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ABSTRACT
Numerous physical phenomena are well modeled by partial
differential equations (PDEs); they describe a wide range of
phenomena across many application domains, from model-
ing EEG signals in electroencephalography to, modeling the
release and propagation of toxic substances in environmental
monitoring. In these applications it is often of interest to find
the sources of the resulting phenomena, given some sparse
sensor measurements of it. This will be the main task of this
work. Specifically, we will show that finding the sources of
such PDE-driven fields can be turned into solving a class of
well-known multi-dimensional structured least squares prob-
lems. This link is achieved by leveraging from recent results
in modern sampling theory – in particular, the approximate
Strang-Fix theory. Subsequently, numerical simulation re-
sults are provided in order to demonstrate the validity and
robustness of the proposed framework.

Index Terms— Spatiotemporal sampling, sensor net-
works, inverse source problems, structured least squares,
Prony’s method, finite rate of innovation (FRI)

1. INTRODUCTION

Often, one encounters the problem of determining a cause of
some measured effect in numerous natural science, medical
and engineering applications; such a problem is called an in-
verse problem. A classical example being Computerized To-
mography [1,2]. In these problems, the measurements (effect)
and the desired parameters (cause) are linked by a mathemat-
ical model. When the model is linear/nonlinear the problem
is known as a linear/nonlinear inverse problem.

In this paper we consider the inverse source problem [3]
and propose a framework for solving it when the measured
data is linked to the sources to be estimated through a partial
differential equation. This class of inverse problems contin-
ues to receive considerable research interests from a range of
communities, including the signal processing community, due
to their ubiquity across many applications involving, for ex-
ample, sound/wave source localization [4], brain source local-
ization [5], and plume/leakage detection [6, 7]. Our proposed
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framework relies on the premise that the unknown sources of
the multidimensional field is sparse. With this assumption
we demonstrate how to reformulate our problem in the form
of a Prony-like system, that can be solved efficiently using
structured least squares methods assuming we have access
to a set of proper measurements which we call generalized
measurements. Next, leveraging from the universal sampling
paradigm and approximate Strang-Fix theory [8], we show
how these generalized measurements may be obtained from
the sensor data and the Green’s function of the underlying
field alone, under either uniform or nonuniform spatial sam-
pling. Finally we present numerical simulation results to fur-
ther reinforce the validity of our proposed scheme for Laplace
and diffusion fields, in two and three spatial dimensions.

The rest of the paper is arranged as follows: we formally
outline the inverse problem of interest in Section 2. In Sec-
tion 3 we argue that the unknown sources can be recovered
from the so called generalized measurements using structured
least squares methods, whilst Section 4 discusses how to ob-
tain these generalized measurements from uniform or nonuni-
form sensor data. We present numerical simulation results in
Section 5 and then conclude the paper in Section 6.

2. PROBLEM FORMULATION

We consider the inverse problems of physical fields governed
by well-known PDEs. In particular, given access to spa-
tiotemporal samples of a physical field we seek a unifying
framework for recovering the unknown sources inducing the
field. Consider the d-dimensional homogeneous and isotropic
region Ω ⊂ Rd. Using the method of Green’s functions, the
field u(x, t) induced by some source distribution f(x, t),
propagating through Ω can be written in the form:

u(x, t) = (g ∗ f)(x, t), (1)
where g(x, t) is the Green’s function of the physical field.
For some well known physical phenomena, we can obtain an-
alytic expressions for the Green’s function.

2.1. Examples of Physical Fields and their PDE Models

1. Laplace’s Equation: is such that ∇2u(x) = f(x). The
Green’s function for this PDE in 2D (i.e. d = 2) is:

g(x) =
1

2π
log(‖x‖) . (2)



Whilst for d = 3 the Green’s function becomes:

g(x) = − 1

4π‖x‖
. (3)

