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ABSTRACT

Image based rendering is an attractive alternative for generat-
ing novel views compared to model based rendering due to its
lower complexity and potential for photo-realistic results. We
present a fast unsupervised method for synthesising arbitrary
viewpoints of a scene from a set of existing views. Our novel
improvements include optimising the placement of depth lay-
ers to take advantage of the composition of real world scenes
and hierarchically building our simple geometric model to
maximise its accuracy.

Index Terms— View synthesis, Plenoptic function, depth
layer

1. INTRODUCTION

There are several methods of generating an arbitrary new view
of a scene from a set of existing views [1]. One approach is
to create a textured 3D model of the entire scene and to use
this for synthesising new views. Alternatively, in image based
rendering (IBR), new views are generated by combining in-
dividual pixels from a densely sampled set of input images.
Between these two extremes lies a range of methods with
varying proportions of geometric and image input information
that has been explored, for example in [2]. Using a complete
3D model allows freedom in the final rendering but requires
more computation and often creates noticeably artificial out-
put images. In contrast the IBR approach requires little ge-
ometric information and can give potentially photo-realistic
results but requires many more input images. A layer-based
representation of the scene geometry [3, 4] represents a com-
promise that has low geometric complexity while allowing
view synthesis from a moderate number of input images. In
this paper we present an unsupervised non-iterative procedure
for extracting depth layers and synthesizing new views from
multiple input images that is accurate, robust and is able to
generate new photo-realistic output images. In Section 2 we
discuss the plenoptic function and its relation to the depth
layer model. Section 3 describes our new algorithm and in
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Section 4 its performance is evaluated. Finally, Section 5 con-
cludes the paper.

2. THE PLENOPTIC FUNCTION AND LAYER
APPROXIMATION

A convenient interpretation of a multiview image set is to con-
sider the collection of light rays emanating from the scene.
The complete parameterisation of the rays at any position and
time requires the seven dimensional Plenoptic Function, P7,
which was introduced by Adelson and Bergen [5]. Simpli-
fying assumptions about the sensing setup leads to the Light
Field [6] and the Lumigraph [7]. In this paper we are ad-
dressing the specific case of an image sequence in which the
camera moves along a horizontal line and we also assume the
images have been rectified so that disparities are all horizon-
tal. These assumptions result in a reduced version of the full
plenoptic function,

P = P3(i, j, τ), (1)

where i and j are the coordinates of the intersection of a ray
with the image plane and τ is the camera position along the
x-axis, (Vx). A layered scene is illustrated in Fig. 1(a) where

(a) Layered view (b) EPI lines

Fig. 1. Two layers observed by a camera in two positions
τ = 1 and 2, i is the image plane and f is the focal length.

the ray intersections with the image plane for two camera po-
sitions and two layers are shown. Fig. 1(b) demonstrates how
the intersection point of a ray with the image plane changes
as the camera position moves. This locus is known as the



EPI line, and its gradient is inversely proportional to the layer
depth z. Lines with a steeper gradient occlude lines with a
shallower gradient when they intersect. Each camera view
can be regarded as a planar sample sliced through a three-
dimensional EPI volume. We use a depth layer based geo-
metric model because it is robust, computationally efficient
and offers a good description of many real scenes. Each layer
is a plane perpendicular to the optical axis and is therefore at
a constant depth. Associated with each layer, l, is a unique
disparity gradient, dl, which is the ratio of the disparity to the
camera motion, Vx, and is inversely proportional to the layer
depth, zl. The number of layers, L, represents a trade-off be-
tween fidelity and computation complexity. Chai et al. [2]
used plenoptic theory to estimate the number of layers, Lmin,
necessary for successful rendering without aliasing, known as
the minimum sampling criterion (MSC).

