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ABSTRACT

In recent years, several methods have been developed for sampling
and exact reconstruction of specific classes of non-bandlimited signals
known as signals with finite rate of innovation (FRI). This is achieved
by using adequate sampling kernels and reconstruction schemes, for
example the exponential reproducing kernels of [1]. Proper linear com-
binations of this type of kernel with its shifted versions may reproduce
polynomials or exponentials exactly.

In this paper we briefly review the ideal FRI sampling and recon-
struction scheme and some of the existing techniques to combat noise.
We then present an alternative perspective of the FRI retrieval, based on
approximate reproduction of exponentials. Allowing for a controlled
model mismatch, we propose a unified reconstruction stage that ad-
dresses two current limitations in FRI: the number of degrees of free-
dom and the stability of the retrieval. Moreover, the approach is univer-
sal in that it can be used with any sampling kernel from which enough
information is available.
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1. INTRODUCTION

Sampling, or the conversion of signals from analog to digital, provides
the connection between the continuous-time and discrete-time worlds.
The acquisition process is usually modelled as a filtering stage of the
input xptq with a smoothing function ϕptq (or sampling kernel), fol-
lowed by uniform sampling at a rate fs � 1

T
[Hz]. According to this

setup, the measurements are given by

yn �

» 8
�8

xptqϕ

�
t

T
� n



dt �

〈
xptq, ϕ

�
t

T
� n


〉
.

The fundamental problem is to recover the original waveform xptq
using from the samples yn. When the signal is bandlimited, the answer
due to Shannon is well known. Recently, it has been shown [2, 1, 3]
that it is possible to sample and perfectly reconstruct specific classes of
non-bandlimited signals, known as signals with finite rate of innovation
(FRI). Perfect reconstruction is achieved by using a variation of Prony’s
method, called the annihilating filter method [3, 4].

In this paper we introduce the approximate recovery of FRI signals,
from noisy samples taken by an arbitrary kernel. Our analysis follows
the setup of [1], where the key to FRI reconstruction is ex- act repro-
duction of exponentials. We introduce the property of approximate
reproduction of exponentials by finding proper linear combinations of
the sampling kernel. The main advantages of our method are that we
can increase the number of measurements, improve the stability of the
recovery and generalise the reconstruction stage.

This work is supported by the European Research Council (ERC) starting
investigator award Nr. 277800 (RecoSamp).

The outline of the paper is as follows. In Section 2 we review the
noiseless scenario of [1] and then give an overview of existing denois-
ing techniques [3, 5]. In Section 3 we introduce the approximate FRI
scenario. We first study the approximate reproduction of exponentials,
and then apply this property to the recovery of FRI signals. We also
propose an iterative algorithm to refine the accuracy of the reconstruc-
tion. Finally, in Section 4 we show simulation results, to then conclude
in Section 5.

2. SAMPLING SIGNALS WITH FRI

2.1. Perfect reconstruction of a stream of Diracs

Following the analysis of [1], we summarise the main steps needed to
sample and perfectly recontruct a train of K Diracs

xptq �
K�1̧

k�0

akδpt� tkq, (1)

where tk P r0, τq, from the samples

yn �
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xptq, ϕ

�
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akϕ

�
tk
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� n



, (2)

for n � 0, 1, . . . , N � 1. Here we assume that the sampling period T
is such that τ � NT . Moreover, ϕptq is an exponential reproducing
kernel [1, 6] of compact support that satisfies¸

nPZ
cm,nϕpt� nq � eαmt, (3)

for proper coefficients cm,n, with m � 0, . . . , P and αm P C.
To begin, we linearly combine the samples yn with the coefficients

cm,n of (3) and obtain the new measurements (exponential moments):

sm �
N�1̧

n�0

cm,nyn, (4)

for m � 0, . . . , P . Then, given that the signal xptq is a stream of
Diracs (1) and combining (4) with (2) we have [1]:

sm �

〈
xptq,

N�1̧

n�0

cm,nϕ

�
t

T
� n


〉
�
K�1̧

k�0

xku
m
k , (5)

with xk � akeα0
tk
T and uk � eλ

tk
T . In order for (5) to hold, we have

restricted our analysis to parameters of the formαm � α0�mλ, where
m � 0, . . . , P and α0, λ P C. The reason we use these parameters
is that they are needed for the values sm to have a power sum series
form (5), which is key to the recovery stage.

