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ABSTRACT

In this contribution, we implement a fully distributed diffusion
field estimation algorithm based on the use of average consensus
schemes. We show that the field reconstruction problem is equiva-
lent to estimating the sources of the field, and then derive an exact
inversion formula for jointly recovering these sources when they
are localized and instantaneous. Next we adapt this formula to the
sensor network setting when only spatiotemporal samples of the
field are available, and only local interactions between the sensors
are allowed. To this end, we propose a robust distributed algorithm
for reconstructing two-dimensional diffusion fields, sampled with
a network of arbitrarily placed sensors. The proposed distributed
algorithm is validated through numerical simulations in the noisy,
multiple source setting.

Index Terms— Sensor networks, diffusion fields, spatiotempo-
ral sampling and reconstruction, distributed averaging, consensus

1. INTRODUCTION

The use of sensor networks for monitoring physical fields is becom-
ing increasingly important. We consider sensor networks for the
monitoring of diffusion fields. Such fields are encountered in several
physical and biological situations, from the variation of temperature
in fluids and disease epidemic dynamics to the release of nuclear
and bio-chemical substances. However, diffusion fields are non-
bandlimited and so require a dense set of spatiotemporal samples
in order to recover the field. Consequently, considerable research ef-
forts have been made towards developing robust sensor data fusion
schemes. Several centralized approaches for diffusion fields like
[1–7] exist. However these schemes are vulnerable to single point
failure, specifically the network becomes unoperational if the fusion
center fails. Moreover, communicating with the fusion center typi-
cally require long range transmissions from the sensor nodes, which
can lead to huge communication costs and bottlenecks. As a result
efforts by the signal processing community have aimed to decentral-
ize, and fully distribute, the field estimation problem. For instance,
Lu and Vetterli propose a distributed adaptive sampling scheme [8],
van Waterschoot and Leus [9] develop a distributed scheme based
on finite element method. In addition, a distributed field reconstruc-
tion method using hybrid shift-invariant spaces is proposed in [10],
whilst a distributed extension of standard compressed sensing tech-
niques is developed in [11].

The main task of this paper therefore is to derive a noise ro-
bust, fully distributed sensor data fusion scheme for reconstructing
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diffusion fields driven by localized sources. To achieve this, we first
argue that the field estimation problem is equivalent to estimating the
sources of the field. Then we extend the sensing functions approach
of [12] used for simultaneously recovering all unknown source pa-
rameters (intensities, locations and activation times) of the field, to
the case of distributed estimation. In contrast to [12] which requires
a centralized estimation, we show that this computation can be dis-
tributed using a modification of the distributed gossip algorithms for
average consensus, such that each sensor in the network only needs
to exchange some properly modified versions of its sensor measure-
ments to its neighboring nodes. This allows each sensor to converge
to the true values of a specific family of integrals and hence success-
fully recover the unknown sources. Although the focus of this paper
is on the recovery of instantaneous sources, the theory developed
herein can also be extended to the time-varying source distribution
considered in [13].

The paper is organized as follows. In Section 2 the distributed
sampling and reconstruction problem in the source estimation set-
ting is formalized, along with assumptions on the model of the sen-
sor network. Section 3 presents an overview of gossip algorithms for
distributed consensus. We then present a derivation of the consensus
based distributed source estimation scheme in Section 4 for simulta-
neous recovery of multiple instantaneous and localized sources. Nu-
merical simulations are given in Section 5 and concluding remarks
in Section 6.

2. PROBLEM FORMULATION

In this paper, we are specifically concerned with the distributed re-
construction of two-dimensional diffusion fields from its irregular
spatial samples obtained using a network of sensors (see Figure 1).
It is well-known that the diffusion field u(x, t), at a location x ∈ R2

and time t, induced by the unknown source distribution f(x, t) will
propagate through space and time according to the diffusion equa-
tion,