2. Diffusion Equation: is ∂
∂tu(x,t)=µ∇2u(x,t)+f(x,t),

where µ is the diffusivity of the medium. The correspond-
ing Green’s function is,

g(x, t) =
1

(4πµt)d/2
e−

‖x‖2
4µt H(t), (4)

where d = {2, 3} and H(t) is the unit step function.
For the Green’s functions stated, a Sommerfeld radia-

tion condition, i.e. a quiescent condition at an initial time
u(x, t)|t=0 = ∂

∂tu(x, t)
∣∣
t=0

= 0 and a convergence con-

dition at infinity u(x, t)|‖x‖→∞ = ∂
∂x1

u(x, t)
∣∣∣
‖x‖→∞

=

∂
∂x2

u(x, t)
∣∣∣
‖x‖→∞

= 0, is assumed. See, for example, [9]

for the derivation of these expressions.
Now (1) implies that the entire field u(x, t) may be per-

fectly reconstructed provided the source distribution f(x, t)
is known exactly. We can now precisely state the class of
inverse problems considered in this paper:
Problem 1 Let S = {xn}Nn=1 denote a network of N sen-
sors, such that the n-th sensor situated at xn collects samples
ϕn,l = u(xn, tl) of the field u, at times tl for l = 0, 1, . . . , L.
Given these spatiotemporal samples, and knowledge of the
Green’s function of the field, we intend to estimate the un-
known source distribution f(x, t).

3. SOURCE ESTIMATION FROM GENERALIZED
MEASUREMENTS

Our proposed scheme for solving the inverse source problem
can be split into two steps. The initial step involves estimating
a sequence of generalized measurements of the form:

Q(k, r) = 〈f(x, t),Ψk(x)Γr(t)〉x,t , (5)
where Ψk(x) and Γr(t), for each k ∈ Z2, r ∈ Z, are a family
of properly chosen functions which we call spatial and tem-
poral sensing functions respectively, due to their argument. In
the second step, given a sequence (over k ∈ Z2) of the gen-
eralized measurements, we show that structured least squares
and its variations can be used to recover the unknown sources
depending on our choice of sensing functions. The latter step
will be the topic of this section. Hence, we first discuss how
to choose the sensing functions below and consider how to
obtain the generalized measurements from the sensor mea-
surements in Section 4.

Herein, we focus on fields due to localized sources which
is suitable when the sources of the field are many times
smaller than the monitored region within which the field
travels. A typical example in environmental monitoring is a
plume source. We describe M such sources using

f(x, t) =

M∑
m=1

cmδ(x− ξm, t− τm), (6)

where cm, τm ∈ R are the intensity and activation time of the
m-th source respectively, situated at ξm = (ξi,m)di=1 ∈ Rd,
where d is the number of spatial dimensions. The problem of
recovering such sources now becomes one of estimating all
M triples {cm, τm, ξm}Mm=1.

Actually, under this source distribution, observe that the
inner product (5) reduces to:

Q(k, r) =

M∑
m=1

cmΨk(ξm)Γr(τm). (7)

Thus, our task is now to choose Ψk(x) and Γr(t) such that we
are able to recover {cm, τm, ξm}Mm=1 from {Q(k, r)}k,r. Our
proposition is to choose Ψk(x) and Γr(t) to be exponentials.
This choice results in an algebraically coupled power-sum se-
ries, which can be solved efficiently using Prony’s method
and its variations [10, 11]. Explicitly,
1. Sensing in Time and 2-D Space: In this case t ∈ R+ and

x = (x1, x2) ∈ R2. A valid temporal sensing function is
Γr(t) = ejrt/T , where T = tL i.e. the instant at which the
sensors measure the last sample of the field. Whereas for
k

def
= (k1, k2) ∈ Z2, we choose the spatial sensing function

Ψk(x) = ejk1x1+jk2x2 . This choice turns (7) into:

Q(k, r) =

M∑
m=1

cme
jrτm/T ejk1ξ1,m+jk2ξ2,m . (8)

2. Sensing in Time and 3-D Space: In this case x =
(x1, x2, x3) ∈ R3, Γr(t) = ejrt/T as before, but Ψk(x) =
ek1(x1+jx2)+jk2x3 . Given this choice,

Q(k, r) =

M∑
m=1

cme
jrτm/T ek1(ξ1,m+jξ2,m)+jk2ξ3,m . (9)

We remark that Ψk(x) = ejk1x1+k2(x3+jx2),Ψk(x) =
ek1(ξ1,m+jξ3,m)+jk2ξ2,m ,Ψk(x) = ek1(x1+jx2)+k2x3 (and
so on) would also be valid choices.

