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ABSTRACT

Image based rendering is an attractive approach for novel view syn-
thesis due to its low complexity requirements and potential for pho-
torealistic results. However for successful rendering, geometric pri-
ors about the structure of the scene are necessary. In this paper we
present a tilted layer model approximation of the plenoptic func-
tion which gives improved modeling of scenes where the objects
are not fronto-parallel to the camera views while preserving occlu-
sion ordering. The framework is extended to the case where camera
positions are not constrained to a single plane but can lie on multi-
ple planes. Results on the Middlebury dataset and simulated scenes
show that better rendering results can be obtained compared with the
state-of-the-art using a fronto-parallel layer model, or alternatively
similar results can be obtained with a more compact layer represen-
tation of the scene.

Index Terms— View synthesis, plenoptic function, depth lay-
ers, multi-view.

1. INTRODUCTION

View synthesis is the process of generating an arbitrary new view of
a scene from a set of existing views [1]. One way to achieve this
is by creating an accurate 3-D model of the scene together with tex-
ture/reflectance maps and then by projecting the 3-D objects onto the
virtual camera planes. In Image Based Rendering (IBR), novel views
are instead obtained by interpolating available nearby images. The
advantage of such a method is that little or no geometry of the scene
is required, as opposed to a full geometric model which can be very
difficult to obtain especially for natural cluttered scenes. Moreover,
the rendering algorithms produce convincing photorealistic results
since the interpolated viewpoints are obtained through combinations
of real images. The main drawback of such a representation is the
fact that a huge amount of data needs to be captured. There is there-
fore a clear trade-off between number of available multi-view images
and required scene geometry.

A layer-based representation (e.g., [2, 3, 4, 5]) where the scene
is split into separate depth layers each with a reduced depth range,
is a good way of introducing a variable amount of geometric com-
plexity to allow accurate view synthesis from a moderate number
of input images. In [6], we introduced a layer extraction algorithm
for IBR and used Plenoptic sampling theory [7, 8, 9, 10] to decide
the number of layers necessary to achieve high quality rendering. In
this way, the trade-off between geometric information and render-
ing quality reduced to a trade-off between the number of images,
the scene depth variation and the number of layers. Interestingly,

the number of layers predicted by Plenoptic sampling turned out to
be quite accurate, i.e., an increase in the number of layers did not
lead to a significant increase in rendering quality. Layer-based mod-
els have also been successfully used for compression of multi-view
images [11].

In this paper we further extend this model by introducing an
angled-layer representation. Previously, layers were constrained to
have a constant depth (fronto-parallel layers); we now allow layers to
a have a linearly varying depth (tilted layers) that is bound between
consecutive fronto-parallel layers. Thus, instead of sharp disconti-
nuities between consecutive fronto-parallel layers, it is now possible
to have a smoothly varying single tilted layer bound between the
two. Another advantage of bounding the depth variation of each
tilted layer is that it preserves occlusion ordering, making the view
synthesis process easier and faster. We then show how to extend this
framework to the case where camera positions are not constrained
to a 1-D camera line or a 2-D planar configuration but are instead
permitted to lie on multiple planes. We extract a layer-based model
for each plane and then show how to merge these models to render
novel views at arbitrary positions.

The paper is organised as follows: in Section 2, we present our
angled-layer representation, in Section 3 we show how the frame-
work can be extended to multi-planar camera arrays, while in Sec-
tion 4 we present results for all the proposed improvements.

2. LAYER-BASED REPRESENTATION

The plenoptic model describes a scene in terms of light rays ema-
nating from points within a scene. A geometric model helps us de-
scribe and store the position of these points. One method of achiev-
ing this is a full 3D model, where every point has its own individu-
ally recorded position in (X,Y, Z). An alternative is a layer-based
approximation of the full plenoptic function [8] where the volume
in which the points reside is partitioned into a compact set of layers
with each point assigned to the closest layer.

In previous works [6] we presented a fronto-parallel layer model
for accurate view synthesis, in which all layers were defined to be
parallel to the camera plane. Fig. 1(a) shows this concept applied
to a simple scene, where each surface point is projected along the
Z axis onto the nearest layer to form a series of fronto-parallel
planes. Given a set of uniformly horizontally spaced cameras with
real-world coordinates (VX,m, VY , VZ) = (X0 +m∆c, Y0, Z0),
wherem is the image number, it was possible to derive the minimum
sampling criterion in terms of the minimum number of layers Lmin

necessary for successful rendering:
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Fig. 1: (a) Constant-depth layer and (b) angled-layer models, each point in the continuous real world (dotted) is projected onto the nearest
layer to give a piecewise planar representation (solid).
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where the interval [Zmin, Zmax] corresponds to the range of depth
values considered. The minimum number of layers required can be
expressed either in terms of real-world depth values Z as (1) or dis-
parity gradients g as (2) given a pixel spacing of u, according to the
relationship g = f (uZ)−1. In the equations above, the cameras
have a focal length of f and are placed at uniform horizontal inter-
vals of ∆c. The variable B = 0.5u−1 is the highest image spatial
frequency given a pixel spacing u.