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x, t), (1)

where µ is the diffusivity of the medium through which the field
propagates. Furthermore, the Green’s function solution of this PDE
is such that:

u(x, t) = (g ∗ f)(x, t), (2)

where g(x, t) = 1
4πµt

e
− ‖x‖2

4µt H(t) is the Green’s function of the
diffusion field, and H(t) is the unit step function. Clearly if f(x, t)
is known precisely, (2) allows us to perfectly reconstruct the field
u(x, t) ∀x, t. Hence, we will concentrate on estimating the source
distribution f using sensor networks. We consider diffusion fields
induced by spatially localized and temporally instantaneous sources,
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with the following distribution:

f(x, t) =

M∑
m=1

cmδ(x− ξm, t− τm), (3)

where cm, τm ∈ R and ξm ∈ Ω are the intensity and activation
time and spatial location of the m-th source respectively, and ξm =
(ξ1,m, ξ2,m). We seek a distributed estimation strategy for solving
this estimation problem. So that each sensor performs local data ac-
quisition (samples the field) and then through localized interactions
(i.e. exchanging properly modified versions of its measurements
with its neighbors) estimates the unknown parameters {cm, ξm, τm :
m = 1, . . . ,M} of the field and hence reconstruct the field. The dis-
tributed sampling and reconstruction problem is summarized below
for clarity:
P : Let S = {1, . . . , N} denote a network of N sensors with

each sensor n located arbitrarily at xn having access to local samples
ϕn(tl) = u(xn, tl) of the field u, at times tl for l = 0, 1, . . . , L.
Given only these local temporal samples, we intend to estimate
{cm, ξm, τm : m = 1, . . . ,M} by performing local exchange of
messages with neighboring nodes.

2.1. System Model and Assumptions

The sensor network is assumed to be a strongly connected random
geometric graph (RGG) G(N, rcon), with N nodes and connectiv-
ity radius rcon. This is obtained by placing N nodes uniformly at
random over a square region and then placing an edge between two
nodes if their Euclidean distance is at most rcon. The communi-
cation between nodes is assumed to be noiseless and much faster
than the sampling rate. Sensors are synchronized, so that the field
samples obtained by the n-th sensor is {ϕn(tl)}Ll=0. Furthermore,
upon deployment of the sensors an initialization process is initiated,
where: a) the sensors learn the topology of the network; and b) they
each perform the Delaunay triangulation(see Figure 1) such that we
obtain a graph Gdel = (V, E), with the vertex set V corresponding to
the locations of the sensors and E are the edges of the triangulation.
Hence every sensor n knows if it lies on the convex hull boundary
of the triangulation or in the interior of the convex hull; and also the
total number Jn of triangles for which it is a vertex, as well as their
areas |∆n,j | for j = 1, . . . , Jn.

3. GOSSIP ALGORITHMS OVERVIEW

Gossiping [14, 15] is a distributed strategy for achieving consensus
amongst agents in a network through a local exchange of data. Fol-
lowing the early works of [14] in the area, it has gained considerable
interest for in-network processing in sensor networks as it mitigates
the need for specialized routing protocols. In addition, gossip-based
algorithms are robust to bottlenecks and link failures making it suit-
able for our distributed estimation problem. In our simulation results
we use the archetypal pairwise randomized gossip algorithm [16],
but stress that the results derived in this paper can be immediately
extended to other gossiping schemes, such as [17, 18]. An in depth
survey of gossiping algorithms in sensor networks is given in [15].

In randomized pairwise gossip, each node preserves an estimate
of the sum and hence average of the node values. Let the value of
node n after the i-th pairwise gossip round be yn,i, hence yn,0 is
its initial value. In an iteration, a node n selected uniformly at ran-
dom wakes up and contacts a randomly selected neighbor n′ within
its connectivity radius, and they both update their estimates by set-
ting yn,i+1 = yn′,i+1 = (yn,i+yn′,i)/2. Under this scheme it
can be shown that, if a network (of N nodes) is connected and each
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Fig. 1: An arbitrary sensor placement – the monitored domain Ω
divided into triangular meshes and the domain boundary ∂Ω divided
into straight line segments (black solid lines).

pair of nodes communicate often enough the estimate of each node
converges to the global network average ȳ = 1

N

∑N
n=1 yn,0. Per-

formance guarantees and convergence results have also been studied
(see [16] and the references therein).

The localized interactions in our field estimation setting will be
based on the use of gossip algorithms for the distributed computa-
tion of a family of integrals whose final values can be used to reveal
the unknown source parameters. In the following section we present
our strategy for estimating these family of integrals through local-
ized interactions alone and then we demonstrate how to recover the
unknown source parameters.

