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Abstract—Many physical phenomena across several applica-
tions can be described by partial differential equations (PDEs). In
these applications, sensors collect sparse samples of the resulting
phenomena with the aim of detecting its cause/source, using some
intelligent data analysis tools on the samples. These problems are
commonly referred to as inverse source problems. This work
presents a novel framework for solving such inverse source
problem for linear PDEs by drawing from certain recent results
in modern sampling theory. Under the new framework, we study
the well-known diffusion PDE and present numerical results that
highlight the validity and robustness of the approach.

I. INTRODUCTION

Partial differential equations (PDEs) are a ubiquitous math-
ematical tool used to describe a wide spectrum of physical
phenomena across many application domains. In majority of
these applications, a collection of sensor nodes are deployed
over a region of interest to collect sparse spatiotemporal
measurements of the phenomena (signal), such as: neuronal
currents in brain source imaging, thermal fields in server
clusters/multi-core processors and the concentration of toxic
substances/releases into the environment. Hence, given these
sensor measurements of the phenomena, one might be in-
terested in locating cortical avalanches for epilepsy manage-
ment/diagnosis [1], localizing hot spots in servers/processors
for load balancing [2] or plume sources/leakages [3], [4]
respectively. This class of estimation problems are more com-
monly referred to as inverse source problems (ISPs).

For these ISPs, there are generally two central tasks: data
collection and data processing. Although the fabrication of
sophisticated sensors for data collection in several applica-
tion scenarios is well-established, the art of processing and
analyzing the data remains an area of intensive research. In
this work, we will focus on the latter, specifically we intro-
duce a new framework for designing reliable sampling and
reconstruction schemes that exploit the underlying PDE model
of the measured signals to solve the ISP. In the example of
plumes/leakages, the emitted substance comprises microscopic
particles that propagate, over time, from the source thereby
spreading throughout the monitored region. Therein, the under-
lying field is the concentration of the released substance over
space and time, whilst the corresponding PDE is the diffusion
equation [5], [6].

Other prime examples of commonly occurring PDEs include
the wave and Poisson PDEs [7]. The wave equation is perva-
sive in the modeling of signals prevalent in speech recognition
[8], acoustic tomography [9], speech and sound enhancement

[10], sound/wave source localization [10], [11], whilst the
Poisson equation is of huge importance in biomedical engi-
neering applications, such as the localization of sources of
neuronal activity (also known as brain source imaging (BSI))
from electroencephalographic (EEG) signals [1], [12], [13].

Over the years, several techniques have been proposed to
solve these ISPs. For example, [14] proposes a technique that
utilizes the structure of euclidean distance matrices to solve
the ISP for acoustic wave fields. Other proposed schemes
have been largely based on compressed sensing [15]–[17],
statistical estimation techniques [18]–[20] and finite/boundary
element methods [21]. In most of these techniques however
the underlying PDE model isn’t exploited, and even when it
is, the resulting schemes are usually ad hoc in that they do
not generalize easily to other PDEs. To this end, we propose
a universal approach that still exploits the underlying PDE
model of the signal obtained. Our approach shows that we can
solve the ISP—for the class of linear PDEs—given access to
a sequence of generalized measurements. We further demon-
strate that these generalized measurements can be obtained,
with relative ease, by evaluating a linearly weighted sum of
the sensor data. Finally, we show how to compute the proper
weights of this sum; interestingly, we will see that it they
directly depend on the Green’s function of the underlying
PDE.

The rest of the paper is organized as follows. The class of
ISP of interest is defined in Section II. We then present the
main results of our framework and summarize the proposed
approach in Section III. Next we investigate the validity and
performance of the resulting scheme, in the diffusion field
setting, in Section IV and finally the paper is concluded in
Section V.

II. THE INVERSE SOURCE PROBLEM

Let Ω ⊂ Rd be a d-dimensional homogeneous and isotropic
medium in which the PDE-driven signal u(x, t) is embed-
ded, then the continuous field (signal) u(x, t) induced by an
unknown source distribution f(x, t), compactly supported on
Ω× R+ can be written in the form:

u(x, t) = (g ∗ f)(x, t), (1)

where g(x, t) is the Green’s function of the PDE model of
the induced field. For some well known physical phenomena,
such as diffusion and wave fields, analytic expressions exist for
the Green’s function g(x, t), otherwise they can be computed