3. LAYER EXTRACTION AND VIEW SYNTHESIS

For the plenoptic based sampling to be achieved, each pixel of
the input images and of the virtual view needs to have an as-
signed disparity gradient. We use a segment based approach
and assign disparities on a segment by segment basis rather
than pixel by pixel. The advantage of this is that most layer
changes will occur at segment boundaries which normally co-
incide with the object boundaries; additionally this method is
more robust to individual pixel matching errors. This gives
an efficient algorithm resulting in sharp and consistent edges.
The layer extraction is achieved by segmenting one or more
key images, using for example [8], and assigning each seg-
ment, Sn, to a layer with disparity gradient dl by matching the
segment in other images. The layer assignment disparity gra-
dient map can then be projected onto the other input images
and the virtual view. Hirschmüller and Scharstein [9] found
that for most sample sets the most effective Sn matching er-
ror score (MES) metric to use, when estimating disparities, is
the absolute intensity difference (SAD). A key innovation by
Berent [10] was to do the layer assignment in two passes, the
first treats each segment in isolation and the second takes into
account the predicted occlusions from surrounding segments.
We calculate the matching error ε using,

ε (Sn) =

Kn−1∑
k=0

|I1(in,k, jn,k)− I2(in,k + dn, jn,k)|On,k(
Kn−1∑
k=0

On,k

)
log10

(
Kn−1∑
k=0

On,k

)
(2)

whereKn is the total number of pixels within the segment Sn,
I1 and I2 are input images, (in,k, jn,k) are pixel coordinates
for segment n and index k and dn is the segment disparity, for
the pixel index k within the segment. O is a visibility mask

where On,k = 1 is true for the first pass

On,k =

{
1 if I2(in,k + dn, jn,k) is visible;
0 if I2(in,k + dn, jn,k) is occluded.

is true for the second pass.

3.1. Non uniformally spaced layers

In our algorithm, we first set the number of layers, L, to a
high value and determine the disparity gradient histogram,
shown in Fig. 2. Rather than using the uniformally spaced
values of layer disparity gradient, dl, shown in the upper set
of vertical bars, we use the Lloyd-Max algorithm [11] to find
the values of dl for our reduced output L, that minimize the
mean-squared error, shown in the lower set of vertical bars. It
can be seen that these cluster around the salient feature of the
scene.

Fig. 2. Disparity gradient distribution for Teddy sequence
‘leave 1 image out’ with uniform and variably assigned layers,
the two types of layer positions are shown by vertical lines on
the top of the graph, L is 9

3.2. Hierarchical Layer extraction

A weakness of the two pass d assignment procedure is that
any errors in the first pass propagate through into the sec-
ond pass. It was found that an incomplete but accurate occlu-
sion map, restricted to segments with a low MES, reduced the
number of misassigned segments. We know from the plenop-
tic theory that occlusions are hierarchical and predictable and
assuming that the first pass is relatively accurate all Sn as-
signed to the top level, dmax, should be well assigned as they
will not have any occlusions. If their MES is sufficiently low
then they are used to form the occlusion map for the sub-
sequent layer. If the matching score is too high then it is
likely that it has been been misassigned and so it is ommited
from the occlusion map. This process is repeated for each
layer until dmin is reached. Segments with a poor match-
ing score are ignored until the very end at which point they
are then assigned using the most recent occlusion map. The



benefits of this hierarchical procedure are that occlusions are
estimated from the second-pass layer assignments rather than
the first-pass assignments and that unreliably assigned seg-
ments are ignored when estimating occlusions. We note that
the hierarchical approach does not increase the complexity
of the previous method in that it only changes the order in
which segments are tested. The weighting in the MES (2) pre-
vented segments ‘hiding’ behind other segments to improve
their match.

3.3. Synthesising View

All input images are samples lying on a plane through the EPI
volume. Novel views can be generated by interpolating new
points from the existing EPI volume of input images, Fig. 3
shows how the new sample on an EPI line, at position V1.7,
can be interpolated from input images, V1 and V2, either side.
For points (P, R, S) the EPI line is un-occluded on both sides
so the new sample can be a blended distance-dependant mix-
ture of the two input images. In the case of (Q) only one side
of the EPI line is un-occluded so only the sample from V2 will
be used.