The new pairs of unknowns puk, xkq for k � 0, . . . ,K�1 can then
be retrieved from the measurements sm using the annihilating filter



method [2, 1, 3]. Let hm with m � 0, . . . ,K denote the filter with
z-transform ĥpzq �

°K
m�0 hmz

�m �
±K�1
k�0

�
1 � ukz

�1
�
. Then,

hm annihilates the series sm:

hm � sm �
Ķ

i�0

hism�i �
K�1̧

k�0

xku
m
k

Ķ

i�0

hiu
�i
kloooomoooon

ĥpukq

� 0. (6)

The zeros of this filter uniquely define the values uk provided the
locations tk are different. Interestingly, identity (6) can be written in
matrix-vector form as:

Sh � 0 (7)

which reveals that the Toeplitz matrix S is rank deficient. The anni-
hilating filter is therefore in the null space of S. By solving the above
system, we find the coefficients hm, and then retrieve uk from the roots
of ĥpzq. Finally, we determine the weights xk by solving the first K
consecutive equations in (5). Notice that the problem can be solved
only when P � 1 ¥ 2K.

An exponential reproducing kernel is any function ϕptq that, to-
gether with its shifted versions, can reproduce exponentials, that is, it
satisfies (3). The coefficients cm,n are given by

cm,n �

» 8
�8

eαmtϕ̃ pt� nq dt � cm,neαmn, (8)

where the function ϕ̃ptq is such that 〈ϕ̃pt� nq, ϕpt�mq〉 � δm�n,
and with cm,0 �

³8
�8

eαmxϕ̃pxqdx.
Any exponential reproducing kernel can be written as ϕptq �

γptq 
 β~αptq [1, 6], where γptq is an arbitrary function, even a distri-
bution, β~αptq is an E-Spline and ~α � tαmu

P
m�0. The Fourier domain

representation of an E-Spline of order P � 1 is:

β̂~αpωq �
P¹

m�0

1 � eαm�jω

jω � αm
.

In this paper we work with real valued sampling kernels charac-
terised by γptq and β~αptq being real. Since αm � α0 � mλ with
m � 0, . . . , P this implies λ � pα�0 � α0q{P . Note that this makes
the values αm and the moments sm exist in complex conjugate pairs.

2.2. Sampling signals with FRI in the presence of noise

Noise is generally present in data acquisition, making the solution
explained so far ideal. Assume the noiseless samples yn are cor-
rupted by additive noise such that we have access to the measurements
ỹn � yn � εn for n � 0, . . . , N � 1. In this situation, the moments,
given by the linear combination of samples (4), become noisy:

s̃m �
K�1̧

k�0

xku
m
kloooomoooon

sm

�
N�1̧

n�0

cm,nεnlooooomooooon
bm

, (9)

and perfect reconstruction is no longer possible. If εn are i.i.d. Gaus-
sian, then bm are samples of Gaussian noise, but not necessarily white.

The retrieval of the innovation parameters of the input is now not
straightforward, because (7) becomes S̃h � 0 with S̃ � S�B, where
B is a Toeplitz matrix formed from the values bm of (9). Thus, we may
solve the problem by using total least squares and Cadzow [3] or matrix
pencil [7, 5]. For the latter, we obtain the SVD decomposition of S̃ �
UΛVH , keep the K columns of U corresponding to the dominant
singular values and compute uk as the eigenvalues of U�

KUK . Here,
p�q and p�q are operations to omit the last and first rows of p�q.