numerically. Our aim is to reconstruct f(x, t) from sparse
measurements, say ϕn,l = u(xn, tl), of the field u(x, t)
obtained at sensor locations {xn}Nn=1 and at sampling instants
{tl}Ll=0. However due to the possibly infinite dimensionality
of f(x, t) this problem as it stands is ill-posed, nonetheless
we can regularize it by imposing a structure on f(x, t). For
instance we may assume that the sources are sparse in both
space and time and so can be accurately represented by the
source parametrization:

f(x, t) =

M∑
m=1

cmδ(x− ξm, t− τm), (2)

where cm, τm ∈ R are the intensity and activation time of the
m-th source respectively, situated at ξm = (ξi,m)di=1 ∈ Rd.
Under this assumption and with knowledge of g(x, t) for
the underlying PDE, our aim is to recover the unknowns
{cm, τm, ξm}Mm=1 from the sparse field samples {ϕn,l}n,l.

Although the results presented in this paper focus on re-
covering instantaneous point source distribution (with d = 2),
we remark that it is possible to extend them to other equally
interesting source distributions, as well as fields in three spatial
dimensions (i.e. d = 3). In addition, certain multidimensional
results are stated without proof for brevity. Detailed proofs
appear in our paper [22].

III. SOLVING THE INVERSE PROBLEM

In [4, Proposition 1], the authors demonstrated that the
unknown source parameters {cm, τm, ξm}Mm=1 can be recov-
ered simultaneously from a sequence of, so called, generalized
measurements {R(k)}Kk=0, using such algebraic techniques as
Prony’s method [23]. In particular, the generalized measure-
ments we seek are assumed to be of the form:

R(k) = 〈f(x, t),Ψk(x)Γ(t)〉
def
=

∫
x

∫
t

f(x, t)Ψk(x)Γ(t)dV dt,
(3)

where Ψk(x) and Γ(t) are functions chosen such that Ψk(x) =
e−k(x1+jx2), Γ(t) = e−jt/T and k = 0, 1, . . . ,K, whilst
dV = dx1dx2. Furthermore, notice that substituting the source
parametrization (2) into the right hand side of (3) gives the
following sum of exponentials:

R(k) =

M∑
m=1

cme
−jτm/T e−k(ξ1,m+jξ2,m). (4)

The problem of solving (4) to find {(cm, τm, ξm)}Mm=1 is
well-studied in the signal processing community; specifically,
Prony’s method can be used to recover the unknowns, given
{R(k)}Kk=0 where K ≥ 2M − 1. See for example, [4],
[24]. Therefore, given such a sequence R(k) applying Prony’s
method to it solves the ISP of interest.

Consequently, our focus now turns to obtaining the sequence
R(k). The approach of [4] achieves this by evaluating nu-
merically a particular family of integrals that depend on the
continuous field measurements. In contrast to that approach
however, the current one is based on computing R(k) by using

a linearly weighted sum of the sparse sensor measurements,
i.e.:

R(k) =
∑
n,l

wn,l(k)ϕn,l. (5)

In fact, it can be shown that:

R(k) =
∑
n,l

wn,l(k)ϕn,l

⇐⇒
∑
n,l

wn,l(k)g(x− xn, t− tl) = Ψk(x)Γ(t),

where {wn,l(k)}n,l are weights to be found, for each k =
0, 1, . . . ,K. In fact, this equivalence possesses an interesting
interpretation, namely: the sequence of weights {wn,l(k)} that
reproduces the family of functions {Ψk(x)Γ(t)}k, using linear
translates of g(x, t) coincide with those that map the sensor
measurements to the desired generalized measurements via a
linearly weighted sum (5).

One straightforward way to proceed, to find the weights, is
by discretizing x and t in∑

n,l

wn,l(k)g(x− xn, t− tl) = e−k(x1+jx2)e−jt/T , (6)

to form an overdetermined system of linear equations; where
(6) above results from choosing Ψk(x) = e−k(x1+jx2) and
Γ(t) = e−jt/T . The resulting linear system can be shown to ad-
mit a least-squares solution for the desired weights {wn,l(k)}.
However, we remark that the resulting system may sometimes
be ill-conditioned, hence inverting it can lead to numerical
instabilities. An interesting alternative is to then consider (6)
and notice that finding the desired wn,l(k) is an exponential
reproduction problem – on that is rather common in the finite
rate of innovation and function approximation theory literature
[25], [26]. Consequently, by leveraging techniques from these
domains we can show that the desired weights in this sum are
directly related to the Green’s function of the underlying field,
when the sensors are arranged uniformly.

