a scenario.

Guided by the plot Figure 2 and noting that ∆x = 0.2,
to achieve a good reconstruction we should choose tl ∈
[80, 110]. For comparison, we show the recovered estimates
for tl = {20, 80} in Figure 3. Specifically Figure 3(a) shows
a successful recovery when tl = 80, for all four diffusion
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Fig. 3. Recovery of multiple diffusion sources from the field samples taken
with sensors separated by ∆x = 0.2m. The true source locations and
intensities are depicted by the locations and heights, respectively, of the stems.
Eight consecutive generalised measurements, i.e. {R(k)}3k=−4, have been
used as required by Prony’s method (and its variations). In (a) we show reliable
recovery of the estimates by using tl = 80, whilst in (b) the sampling instant
tl = 20 has been used leading to less reliable source estimates.

sources, in contrast to a diminished estimation accuracy when
tl = 20.

V. CONCLUSION

In this paper we have overviewed a recent method for solved
inverse diffusion source problems. Then we investigated the
associated error in the estimated source parameters by using
the exponential reproduction approximation error as a suitable
proxy for this. With the obtained expression the optimal
sampling instant for a given sensor density can be computed.
Moreover, it can also be useful when designing sampling

strategies by trading off number of sensors for estimation
performance.
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