In addition, note that the covariance matrix of the noise RB �
EtBHBu may not be a multiple of the identity. In order for SVD to
operate properly it is necessary to pre-whiten the noise [8], for instance
by using a linear transform W � R

:{2
B [9] such that A � BW satis-

fies that RA � EtAHAu � I. Here, p�q:{2 denotes the square root of
the pseudoinverse of p�q. In our simulations, we use matrix pencil on
S̃W, now characterised by white noise.

In order to analyse the effect of noise on the accuracy with
which FRI signals can be recovered we use the Cramér–Rao lower
bound (CRB). This is a lower bound on the mean square error
(MSE) that applies to any unbiased estimator [4]. A stream of K
Diracs is completely characterised by the locations tk and ampli-
tudes ak for k � 0, . . . ,K � 1. We introduce the vector Θ �
pt0, . . . , tK�1, a0, . . . , aK�1q

T , and the goal is to estimate Θ either
from the vector of N samples ỹ � pỹ0, . . . , ỹN�1q

T or the vector of
P � 1 noisy moments s̃ � ps̃0, . . . , s̃P q

T .
The analysis of the CRB for the estimation problem given the vector

of samples ỹ is detailed in [3]. On the other hand, we also consider
the alternative estimation from the vector of moments s̃. Given values
sm that exist in complex conjugate pairs, then any unbiased estimate
Θ̂ps̃q � pt̂0, . . . , t̂K�1, â0, . . . , âK�1q

T has a covariance matrix that
is lower bounded by [10]

covpΘ̂q ¥ pΦHR�1Φq�1. (10)

Here, p�qH denotes Hermitian transpose. Moreover, provided εn are
samples of additive white Gaussian noise, of zero mean and variance
σ2, then R � EtbbHu � σ2CCH , since b is the vector of noise
values bm. The matrix Φ of (10) takes the form:
�
����

a0α0eα0t0 . . . aK�1α0e
α0tK�1 eα0t0 . . . eα0tK�1

a0α1eα1t0 . . . aK�1α1e
α1tK�1 eα1t0 . . . eα1tK�1

...
. . .

...
...

. . .
...

a0αP e
αP t0 . . . aK�1αP e

αP tK�1 eαP t0 . . . eαP tK�1

�
���.

3. UNIVERSAL SAMPLING SIGNALS WITH FRI

In many practical circumstances we may not be able to choose the sam-
pling kernel ϕptq, or even know its exact shape. In such cases it may
be difficult or even impossible to find coefficients cm,n for the kernel
to reproduce exponential functions exactly. And this is key in the FRI
setting to map the signal reconstruction problem to Prony’s method in
spectral-line estimation theory.

In this section we relax this condition and consider any function
ϕptq for which the exponential reproduction property (3) is only ap-
proximate. We propose to use the coefficients cm,n for the approxi-
mate reproduction to retrieve FRI signals from the samples obtained
using these kernels.

3.1. Approximate reproduction of exponentials

Assume we want to use a function ϕptq and its integer shifts to approx-
imate the exponential eαt. In other words, consider we want to find the
coefficients cn that best fit:¸

nPZ
cnϕpt� nq u eαt. (11)

In order to do so, we directly use cn � c0eαn. Then, equation (11)
is equivalent to approximating gαptq � c0

°
nPZ e�αpt�nqϕpt�nq by

the constant value 1. We also note that gαptq is a 1-periodic function,
because gαptq � gαpt� 1q. It can therefore be decomposed using the
Fourier series as

gαptq �
¸
lPZ
gle

j2πlt, (12)



where

gl �

» 1

0

gαptqe
�j2πltdt � c0

¸
kPZ

» 1

0

e�αpt�kqϕpt� kqe�j2πltdt

paq
� c0

» 8
�8

e�αxϕpxqe�j2πlxdx � c0ϕ̂pα� j2πlq.