Generally the range [Zmin, Zmax] for a scene will be con-
strained by priors on the real world geometry, so, if a fixed camera
spacing ∆c is given, the optimal number of layers can be deter-
mined. Conversely, given a fixed number of layers the corresponding
maximum camera spacing can be calculated.

This fronto-parallel model can be used to obtain satisfactory re-
sults for a variety of scenes. However, whenever objects are not par-
allel to the camera plane the fronto-parallel assumption is violated
and the rendering quality decreases accordingly. Our first contribu-
tion consists in relaxing the flat layer constraint by introducing an
angled layer representation of the plenoptic function. The concept is
shown in Fig. 1(b). It will be shown how this model increases the
overall performance and the variety of scenes that can be represented
without violating any assumption of the layer-based model.

To synthesise new views, we partition the reference images into
segments and assign each segment to one of the layers (see [6] for de-
tails). In order for the rendering to be correct, it is important that we
preserve the occlusion ordering of the segments. Given a triplet of
three consecutive fronto-parallel layers (gl−1, gl, gl+1), a segment
Sn will be assigned to the fronto-parallel layer gl as long as its mean
disparity gradient is bound between:

g+l =
(

gl+1+gl
2

)
; g−l =

(
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2

)
. (3)

In this paper, we define two additional possibilities for the layer as-
sigment ĝl and ǧl, both with average disparity gl but with negative

and positive slopes respectively. The disparity gradient will not be
constant for the tilted layers, but it can be expressed as a function of
the segment horizontal pixel coordinate i:
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for the negative-sloped layer and
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for the positive-sloped one. In the expressions above, i+n and i−n
are the largest and smallest i−coordinate values within the segment.
Each layer is defined as going from one assessment boundary to the
next over the entire width of the segment.

The most suitable layer representation for a given segment Sn is
determined automatically by first calculating its fronto-parallel layer
approximation [6] and then computing the function:

g∗l = argmin
g

(ε (Sn, gl) , ε (Sn, ǧl) , ε (Sn, ĝl)) , (6)

where ε is the matching error function between the segment and its
candidate layer representation, defined as:
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In (7) Kn is the total number of pixels within the segment Sn which
is being evaluated over M images. I0 is the current reference image
while Im is the target image, g is the disparity gradient value at the
pixel (ik, jk) for the layer model under consideration and VX,m is
the X− coordinate of the m-th image. The log term is included
to apply a higher weight to larger regions. In order to account for
occlusions, the visibility mask, Om,k, is used where:

Om,k =

{
1 if Im(ik + gVX,m, jk) is visible;
0 if Im(ik + gVX,m, jk) is occluded. (8)



Fig. 2: Example of a multi-planar camera array with two planes.
Cameras C1 and C6 are used to synthesize the remaining views
C2, · · · , C5 during the simulations.

3. MULTI-PLANAR CAMERA ARRAYS

In [6] and commonly in the literature [12, 13, 14] it is assumed that
the input camera positions lie on a single line or plane. Our second
contribution consists in relaxing this assumption and extending the
admissible setups to multiple planes that can be treated separately,
while merging their views into a single high-quality rendered output
image. An example of the setup is shown in Fig. 2, where two arrays
intersect at the origin with an angle φ between them.

By extending our previous formulation to camera rotations, we
allow an additional degree of freedom for the virtual cameras during
view synthesis. We note that no extra geometry information is re-
quired for a camera rotation: as long as the camera position remains
fixed, the same light rays will pass through it. A camera rotation
transform matrix can therefore be constructed in order to map all
pixels (i, j) to their rotated positions (i′, j′):

(
i′ j′ 1

)T
= K(2)R

(
K(1)

)−1 (
i j 1

)T
, (9)

where K(1) and K(2) are the intrinsic matrices of the first and sec-
ond cameras respectively. If we assume, without loss of generality,
that the camera lines lie in theX−Y plane, the rotation is about the
Y axis and R has the form:

R =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 (10)

where φ is the rotation angle between planes about the Y axis.
Again, without loss of generality, we take the world coordinate ori-
gin to be at the intersection of the two camera lines. If a camera used
as a source of key images is placed at their intersection, it is possible
to obtain a simple expression for the mapping between cameras on
different planes:
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In addition to determining the mapping function between pixels for
cameras placed on different planes, it is necessary to establish the
correct occlusion ordering in the rendered scene in order to avoid
artifacts that can greatly decrease the rendering quality. One of the
benefits of our previous work [6] was to present a model in which oc-
clusions are hierarchical and predictable, i.e. segments with higher
g values always occlude those with a lower g.