To be precise, let us consider the case when the spa-
tiotemporal samples at (xn, tl) are on a uniform grid (i.e.
xn = (n1∆x1 , n2∆x2) and tl = l∆t for any n1, n2, l ∈ N),
then the corresponding exponential reproduction problem is:∑
n1,n2,l

wn1,n2,l(k)g(x1 − n1∆x1
, x2 − n2∆x2

, t− l∆t)

= e−j(ω1,kx1+ω2,kx2+ωtt),

(7)

where ω1,k = −jk, ω2,k = k and ωt = 1/T . Moreover let
us define G(ωx1

, ωx2
, ωt) to be the multi-dimensional Fourier

transform of g(x, t), given by

G(ωx1
, ωx2

, ωt)=

∫
t∈R

∫
x∈R2

g(x,t)e−j(ωx1x1+ωx2x2+ωtt)dV dt.

(8)
Then it can be shown that, if the generator g(x, t) (i.e.
the Green’s function of the underlying PDE) satisfies the
generalized Strang-Fix conditions [26], [27]:

G(ωk,1, ωk,2, ωt) 6= 0 and
G(ωk,1+2π`1, ωk,2+2π`2, ωt+2π`3)=0∀`i ∈ Z\{0}

(9)
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(a) Uniform sampling using coefficients (10).
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(b) Non-uniform sampling (linear systems approach).
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(c) Non-uniform sampling (with interpolation).

Fig. 1. Single diffusion source estimation given noisy sensor data sampled at
1Hz for T = 20s (SNR = 10dB). Spatial sensing function is {Ψk(x)}Kk=0
with K = 1. In each subfigure, the scatterplot shows the sensor locations
(green •), as well as, the true (blue +) and estimated (red ×) source locations,
whilst the line plots show the source intensities (top) and activation times
(bottom).

for i = 1, 2, 3, the exact exponential reproducing weights are

wn1,n2,l(k) =
∆x1

∆x2
∆te

−k(n1∆x1+jn2∆x2 )e−jl∆t/T

G(jk,−k,−1/T )
.

(10)
Hence given access to uniform samples of a physical

field driven by a linear PDE with constant coefficients, our
proposed approach for solving the ISP can be summarized
as follows. First, compute the multidimensional Fourier trans-
form G(ωx1

, ωx2
, ωt) of the field using (8). Second, given

G(ωx1
, ωx2

, ωt), we evaluate wn1,n2,l(k) using (10) for k =
0, . . . ,K, n1 = 0, . . . , N1, n2 = 0, . . . , N2 and l = 0, 1 . . . , L.
Third, with the sequence of weights {wn1,n2,l(k)} and the
samples {ϕn,l}n,l, we can retrieve the desired generalized
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Fig. 2. Effect of measurement noise (SNR) on the single diffusion source
localization accuracy. The single source field is sampled with a uniform array
of 49 sensors at 1Hz for T = 20s, at varying noise levels. We use K = 5
for the current approach and compare it to the approach of [4] with K = 5
and r = 0. Given the estimated location ξ̂ = (ξ̂1, ξ̂2), the top plot shows the
RMSE of ξ̂1,1, whilst the bottom one gives the RMSE of ξ̂2,1.

measurements R(k) by using (5). Finally, we then apply
Prony’s method to annihilate {R(k)}Kk=0 to recover the un-
known source parameters {(cm, τm, ξm)}Mm=1 simultaneously
given that K ≥ 2M − 1.

In the case of non-uniform sensor placement, we may
resort to discretizing the expression (6) in order to compute
the weights provided the obtained linear system is well-
conditioned. An alternative, and more effective approach as we
will see in the simulation results, is to first of all interpolate
the field using a spline and then resample it uniformly such
that the coefficients (10) above can be used.

In addition, for PDEs with a Green’s function that does
not satisfy the Strang-Fix conditions (9), we can demonstrate
that the coefficients (10) are approximately able to reproduce
the desired exponentials, providing that the Fourier transform
G(ωk,1, ωk,2, ωt) has a sufficiently fast decay rate.

IV. NUMERICAL SIMULATIONS

We present results for the 2D diffusion field, which has

g(x, t) = 1
4πµte

− ‖x‖2
4µt H(t) where H(t) is the unit step

function, in Figure 1. The field samples are simulated nu-
merically in MATLAB and then corrupted with additive white
Gaussian noise and estimation results for all three approaches
of computing {wn,l(k)} discussed in Section III are presented.