4. DIFFUSION SOURCE ESTIMATION

In this section, we extend the sensing function approach of [12, 19]
introduced for joint recovery of intensities and locations of mul-
tiple localized and instantaneous diffusion sources, to the case of
distributed recovery. We overview the centralized recovery, before
demonstrating how the computations can be distributed amongst the
sensor nodes using consensus-based schemes.

4.1. Joint Intensity, Location and Activation Time Recovery

Green’s second theorem allows us to relate the evolution of the field
u along a boundary ∂Ω to the field inside it as follows:∮

∂Ω

(Ψk∇u−u∇Ψk)·n̂∂ΩdS=

∫
Ω

(
Ψk∇2u−u∇2Ψk

)
dV, (4)

where n̂∂Ω is the outward pointing unit normal vector to the bound-
ary ∂Ω, Ω is the bounded region and Ψk is a sensing function. If Ψk

is chosen to satisfy ∂Ψk
∂t

+ µ∇2Ψk = 0, then (4) reduces to,∫
Ω

∂

∂t
(uΨk)dV −µ

∮
∂Ω

(Ψk∇u− u∇Ψk)·n̂∂ΩdS=

∫
Ω

ΨkfdV, (5)

by substituting (1) and ∇2Ψk = − 1
µ
∂Ψk
∂t

into (4) and rearrang-
ing. Now before integrating (5) over t ∈ [0, T ] as in [12], we first
multiply through by a time-varying sensing function Γ(t) and then
time-integrate to obtain,

R(k)=〈Ψk(x)Γ(t), f〉=
∫

Ω

∫
t

Ψk(x)Γ(t)f(x, t)dtdV, (6)

3263



where for a time-independent choice of Ψk,

R(k)
def
=

∫
Ω

(ΨkU̇)(x, T )dV−µ
∮
∂Ω

(Ψk∇U−U∇Ψk)·n̂∂ΩdS, (7)

with U(x, T ) =
∫ T

0
Γ(t)u(x, t)dt and U̇(x, T ) = Γ(T )u(x, T )−∫ T

0
∂Γ
∂t
u(x, t)dt. Subsequently, define Φn(tL)

def
= U(xn, tL), simi-

larly Φ̇n(tL)
def
= U̇(xn, tL).

Furthermore, for the source parameterization (3), the right hand
side of (6) becomes, R(k) =

∑M
m=1 cmΓ(τm)Ψk(ξm). If we

choose Ψk(x) to be analytic and Γ(t) to be a time-varying function,
specifically Ψk(x) = e−k(x1+jx2) and Γ(t) = e−jt/T for stability
reasons, then the Vandermonde system

R(k) =

M∑
m=1

cme
−jτm/T e−k(ξ1,m+jξ2,m) k = 0, 1, . . . ,K, (8)

where j =
√
−1, is obtained. Finally (8) can be used to solve for all

M tuples (cme
−jτm/T , ξm) using Prony’s method [20,21], provided

K ≥ 2M − 1. Having seen how to recover all unknown source
parameters simultaneously given the integral measurements (7), we
are now left with obtaining this family of integral measurements in
a distributed way.

4.2. Source Estimation: A Consensus Approach

Given access to all spatiotemporal sensor measurements of the field
{ϕn(tl) : l = 0, 1, . . . , L}Nn=1 at a fusion center for example, it is
possible to compute reliable estimates of (7) using standard quadra-
ture techniques as discussed in [12], and hence recover the unknown
source parameters using Prony’s method. In this contribution, we
intend to distribute the estimation of {R(k)} using (7) across all
sensors.

Proposition 1. By exchanging the properly weighted sum of sen-
sor measurements, yn(k)=N

[
An(k)Φ̇n(tL)− µBn(k)Φn(tL)

]
where An(k) and Bn(k) are dependent on Ψk and the topology of
the network, with neighboring sensors it is possible for each sensor
n to recover the unknown source parameters.

