
Video Temporal Super-Resolution Using
Nonlocal Registration and Self-Similarity

Matteo Maggioni and Pier Luigi Dragotti

Communications and Signal Processing Group
Department of Electrical and Electronic Engineering
Imperial College London, London SW7 2AZ, UK

Email: m.maggioni@imperial.ac.uk, p.dragotti@imperial.ac.uk

Abstract—In this paper we present a novel temporal super-
resolution method for increasing the frame-rate of single videos.
The proposed algorithm is based on motion-compensated 3-D
patches, i.e., a sequence of 2-D blocks following a given motion
trajectory. The trajectories are computed through a coarse-to-
fine motion estimation strategy embedding a regularized block-
wise distance metric that takes into account the coherence
of neighbouring motion vectors. Our algorithm comprises two
stages. In the first stage, a nonlocal search procedure is used
to find a set of 3-D patches (targets) similar to a given patch
(reference), subsequently all targets are registered at sub-pixel
precision with respect to the reference in an upsampled 3-D
FFT domain, and finally all registered patches are aggregated
at their appropriate locations in the high-resolution video. The
second stage is used to further improve the estimation quality by
correcting each 3-D patch of the video obtained from the first
stage with a linear operator learned from the self-similarity of
patches at a lower temporal scale. Our experimental evaluation
on color videos shows that the proposed approach achieves
high quality super-resolution results from both an objective and
subjective point of view.

I. INTRODUCTION

Digital video acquisition devices necessarily have a spatial
and temporal resolutions which are limited by the size of the
sensor, optics, point-spread function (PSF), and exposure time.
Thus, solutions able to increase the resolution of the camera
become critical whenever high-quality sensors are either not
existent or prohibitively expensive to use, e.g., in forensic or
surveillance imaging.

Super-resolution (SR) is a numerically ill-posed inverse
problem and thus remains a challenging topic despite the vast
literature existing on the subject [1], [2]. Common approaches
for video SR first warp and then fuse adjacent low-resolution
(LR) frames at sub-pixel precision in high-resolution (HR)
space, and finally deconvolve the final fused data [3]–[5].
Other popular strategies embed example-based techniques
using external databases [6] or multiple video recordings [7].
Recently, effective single-video SR has been achieved by
leveraging self-similarity of small patches at different scales
of the LR input video [8]–[10] with multi-scale learning [11]–
[13] as well as modern sampling theory [14], [15].

In this paper, we focus on the problem of temporal SR from
a single video, i.e., effectively incrementing the frame-rate of

the input sequence. The proposed method harnesses the power
of self-similarity, which has been proven to be abundant in
both space [11] and space-time [10], in combination with the
nonlocality principle [16] that mutually similar local features
can be found at different location within the data.

Our proposed method comprises two main stages. Each
stage begins by estimating all motion vectors in the video
using a coarse-to-fine approach with a distance metric embed-
ding a regularization prior on the position and gradient of the
motion vectors, designed to enhance both the accuracy and
coherence of the motion field. During the first stage, motion-
compensated 3-D (reference) patches are first extracted from
the video by stacking together 2-D blocks following a motion
trajectory (i.e., a concatenation of motion vectors), and then
matched against other 3-D (target) patches at different spatio-
temporal locations. Subsequently, the targets are registered
with respect to the reference at sub-pixel precision in an
upsampled 3-D Fourier domain [17], [18]. Finally, the result-
ing patches are returned and aggregated in the appropriate
locations within the HR video. The second stage further
improves the HR video by alleviating the registration artifacts
with the application of an error-correcting linear operator [13]
learned from a pair of videos at an intermediate temporal
scale, in a way similar to [15]. The proposed SR algorithm
can be used for both grayscale and color videos. Preliminary
experimental results show the effectiveness of the proposed
method both from a subjective and an objective point of view
on standard test sequences as well as real videos.

The remainder of the paper is organized as follows. Section
II formally describes all the building blocks of the proposed
methods, namely motion estimation (Section II-A), 3-D patch
registration (Section II-B), and error correction (Section II-C).
Then, Section IV reports our experimental evaluation, and
finally Section V presents the final remarks.

II. TEMPORAL SUPER-RESOLUTION ALGORITHM

This section formally describes the proposed SR method.
Let us denote a LR video as

z(x, t) =
�
yf ~ �

�
#f (x, t), (1)



where x 2 X ⇢ Z2 and t 2 T ⇢ Z are the 2-D spatial and 1-
D temporal coordinates specifying a position in the LR video,
~ denotes convolution, # f denotes a decimation of factor
f > 1, and yf is the underlying unknown HR video which
is convolved by a blurring kernel �. This kernel in general
models both the PSF of the camera and the camera exposure
time [10], but, for our purposes, we can assume it to be a 1-D
rectangular kernel, with support depending on the exposure
time, acting solely along the temporal dimension. The goal
is to find an estimate of the temporal HR video yf from the
observed z.