A. Single source diffusion field

We first show in Figure 1 that the proposed approach is
able solve the ISP for the single source diffusion field setting,
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Fig. 3. Effects of sensor density and source separation on the performance of the localization algorithm. The field induced by two sources is sampled at
1Hz for T = 20s with varying sensor density and source separation. For each value sensor separation and source separation the obtained noisy measurements,
with SNR= 20dB, are used to estimate the locations of the unknown diffusion sources. The RMSE of the estimates obtained using K = 5 over 1000
independent trials are shown: i.e. in (a) RMSE of ξ̂1,1, in (b) RMSE of ξ̂2,1, in (c) RMSE of ξ̂1,2 and in (d) RMSE of ξ̂2,2.

in both the uniform and non-uniform spatial sampling regimes
even in the presence of noise. The obtained results demonstrate
that uniform sampling out-performs non-uniform sampling,
since the variance of its estimates about the true value is much
smaller. In addition, with access to non-uniform samples, our
results suggest that it is better to interpolate on a uniform grid
and then use the coefficients (10) instead of formulating and
solving a linear system.

Furthermore, in Figure 2, we compare the noise resilience of
the present approach against that of [4]. To achieve this result,
we perform 5000 independent trials at each SNR level and
then compute the RMSE for each coordinate of the estimated
location ξ̂ = (ξ1, ξ2). The obtained results suggest that, in
this setting, the estimation accuracy of the present approach is
higher; moreover, the performance of both algorithms improve
with increasing SNR.

B. Effects of sensor and source separation on the location
estimates

In this experiment, we consider the diffusion field induced
by two point sources with c1 = c2 = 1, τ1 = τ2 = 1
and fix the location of the first source ξ1 = (ξ1,1, ξ2,1)
whilst the location of the second source ξ2 = (ξ1,2, ξ2,2)
is allowed to vary such that the separation between them
Ssource = ‖ξ2 − ξ1‖ ∈ {0.04 + 0.26i

11 }
11
i=0. Furthermore,

the sensor density also varies such that the uniform spa-
tial sampling interval ∆x = (∆x1 ,∆x2) where ∆x1 =

∆x2 ∈ {0.0333, 0.0375, 0.0429, 0.05, 0.06, 0.075, 0.01}.1 The
field measurements, sampled at 1Hz for T = 20 seconds
by the sensor network, are assumed to be noisy with fixed
SNR= 20dB. Consequently, for each fixed value of Ssource
and ∆x we recover the estimates ξ̂1 and ξ̂2 of the true
source locations ξ1 and ξ2, respectively, using K = 4. The
pairing (ξ̂m, ξm) of the true value and its estimate is chosen
to minimize the overall error (with respect to the Euclidean
distance). The RMSE for each of the estimates is computed
and provided in Figure 3, using 1000 independent trials of the
experiment.

Observe in Figure 3 that, in line with expectation, the per-
formance of our estimation algorithm improves as the sensor
density and separation between the two sources increases. In
particular, the RMSE of the estimates for the first source—
i.e. RMSE(ξ̂1) as shown in Figure 3(a) and (b)—decreases
when the sensor density increases. This is a consequence of
the reduction in the approximation error obtained in the expo-
nential reproduction step, as ∆x decreases. Furthermore, the
effect of the source separation on the localization performance
becomes more noticeable as the sensor spacing decreases. For
instance, when ∆x = (0.05, 0.05) we notice a a gradual but
steady decrease in the RMSE of ξ̂1 in Figure 3(a) and (b).
This improvement in estimation performance is even higher

1This yields uniform 2−D sensor arrays of size {10×10, 9×9, . . . , 4×4}
respectively.



for the first source ξ̂1 compared to the second ξ̂2.

V. CONCLUSION

We have demonstrated how to solve the inverse source
problem for a class of PDE-driven phenomena given sparse
observations of the phenomena. In our approach we extend
non-trivially results of modern sampling theory, turning the
problem to one of fitting an exponential with a certain proto-
type function specific to the PDE of interest (i.e. its Green’s
function). The coefficients that produces this fitting are exactly
the weights that when applied to the sparse samples gives a
sequence that is governed by a specific sum of exponentials.
The solution of this system then coincides with the desired
source parameters. Finally we have also presented simulation
results to reinforce our approach.
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