Here, paq is due to using x � t � k and combining the sum over
k P Z and the integral dependent on k. Also ϕ̂psq �

³8
�8

ϕpxqe�sxdx

denotes the Laplace transform of ϕpxq.
In general ϕptq can be any function and we can find different sets

of coefficients cn for (11) to hold. The accuracy of our approximation
is given by:

εptq � eαt
�

1 � c0
¸
lPZ
ϕ̂pα� j2πlqej2πlt

�
. (13)

Note that if the Laplace transform of ϕptq decays sufficiently quickly,
very few terms are needed to have an accurate bound for the error.

A natural choice of the coefficients cn � c0eαn is obtained by
discarding every term in (12) for l � 0 and making g0 � 1, hence
c0 � ϕ̂pαq�1. Interestingly, this is a simplified version of the least-
squares coefficients [11] for the approximation in (11). These coeffi-
cients are very easy to compute, and they only require the knowledge
of the Laplace transform of ϕptq at α.

We conclude with an example. Consider a linear spline that re-
produces polynomials of orders 0 and 1 exactly, the latter shown in
Figure 1 (a). We want to approximate the two complex exponentials
ej

π
16
p2m�7qt for m � 3 and m � 0 by using linear combinations

of the spline. This can be done by selecting cm,n � ϕ̂pαmq
�1eαmn

where αm � j π
16
p2m � 7q. We present the reproduction of the real

part in Figure 1 (b-c). Note how the lower frequency complex expo-
nential is better approximated. Moreover, we have seen experimentally
that higher order splines tend to improve the quality of the approxima-
tion. Also note there is no fixed number of exponentials that may be
well approximated.

3.2. Approximate FRI recovery

Consider again the stream of Diracs (1) and samples of the form (2),
now taken by an arbitrary sampling kernel ϕptq. In order to retrieve the
locations tk and amplitudes ak for k � 0, . . . ,K � 1, we first obtain
the coefficients cm,n � ϕ̂pαmq

�1eαmn for m � 0, . . . , P . We only
need to know the Laplace transform of ϕptq at αm. Note that P is a
free parameter, subject to P � 1 ¥ 2K.

We proceed in the same way as in the case of exact reproduction of
exponentials, but now the exponential moments take the form

sm �

〈
xptq,

N�1̧

n�0

cm,nϕ pt� nqloooooooooomoooooooooon
eαmt�εmptq

〉
�
K�1̧

k�0

xku
m
k � ζm

where xk � akeα0tk and uk � eλtk . Here we have used T � 1 and
αm � α0 � mλ, with m � 0, . . . , P , and α0, λ P C. There is a
model mismatch due to the approximation error εmptq of (13), equal
to ζm �

°K�1
k�0 akεm ptkq.

The model mismatch depends on the quality of the approximation,
and depends on the coefficients cm,n and the values αm and P . We
treat this error as noise, and retrieve the parameters of the signal using
the methods of Section 2.2. In close-to-noiseless settings, the estima-
tion of the Diracs can be refined using the iterative procedure shown in
Algorithm 1.

Algorithm 1 Recovery of a train of K Diracs using approximation of
exponentials

1: Compute the moments s0m �
°
n cm,nyn and set sim � s0m, for

m � 0, . . . , P .
2: Build the system of equations (6) using sim and retrieve the anni-

hilating filter hm.
3: Calculate uik from the roots of hm, and tik � 1

λ
lnuik, for the ith

iteration.
4: Find xik from the first K consecutive equations in (5), and the am-

plitudes aik � xike�α0tk .
5: Recalculate the moments for the next iteration by removing the

model mismatch:

si�1
m � s0m �

K�1̧

k�0

aikεmpt
i
kq,

where εmptq is given by (13).
6: Repeat steps 2 to 5 until convergence of the values paik, t

i
kq.

3.3. How to select the approximation parameters αm

In order to simplify the problem, we restrict the exponential parameters
to be of the form:

αm � jωm � j
π

L
p2m� P q m � 0, . . . , P. (14)

Purely imaginary parameters allow for a more stable retrieval of the
pairs ptk, akq from (5). The values to be determined are, therefore, P
and L. We choose the values that minimise the first K diagonal terms
of (10), which correspond to the error in the recovery of the locations
tk. In most cases we have analysed, the best P is greater or equal
than the support of the sampling kernel ϕptq and L is in the range
P � 1 ¤ L ¤ 4pP � 1q.