A. Motion Estimation

Let Bi be a 2-D N1 ⇥N2 block extracted at the coordinate
(xi, ti), being xi its top-left corner. For the sake of notation
simplicity, in what follows, if not specified otherwise, we will
use the subscripts “i” to denote a coordinate (xi, ti), and “i, j”
to denote a pair of coordinates (xi, ti) and (xj , tj).

The first step consists in estimating the motion field. We use
a coarse-to-fine motion-estimation strategy where the motion
vectors are iteratively improved from those obtained at a
lower scale. In particular, for a given reference block BR at
a given scale, we look for the position xT of most-similar
block BT in frame tT = tR ± 1 within a window of size
W2D ⇥W2D centered around xR. As usual, the corresponding
motion vector is ~

vR,T = xT � xR.
The distance between two blocks is hereby defined as
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where || · ||2 denotes a normalized `2-norm, x̂T is the pre-
dicted position of the most-similar block estimated from the
corresponding motion vector at a lower scale, \ denotes the
direction of the vector, and the weights �· define a convex
combination (thus (2) always yields a value in [0, 1]). The
third term is the direction discrepancy between the direction
of the current ~vR,T and the median direction within a local
neighbourhood NR of size 3⇥3 centered around xR at a lower
scale (whenever this is available).

Once all the correspondences between each pair of adjacent
frames are computed, it is straightforward to extract a tra-
jectory of arbitrary length starting from any given coordinate
by iteratively concatenating motion vectors. Observe that a
trajectory can be stopped at any time (i.e., when no match
exists in the target frame) if (2) exceeds a predefined threshold
⌧2D 2 [0, 1].

B. Nonlocal 3-D Patch Registration

Let PR be a N1⇥N2⇥N3 motion-compensated 3-D patch
composed by a sequence of 2-D blocks extracted from the
video following a trajectory of length N3 2 N originating
from the location (xR, tR); analogously to the 2-D case, the
coordinate (xR, tR) identifies the top-left-front voxel of the
3-D patch. Now we are able to define a patch-distance metric

Fig. 1. Nonlocal target patches (gray) similar to a reference patch (blue).

as a normalized `2-norm of the difference of corresponding
voxels in two different patches as

d3D
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PR, PT
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2
, (3)

and we call two patches similar if their distance is smaller
than another predefined threshold ⌧3D 2 [0, 1].

An important step of the registration algorithm consists in
finding a set of similar patches (targets) within the video,
which can be interpreted to be examples of the same feature
acquired at different (sub-pixel) spatio-temporal positions.
Given a reference 3-D patch PR, we construct the set

SR =
�
(xT , tT ) | d3D

�
PR, PT

�
 ⌧3D

 
, (4)

containing the coordinates of the mutually similar patches
within the video. Note that, again for computational con-
straints, the nonlocal search (4) is restricted within a 3-D
search window of size W3D ⇥W3D ⇥W3D centered around the
reference coordinate (xR, tR). Fig. 1 illustrates an example of
mutually similar patches, note how the targets (in gray) have
different trajectories, and are located at nonlocal positions in
both space and time. We restrict the cardinality of (4) to be
at most equal to a predefined K1 2 N. The actual number of
can be smaller than K1 when not enough targets satisfy the
similarity threshold ⌧3D, however K1 � 1 because (4) always
contains the coordinates of the reference patch.

The registration is performed by first placing the reference
PR onto a HR grid, and then aggregating all patches in the
corresponding (4) at sub-pixel precision. Let us call ⇠fR,T and
⇢fR,T the spatial and temporal sub-pixel translations obtained
from the registration of the target PT with respect to the ref-
erence PR with a SR factor f . The translations are classically
computed by localizing the maximum value of the 3-D patch
cross-correlation, which can be implemented as a pixel-wise
multiplication in an upsampled 3-D Fourier domain [17].

Algorithm 1 summarizes the main steps of a general 3-D
registration process, which is also illustrated in Fig. 2. Note
that, as the SR factor increases (f � 2), the computation of
the upsampled 3-D Fourier transform becomes quickly pro-
hibitive, therefore alternative fast algorithms can be used [18].
Additionally, if only the temporal translation is of interest, the
upsampling can be performed solely along the third (tempo-
ral) dimension, thus yielding a sub-frame precision temporal
translation ⇢fR,T and a pixel-precision spatial translation ⇠fR,T .

Adjacent reference patches are typically overlapping and,
in addition to that, after the registration different patches in
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Algorithm 1. Registration algorithm: PR and PT are 3-D patches of size
N
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, f is the SR factor, FFT is the fast Fourier transform, FFT�1

f

is the upsampled inverse FFT, WT is the complex conjugate of WT , and CC
is the cross-correlation. Finally, ⇢fR,T 2 R and ⇠fR,T 2 R2 are the temporal
and spatial (sub-pixel) translations given with respect to the HR grid.
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Fig. 2. Registration of two patches with SR factor f = 2 (the blue one being
the reference) with translations ⇠fR,T = 0 and ⇢fR,T = 1.