Notice now that, for some fixed r 6= 0, in particular r = 1,
(8) and (9) are of the form:

Q(k, 1)
def
= Q(k1, k2, 1) =

M∑
m=1

amu
k1
m v

k2
m .

This is a coupled Prony system, which can be solved using
Algebraically Coupled Matrix Pencil (ACMP) method [12,
13] to find jointly {cm, τm, ξm}Mm=1 from {Q(k, 1)}k with
k1 = 0, 1, . . . ,K1 and k2 = 0, 1, . . . ,K2.

4. SPATIOTEMPORAL SENSING: FROM SENSOR
DATA TO GENERALIZED MEASUREMENTS

Equation (1) implies that,

u(x, t) =

∫
x′∈R2

∫
t′∈R

g(x′, t′)f(x−x′, t−t′) dt′dx′ (10)

where x′ = (x1, x2) and dx′ = dx′1dx′2. Equivalently, we
can rewrite the above equation as u(x, t) = 〈f(x′, t′), g(x−
x′, t − t′)〉x′,t′ . Thus, the measurement obtained by the n-th
sensor (situated at xn) at some time instant t = tl, is:



ϕn,l = u(xn, tl) = 〈f(x′, t′l), g(xn−x′, tl− t′)〉x′,t′ . (11)
Let N = {n}Nn=1 be the index set of the sensor locations

S and consider the weighted sum of the samples, {ϕn,l}n,l
below:∑
n∈N

L∑
l=0

wn,lϕn,l=
∑
n∈N

L∑
l=0

wn,l 〈f(x, t), g(xn−x, tl−t)〉x,t

=

〈
f(x, t),

∑
n∈N

L∑
l=0

wn,lg(xn−x, tl−t)

〉
x,t

, (12)

where wn,l ∈ C are some arbitrary weights we wish to com-
pute. In particular, if we want to obtain (5) from (12), then it
follows that the specific sequence of weights {wn,l} we de-
sire here are those that reproduce Ψk(x)Γr(t) from {g(xn −
x, tl − t)}n,l. Mathematically, we desire the equality:∑

n∈N

L∑
l=0

wn,lg(xn − x, tl − t) = Ψk(x)Γr(t), (13)

where Γr(t) = e−jrt/T , whilst Ψk(x) = ejk1x1+jk2x2 or
Ψk(x) = ek1(x1+jx2)+jk2x3 according to whether the inverse
source problem is 2D or 3D respectively. We can now discuss
how to compute the desired coefficients.

4.1. Computing the coefficients (wn,l)n∈N ,l∈N0

For each member, i.e. Γr(t)Ψk(x), of the spatiotemporal
sensing function (STSF) family we want to reconstruct, a dif-
ferent set of weights must be found. More explicitly, we note
that the weights to be found actually depend on the indices k
and r; in order to emphasize this dependence, we will hence-
forth use wn,l(k, r) in place of wn,l. To compute the desired
coefficients wn,l(k, r), we can leverage from certain results
in modern sampling theory. We consider separately the cases
of uniform and nonuniform spatial samples.

4.1.1. Uniform Sensor Placement: Approximate Strang-Fix

To reduce the notational load we develop the theory for the
2D case, noting that a 3D extension follows similarly. For
uniform spatial sampling in x ∈ R2, we assume access to the
samples {ϕn1,n2,l = u(n1∆x1

, n2∆x2
, l∆t)}n1,n2,l, where

n1 = 0, 1, 2, . . . , N1, n2 = 1, 2, . . . , N2 and l = 0, 1, . . . , L.
Whilst ∆x1 ,∆x2 and ∆t are understood to be the sampling
intervals in each dimension.
Remark 1 Note that (n1∆x1

, n2∆x2
) is a sensor location

and the lexicographic ordering of {(n1∆x1
, n2∆x2

)}n1,n2
=

{xn}Nn=1 gives the usual n = 1, . . . , N , where N = N1N2.

Consequently, we may rewrite (13) more clearly as:∑
n1,n2,l

wn1,n2,l(k, r)g(n1∆x1
−x1, n2∆x2

−x2, l∆t−t)

= Ψk1,k2(x)Γr(t). (14)

Recall that Ψk(x) = ejk1x1+jk2x2 and Γr(t) = ejrt/T for the
2D case. Thus the resulting problem is to find the coefficients

that reproduces exponentials (in space and time) using shifted
versions of the Green’s function.