Fig. 3. Synthesising new view
V1.7 by interpolating samples
along EPI lines for existing
views V1 and V2

Fig. 4. Projection from image
0 to the image 8 of the teddy
sequence, with resulting dis-
occlusions marked with black
pixels

3.4. Multiple key images

When a virtual camera view is synthesised, regions of the
scene become dissocluded leaving gaps in the output. The
three types of disocclusion possible are illustrated in Fig. 4;
(A) shows tearing, where a missing region appears in a
oblique surface which is assigned to multiple depth layers;
(B) shows a region of true disocclusion; (C) demonstrates
where dissoccluded areas can also occur when regions that
were outside the field of view become visible. If only a single
key image is used the correct disparity of these regions can
not be estimated robustly. Using two or more key images
increases the coverage of the scene and allows reliable layer
assignment of these regions. For a linear image sequence,
using the two end images gives the largest parallax and max-
imises coverage. The procedure is shown in Fig. 5 in which

the histograms of Fig. 2 are estimated for each key image
independently but the Lloyd-Max algorithm is applied jointly
to both in order to estimate a common set of layer disparity
gradients. For most scenes increasing the number of key
frames beyond two provides little additional benefit.

Fig. 5. Dual key image d generation process, showing joint
initialization of key parameters

4. EVALUATION

For evaluation we used the Teddy dataset of nine images [12,
13] and the key images were segmented using the mean shift
algorithm [14, 8]. We used the ‘leave m out’ method of eval-
uation in which only every (m + 1)th image is included in
the input image set. These are used to synthesize one of the
omitted images for which the ground truth is known. In Fig. 6
we compare the performance of [10] with our new algorithm
using one key image (image 0) and using two key images (im-
ages 0 and 8). In all cases an infilling algorithm was used to
fill any holes with the lowest adjacent disparity. The verti-
cal dashed line on each graph indicated the predicted min-
imum sampling criterion. Fig. 6(a) shows that the original
algorithm plateaus at around Lmin, however our new algo-
rithm plateaus significantly earlier, showing the advantage of
adaptive layer spacing. Additionally using two key images
improves the PSNR by about 1.8 dB due to its ability to as-
sign dissocluded regions accurately. Fig. 6(b) shows a more
challenging case and the improvements made are even more
apparent. As well as plateauing at about 12 layers rather than
the Lmin of 26 there is over 2 dB worth of improvement in
the PSNR. In both cases our algorithm gives smoother results
because it can pick the best layer assignment and the hierar-
chical procedure results in fewer miss-assignments. Fig. 7(a)
shows a typical rendered results for frame 2 in the ‘leave 3



out’ case. Fig. 7(b) shows the luminance error map which
only has a median of 1 and mean of 1.64. Virtually all the er-
rors are at the edges of objects and are mostly due to aliasing
effects.

(a) Leave 1 image out (b) Leave 3 images out

Fig. 6. Comparing the interpolation ability of the orignal
(dot), single key image (dash) and dual key image (line) ap-
proaches on the Teddy sequence.

(a) Rendered result (b) Error map

Fig. 7. Example rendered output from worst case, ‘leave 3
out’, where this example is furthest from an input image, Out-
put Frame = 2, Key images = 0 and 8, L = 22, PSNR = 28.3
dB

5. CONCLUSION

In this paper we have presented three novel improvements on
existing methods to take advantage of our knowledge of the
typical structure of multiview data and the strictly hierarchi-
cal nature of occlusions. In contrast to previous work, the
layers are assigned with non uniform spacing, a hierarchical
approach is taken to assign depths and one or two key im-
ages were used. All this leads to a significant performance
improvement at low extra cost. We have shown that the min-
imum sampling criterion that emerges from plenoptic theory
can be relaxed when layers are non uniformly distributed. In
future work, we wish to use Light Field plane input sources
and multiple key images to produce accurate interpolations of
viewpoints that do not lie on the input camera plane. We also
aim to investigate using post-processing and alpha blending
techniques to improve the view synthesis.
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