4. SIMULATIONS

We take N � 31 samples of a train of K Diracs using a B-Spline
kernel, and we corrupt the measurements with additive white Gaussian
noise of variance σ2. This is chosen according to the required signal-
to-noise ratio SNRpdBq � 10 logp}y}2{Nσ2q. We then obtain the
approximation coefficients cm,n � ϕ̂pαmq

�1eαmn, where αm is as
in (14) withL � 2pP�1q andm � 0, . . . , P . Finally, we compute the
noisy P � 1 moments and retrieve the innovation parameters ptk, akq,
for k � 0, . . . ,K � 1, using the matrix pencil method. We calculate
the standard deviation of the error in the estimation of the location,
over 1000 realisations of the noise, and compare it to the sample-based
and moment-based CRBs of Section 2.2.

Figure 2 shows the deviation in the location of K � 6 Diracs. We
compare the performance (a) when we sample with a B-Spline of order
26 and use the default retrieval based on the reproduction of polyno-
mials [1], with (b) when we sample with a B-Spline of order 6 and
apply the retrieval based on approximation of exponentials, with 26
moments; both aided with pre-whitening. The SNR is 20dB. It is only
in the latter case that we can recover all the Diracs. Moreover, the ac-
curacy with which the Diracs are recovered is one order of magnitude
better for the approximated FRI.

We show further results when we use the approximate method to
retrieve K � 2 Diracs from the samples taken by a B-Spline kernel of
order 6. Even when we fix the order of the kernel, we can reconstruct
an increasing numbers of moments P � 1 to improve the performance.
Figures 3 (a-d) are for parameters (14) with L � 3

2
pP � 1q and m �

0, . . . , P . As the number of moments P�1 increases, the performance
is better and eventually reaches the sample-based CRB.
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Fig. 1. B-Spline kernel reproduction capabilities. Figure (a) shows the exact reconstruction of a polynomial of order 1. Figures (b-c) show the approximation of the
real parts of 2 complex exponentials: ej

π
16
p2m�7qt form � 3, 0 with coefficients cm,n � ϕ̂pαmq�1eαmn where αm � j π

16
p2m� 7q, using a linear spline. We

plot the weighted and shifted versions of the splines with dashed blue lines, the reproduced polynomial and exponentials with red solid lines, and the exact functions
with solid black lines.

5. CONCLUSIONS

We have presented an alternative FRI retrieval approach, based on the
approximate reproduction of exponentials. Allowing for a controlled
model mismatch, we propose a standard reconstruction stage that is
able to increase the stability of existing FRI schemes.

Moreover, in many practical circumstances we may not be able to
choose the sampling kernel or even know its exact shape. However, we
have seen that if we know the Laplace transform of the kernel at val-
ues αm, we can find coefficients for the linear combination of shifted
versions of the sampling kernel to approximate exponentials eαmt.
Equipped with this property we can sample a stream of K Diracs and
retrieve it from 2K measurements. The accuracy of the reconstruction
depends on the quality of the approximation and the level of noise.

Future work includes FRI retrieval with partial information on the
sampling kernel, with more challenging existing FRI kernels (such as
the Gaussian), and extensions to more dimensions and non-uniform
sampling. In addition, approximate reconstruction may also be gener-
alised when we have access to measurements taken by different ker-
nels, each of which is capable of approximating certain exponentials.
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Fig. 2. B-Spline kernel behaviour. We retrieve K � 6 Diracs from N � 31

noisy samples: (a) using the polynomial recovery of [1], with a kernel of order
26 and also 26 moments; (b) using the approximated recovery with parame-
ters (14) where L � 2pP �1q andm � 0, . . . , P , with a kernel of order 6 and
P � 1 � 26 moments. The SNR in both cases is 20dB.
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