Consider the typical exponential reproduction problem∑
n∈Z

wn(k)g(x− n) = ejωkx (15)

for k ∈ Z, commonly encountered in the finite rate of in-
novation (FRI) framework [11, 14]. The class of functions
that satisfy (15) are known as exponential reproducing ker-
nels. These class of functions satisfy the generalized Strang-
Fix conditions [15]:

G(ωk) 6= 0 and G(ωk + 2π`) = 0 ∀` ∈ Z\{0}, (16)
where G = F(g) is the continuous Fourier transform of g.
For physical fields which are of interest here, the kernel g
corresponds to the Green’s function of the field; whilst these
will generally not satisfy the Strang-Fix condition (16), we
still wish to approximately reproduce exponentials with them.
Fortunately, we can apply the so called approximate Strang-
Fix method introduced in [8], which relaxes the assumptions
on g, such that we are now after the best set of coefficients
that leads to approximate exponential reproduction given any
kernel g. Mathematically we desire∑

n∈Z
wn(k)g(x− n) ≈ ejωkx, (17)

where g does not necessarily satisfy the Strang-Fix condi-
tions. There are a few possible choices one may make for the
“best” approximation coefficients (see [8] for details), but we
focus on the constant least squares coefficients of the form:

wn(k) =
1

G(ωk)
ejωkn, (18)

for their simplicity and accuracy. Given these coefficients,
the approximation ψ̂k(x) of the exponential ψk(x) = ejωkx

is ψ̂k(x)
def
=
∑
n∈Z wn(k)g(x− n). Which becomes ψ̂k(x) =

ejωkx 1
G(ωk)

∑
`∈ZG(ωk + 2π`)ej2π`x when we substitute in

(18) and apply Poisson’s summation formula. We can show
that the error ε(x) = ψk(x)−ψ̂k(x) for this approximation is:

ε(x) = ejωkx

(
1− 1

G(ωk)

∑
`∈Z

G(ωk + 2π`)ej2π`x

)
, (19)

which will be small if G(ωk + 2π`) decays quickly enough to
zero as |`| increases.

For our multidimensional setup, we can re-derive a similar
(multidimensional) expression using the linearity of the mul-
tidimensional Fourier transform and the Poisson summation
formula (for lattices). Doing this allows us to show that the
desired coefficients for our exponential reproduction problem
in (2D space and r = 0), i.e. (14), are given by:

wn1,n2,l(k, r) =
1

G(k1, k2, tl − t)
ejk1n1ejk2n2 (20)

where G(ωx1 , ωx2 , ωt) is defined to be the multi-dimensional
Fourier transform of g(x, t):

G(ωx1 , ωx2 , t−tl)=
∫

x∈R2
g(x,t−tl)e−j(ωx1x1+ωx2x2)dx. (21)



The weighted-sum of the sensor measurements, using these
coefficients, gives the desired generalized measurements (8)
in 2D (or (9) in 3D) from which we obtain the unknown
source parameters as described in Section 3.

4.1.2. Non-uniform Sensor Placement

For non-uniformly placed sensors, it is not possible to find
a closed expression for the desired weights {wn,l(k, r)}n,l.
However we can resort to formulating the following linear
system to find {wn,l(k, r)}n,l:
g(x1−x′

1, tl−tj)· · · g(xN−x
′
1, tl−tj)

g(x1−x′
2, tl−tj)· · · g(xN−x

′
2, tl−tj)

...
. . .

...
g(x1−x′

I , tl−tj)· · · g(xN−x
′
I , tl−tj)



w1,l(k, r)

w2,l(k, r)

...
wN,l(k, r)

=


Ψk(x′

1)Γr(tj)

Ψk(x′
2)Γr(tj)

...
Ψk(x′

I)Γr(tj)


⇒ Gl,jwl(k, r) = pj(k, r). (22)

Moreover by stacking (22) for all l, j we can finally get
G0,1G1,1 · · ·GL,1

G0,2G1,2 · · ·GL,2

...
...