Proof. Firstly, consider the surface integral contribution in (7), if
the bounded domain Ω is partitioned into non-overlapping triangular
subdivisions {∆j}Jj=1 such that

⋃I
i=1 ∆i = Ω and ∆i

⋂
∆j = ∅

for i 6= j, then this integral can be approximated by the sum[22]:∫
Ω

(ΨkU̇)(x, T ) dV ≈1

3

J∑
j=1

3∑
j′=1

Ψk(vj,j′)Φ̇j,j′(tL)|∆j|, (9)

where vj,j′ is the j′-th vertex of triangle j-th and Φ̇j,j′(tL) =

U̇(vj,j′ , tL) is the measurement of the sensor situated at this ver-
tex at time t = tL = T . Moreover this double sum, in (9), can be
reduced to the single sum:∫

Ω

(ΨkU̇)(x, T ) dV ≈
N∑
n=1

(
1

3
Ψk(xn)

Jn∑
j=1

|∆n,j|

)
︸ ︷︷ ︸

:=An(k)

Φ̇n(tL), (10)

where ∆n,j and |∆n,j| are used to denote the j-th triangle, and
its area respectively, of which node n is a vertex. This equal-
ity follows by noticing that Φ̇j,j′(tL) is always multiplied by the

area of the j-th triangle and 1/3Ψk(vj,j′). Hence denoting the
set of all triangles that share a common vertex n located at xn by
Tn = {∆n,1,∆n,2, . . . ,∆n,Jn}, the measurement Φ̇n(tL) is al-
ways weighted by the sum of the areas of its corresponding triangles
and 1/3Ψk(xn). We denote this weight that directly depends on
the sensing function and Delaunay triangulation (equivalently, the
topology of the network) by An(k).

For the boundary integral, the time-integrated field U(x) and its

spatial derivative ∇U(x)=
[
∂U
∂x1

, ∂U
∂x2

]>
=[Ux1 , Ux2 ]> are required.

Let S∂Ω = {1, . . . , n, . . . , I} denote the cyclically ordered set of
the boundary sensors, these coincide with the vertices of the Convex
Hull. Furthermore, assume the elements of S∂Ω are in counterclock-
wise order, then: n̂∂ΩdS ≈ [x2,n−x2,n−1, x1,n−1−x1,n]>. Hence
the boundary integral can be approximated as follows:∮

∂Ω

(Ψk∇U − U∇Ψk) · n̂∂Ω dS

≈
I∑

n=1

Ψk(xn) [(Ux1(xn) + kU(xn)) (x2,n − x2,n−1)

+ (Ux2(xn) + jkU(xn)) (x1,n−1 − x1,n)]

=

I∑
n=1

Ψk(xn){(x2,n−x2,n−1)Ux1(xn)+(x1,n−1−x1,n)Ux2(xn)

+ U(xn) [(x2,n − x2,n−1) + j(x1,n−1 − x1,n)]} . (11)

The first term in (11) depends on U(xn) and its spatial deriva-
tive which must be approximated from spatiotemporal samples of
u(x, t). Note that U(xn), can be obtained by sensor n indepen-
dently using trapezium rule. However, ∇U(xn) can only be esti-
mated reliably using neighboring sensor measurements by a polyno-
mial fitting approach. Specifically, we find the regression function
U(xn) = αnx1,n + βnx2,n + γn by estimating (αn, βn, γn) for
each boundary sensor n = 1, . . . , I using measurements of the
nearest neighbors to the point xn.

Let the n-th sensor located at xn, with measurement U(xn)
have the two closest sensors x′n and x′′n with corresponding mea-
surements U(x′n) and U(x′′n). With these we can estimate the pa-
rameters (αn, βn, γn) by solving the linear system: U(x′′n)

U(xn)
U(x′n)

 =

 x′′1,n x′′2,n 1
x1,n x2,n 1
x′1,n x′2,n 1

 αn
βn
γn

 , (12)

un = Xndn. (13)

The system admits a unique solution, if x′′n,xn and x′n are not
collinear. Therefore, the local spatial derivative ∇U(xn) can be
retrieved directly from the solution to this system by noticing the
polynomial p(x) = αx1 + βx2 + γ has ∇p(x) = 〈α, β〉. Hence
∇U(xn) = [Ux1(xn), Ux2(xn)]> ≈ [αn, βn]>, where

αn=
(x2,n−x′2,n)U(x′′n)+(x′2,n−x′′2,n)U(xn)+(x′′2,n−x2,n)U(x′n)

det(Xn)
,

βn=
(x′1,n−x1,n)U(x′′n)+(x′′1,n−x′1,n)U(xn)+(x1,n−x′′1,n)U(x′n)

det(Xn)
.