When using multiple camera planes, the occlusion ordering of
the segments in an image is no longer fixed but can still be predicted.
Given two layer depths Z(1)

l , Z
(2)
m associated with two linear camera

arrays X(1), X(2) as shown in Fig. 3, we can find a pixel index, P ,
such that Z(1)

l occludes Z(2)
m for i < P and Z(2)

m occludes Z(1)
l for

i > P . The position of the occlusion switchover on the image plane,
P , can be calculated as:
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or equivalently, since g = Z
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Eq. (13) allows to precalculate the occlusion ordering for all the
layers in both planes efficiently before the rendering is started.

4. RESULTS

We evaluated the disparity assignment and view synthesis perfor-
mances of the tilted layer model on the Middlebury dataset. The
reference images were segmented using Mean Shift [15]. All se-
quences have disparity gradient ground truth maps with a granular
resolution of 1

16
pixel/∆c, apart from the Barn1 sequence with a

granular resolution of 1
32

pixel∆c. This disparity gradient resolution
information was used to calculate the maximum possible disparity
gmax for the ground truth maps.

The performance of the tilted layer model was assessed by ex-
amining the error between the estimated disparity gradient map and
the ground truth maps with 255 disparity levels. The error in es-
timating the disparity gradient maps using our proposed method is
shown in Fig. 4 for the sequences considered. The similarity be-

Fig. 3: Top-down view of a multi-plane layer occlusion, different
layers shown as grey dashed lines. In region A Z

(2)
m is occluded,

while in region B Z
(1)
l is occluded. The triangle denotes the image

plane and field of view, while its intersection with the ray shows the
pixel position of the occlusion switchover.
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Fig. 4: The assignment error from applying the tilted (solid line) or
flat (dotted) layer models to the disparity gradient ground truth maps
of the sequences (a) Teddy and (b) Cones. The calculated Lmin for
each sequence is shown by the vertical dotted line.

tween the estimated and ground truth maps was calculated using a
Peak Disparity Signal to Noise Ratio (PDSNR) measure:

PDSNR = 10 log10

(
g2max

MSE

)
, (14)

where MSE is the Mean Squared Error between the ground truth and
estimated disparity gradient maps.

In all cases the proposed model achieves a significant early in-
crease in the performance until a plateau is reached when a high
number of layers is employed. The improvement is particularly evi-
dent in the highly angled Teddy sequence, while it is less pronounced
in the relatively flat Cones sequence. Similar results are shown in
Fig. 5 where the performance of the flat and tilted layer models is
evaluated for view synthesis using the two reference images at ei-
ther end of the Teddy sequence. The results show small increases in
quality for very low and very high number of layers, while a signif-
icant quality improvement can be seen just below the Lmin point.
As a result, with the proposed model it is possible to either obtain an
increased performance with the same number of layers used in [6]
or an equivalent performance with a more compact layer set.

To demonstrate the ability to transition smoothly between two
different plane models, six viewpoints, C1, · · · C6 along the curve
shown in Fig. 2 were generated using a virtual 3D model. The cam-
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Fig. 5: View synthesis results for the Teddy sequence. The flat (solid
line) and tilted (dotted) layer models are compared. The vertical
dashed line represents the Lmin = 14 for the dataset.

eras were positioned according to the parameters indicated in Table
1, with an angle φ between the two planes of 30◦. The views C1

and C6 were then used to synthesise the four intermediate views
and the results are shown in Fig. 6. The smooth transition between
views is especially apparent in C3 and C4 where, despite significant
translation and rotation of the cameras from the original planes, no
significant artifacts can be seen in the synthesised images.

Camera Plane VX VZ Rotation angle

C1 1 7 0 0◦

C2 1 3 1 6◦

C3 1 1 3 15◦

C4 2 1 3 -15◦

C5 2 3 1 -6◦

C6 2 7 0 0◦

Table 1: Camera positions for the multi-planar view synthesis ex-
periments. The camera positions are shown graphically in Fig. 2.

Fig. 6: Multi-planar synthesis from the camera positions listed in
Table 1. Images C1 and C6 were used to synthesise the remaining
four images.

5. CONCLUSIONS

In this paper we have proposed an improved layer model to better
approximate a scene’s geometry compactly while still being able to
use the results from plenoptic theory for view synthesis. The results
show that better rendering results can be obtained compared with a
fronto-parallel layer model, or alternatively similar results can be ob-
tained with fewer cameras. The allowed camera geometric configu-
rations were also extended to include camera rotation, angled planes
and camera synthesis positions away from the input camera plane.
Our synthesised results show that by relaxing our previous model-
ing assumptions it is possible to obtain a perceived smooth, more
realistic motion when synthesising multiple consecutive views.
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