G0,JG1,J · · ·GL,J



w0(k, r)
w1(k, r)

...
wL(k, r)

 =


p1(k, r)
p2(k, r)

...
pJ(k, r)


Gw(k, r) = p(k, r), (23)

where G ∈ RIJ×N(L+1), w(k, r) ∈ RN(L+1) are the de-
sired weights and p(k, r) ∈ RIJ for each k ∈ R2 and r ∈ R.
Consequently, in order to recover the desired field analysis co-
efficients, we would need to solve the system (23). In general,
this system admits a least-squares solution if IJ ≥ N(L+1),
where the observation matrix G can be constructed from the
Green’s function of the problem at hand (i.e. (2), (3), or (4)).

5. NUMERICAL SIMULATIONS AND RESULTS

In this section, we present some numerical results to vali-
date the proposed framework for solving PDE-driven inverse
(source) problems. For illustrative purposes we present re-
sults for two underlying physical models for the sensor mea-
surements, namely: Laplace’s equation (in 2D and 3D) and
the diffusion equation, for uniform and non-uniform spatial
sampling cases. The sensor measurements are simulated
numerically using Matlab with the sensors distributed over
a square region in 2D (and equivalently a cubic region in
3D); the measurements are then corrupted by white Gaussian
noise (SNR = 20dB) before applying our source estimation
scheme. We perform 20 independent trials in each exper-
iment, with each trial using a new noise realization, and a
new arbitrary sensor placement for the nonuniform sampling
experiments.

5.1. Laplace’s Equation

The 2D (or 3D) Laplace field is obtained by evaluating the ex-
pression obtained when we substitute (2) (or (3)) and the point
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(a) Uniform spatial sampling (N = 25)
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(b) Non-uniform spatial sampling (N = 36)
Fig. 1. Single source recovery for 2D Laplace field from spa-
tial samples. Here K1 = K2 = 10 for the spatial sensing
function family

{
Ψk(x) = ejk1x1+jk2x2

}
k

.

source distribution into (1). We summarize the estimation re-
sults for uniform sampling in Figure 1(a) and non-uniform
sampling in Figure 1(b). In both cases the scatter plot shows
the estimated source locations (red ‘×’), which are close to
the true location (blue ‘+’); we also show one realization
of the sensor locations (green ‘•’). In addition the intensity
estimates, red curves as seen in rightmost plots, vary only
marginally about the true intensity (black dashed line) with
each independent trial.

The estimation results for the 3D problem is summarized
in Figure 2, where we can observe that all the source un-
knowns are recovered reliably for each independent trial.
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Fig. 2. Single point source recovery in 3D using samples ob-
tained by N = 57 sensors with K1 = K2 = 1 for the spatial
sensing function family

{
Ψk(x) = ek1(x1+jx2)+jk2x3

}
k

.

5.2. Diffusion Equation

The diffusion field is simulated by substituting (4) and the
point source distribution (6) into (1). Given the sensor
measurements we apply the proposed estimation algorithm
and perform 20 independent trials for both the uniform and
nonuniform sensor distribution. For this PDE we retrieve
the coefficients {wn,l(k, 0)}n,l, i.e. we set r = 0 and only
reproduce spatially varying exponentials Ψk(x) at fixed time



snapshots, this allows us to recover {c1, ξ1}. Given these
estimates the activation time τ1 is then recovered by perform-
ing a line search. For multiple sources we can recover each
source sequentially as described in [7], for example.

The results are summarized in Figure 3, as expected the
unknown source location, intensity and activation times are
recovered reliably. Although the estimates resulting from the
nonuniform sampling case have a larger variance compared
to uniform sampling estimates.
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(a) Uniform spatial sampling (N = 49)
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(b) Non-uniform spatial sampling (N = 45)
Fig. 3. Single source recovery from 2D diffusion field sam-
ples. Here K1 = K2 = 10 for the spatial sensing function
family

{
Ψk(x) = ejk1x1+jk2x2

}
k

with k2 = jk1.

6. CONCLUSION

In this paper we demonstrate how to solve the inverse source
problem for a class of PDE-driven fields. Our proposed ap-
proach extends non-trivially results of modern sampling the-
ory, allowing us to reduce the problem to solving a multidi-
mensional structured least squares problem. Finally simula-
tion results presented further corroborates the validity of the
proposed framework.
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