Then substituting these back into (11) gives:∮
∂Ω

(Ψk∇U − U∇Ψk) · n̂∂Ω dS

≈
I∑

n=1

b′′n(k)U(x′′n) + bn(k)U(xn) + b′n(k)U(x′n),

(14)
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Scatter-plot shows the true source locations (blue ‘+’), the esti-
mated locations (red ‘×’) and one realization of the sensor distri-
bution (green ‘•’).

where

b′′n(k)=
Ψk(xn)

det(Xn)

[
x1,n−1−x1,n

x2,n−x2,n−1

]>[
x′1,n−x1,n

x2,n−x′2,n

]
, (15a)

bn(k)=
Ψk(xn)

det(Xn)

[
x1,n−1−x1,n

x2,n−x2,n−1

]>[
x′′1,n−x′1,n
x′2,n−x′′2,n

]
+kΨk(xn) [(x2,n−x2,n−1)+j(x1,n−1−x1,n)] , (15b)

b′n(k)=
Ψk(xn)

det(Xn)

[
x1,n−1−x1,n

x2,n−x2,n−1

]>[
x1,n−x′′1,n
x′′2,n−x2,n

]
. (15c)

The terms b′′n(k), bn(k) and b′n(k) in (15) are dependent only on
the topology of the network (specifically the locations of the sensors)

and our choice of sensing function Ψk(x). Indeed given the assump-
tions detailed in Section 2.1, these weights can be precomputed for
every sensor in the network, such that∮

∂Ω

(Ψk∇U − U∇Ψk) · n̂∂Ω dS ≈
∑
n∈S

Bn(k)U(xn), (16)

where Bn(k) is non-zero if n is a boundary sensor, i.e. n ∈ S∂Ω, or
if it is one of the two nearest sensors to a boundary sensor, n ∈ N∂Ω.
Otherwise Bn(k) is zero. Finally, we can combine (10) and (16), to
obtain the estimates forR(k):

R(k) ≈
∑
n∈S

An(k)Φ̇n(tL)− µBn(k)Φn(tL) (17)

=
1

N

∑
n∈S

yn(k). (18)

Upon deployment of the sensors, each sensor can precompute its
unique weights An(k) and Bn(k) for k = 0, . . . ,K. After which
they can start to monitor the region of interest Ω, by sensing the field
locally. To initiate the estimation process, the sensor n exchanges its
modified measurements {yn(k)}k with a randomly chosen neighbor.
This begins the gossip round, as detailed in Section 3, it continues
until convergence to {R(k)}. All sensors in the network can now
independently apply Prony’s method to its current estimate ofR(k)
to recover all M triples {cm, τm, ξm} as described in Section 4.1.

5. SIMULATION RESULTS

In Figure 2 we plot the trajectories of the source parameter estimates
of five randomly chosen sensors, as the number of pairwise local
message exchanges increases. Notice that the estimates converge
to the desired values after several pairwise exchanges as expected.
Furthermore, we investigate the robustness of the algorithm to noisy
sensor measurements in the multiple source case. We perform 10
independent trials, with each trial using a new realization of a ran-
dom geometric graph (RGG) and a new sensor noise process. As
can be seen in Figures 3a and 3b, the source locations and activation
times are recovered reliably even in the noisy setting, after ∼1000
iterations. The intensity estimates are also retrieved, lying between
0.81–1.33 for each noisy independent trial.

6. CONCLUSION

We derived a fully distributed scheme for estimating the sources of a
2-D diffusion field from its arbitrary spatiotemporal samples. Specif-
ically we solve the problem for jointly estimating all the unknown
source parameters when the sources are localized and instantaneous.
Then we extend this solution and propose a distributed algorithm
based on average consensus schemes, when we have access only to
discrete sensor network measurements. Finally we show through
numerical simulations that the proposed algorithm is robust to noise,
even in the multiple source setting.
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