(4) can be registered at overlapping (sub-pixel) positions. This
overcompleteness is generally helpful in increasing the quality
of the final estimate, but a strategy to aggregate different
patches within the overlapping regions is needed. We use a
convex combination with weights proportional to the similarity
(3) defined as

wR,T = e
�·
⇣
d3D

�
PR,PT

�⌘2

, (5)

where � 2 R� is a negative scaling parameter, which maxi-
mizes (5) as the distance decreases. The complete aggregation
process can be formalized as

ŷf =

P
(xR,tR)2X⇥T

P
(xT ,tT )2SR

wR,T · P̊ f
TP

(xR,tR)2X⇥T

P
(xT ,tT )2SR

wR,T · �P̊ f
T

, (6)

where f is the SR factor, P̊ f
T is the registered LR patch PT

after applying the sub-pixel translations obtained as described
in Algorithm 1, and �P̊ f

T
is the characteristic function of the

Fig. 3. Linear interpolation of a motion trajectory with SR factor f = 2. The
blue blocks belongs to the original LR 3-D patch.

support of P̊ f
T into the HR video ŷf . Intuitively, within each

constellation of registered patches, (6) gives more importance
to those more similar to the reference one. An additional 3-D
Kaiser window can be applies to alleviate blocking artifacts at
the patch boundaries.

At this stage, depending on the content of the LR video z,
the registered estimate (6) is likely to be incomplete. Specif-
ically, when all targets in (4) yield null sub-pixel translations
there will be gaps in the HR video. In practice, this can
happen when the reference and the targets are almost-perfectly
identical (e.g., when the patches are extracted in uniform
regions in the video), and thus there is no variance allowing
the patches to be registered at sub-pixel precision. Thus, we
estimate the missing values in (6) through a block-based linear
interpolation along the motion field as visualized in Fig. 3.
Firstly, we select all the (overlapping) 3-D patches that are
(even partially) in contact with any of the missing regions,
then we linearly interpolate the 2-D blocks within the patch at
the desired sub-pixel precision, and finally we take the average
of the (overcomplete) interpolated values. We argue that this is
a viable strategy because the uniform nature of the data within
each 3-D patch makes the smoothness prior of the interpolating
model a reasonable assumption. Note that we also interpolate
the trajectory coordinates via linear interpolation to estimate
the location of the blocks at sub-frame precision.

C. Error Correction by Self-Similarity

The second stage of the algorithm aims at improving the
quality of the estimated video (6), as this inevitably contains
errors caused by, e.g., imperfections in the the registration.
Thus, we apply an error-correction linear operator to every
3-D patch in the video learned from an appropriately defined
(internal) dictionary of mutually similar 3-D patches extracted
at a different temporal scale.

Standard SR approaches based on patch self-similarity re-
cursively refine the HR estimate using a coarse-to-fine pyramid
composed of different scales of the image [11]. Recently,
[13] proposed the use of a double pyramid in which the HR
image is recursively estimated by learning linear mapping
functions from similar patches at a lower scale (provided that
the downscaling is small). Following the same rationale, and
inspired by the work on image SR introduced in [14], [15],
we use an inverse double-pyramid approach, in which we first
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Fig. 4. Schematic visualization of the error correction via self-learned linear
mapping. The red arrows denote resampling by temporal interpolation, the
blue arrow denote upsampling by registration (Section II-B), and the black
arrows denote the linear mapping. See text for details.

learn the linear mapping between 3-D patches of the “ground-
truth” LR video and the corresponding HR estimate at an
intermediate scale 1 < fI < f , and then we apply the same
mapping at the higher level f to correct the corresponding
data.

In what follows we will focus on case of SR factor f = 2,
but observe that the same procedure can be iterated to account
for larger upsampling factors. Fig. 4 illustrates the complete
error-correction process, where each step is numbered accord-
ing to the explanation detailed below.

Step 1-4: Once the HR estimate ŷf is available (step 1),
we construct a ground-truth yfI and HR estimate ŷfI at a
chosen intermediate scale fI . Since fI > 1, we cannot access
to the ground-truth, thus we estimate yfI by upsampling
z using the overcomplete block-wise linear interpolation of
motion-compensated 3-D patches and then we average all the
interpolated results as detailed in Section II-B. Let us call
this approximation ȳfI (step 2). Then, ȳfI is downsampled by
a factor 0.5 with an analogous motion-compensated strategy
(step 3) and finally the first-stage registration algorithm is
applied with a SR factor 2 on the obtained zfI/2 to construct
the intermediate estimate ŷfI (step 4).

Step 5: Once the pair of videos at the intermediate scale is
available, for each 3-D patch PR in ŷf we search for the K2 �
1 2 N most similar patches in the intermediate-scale video
ŷfI . The nonlocal search is restricted within a 3-D window
as in (4) centered around

�
f�1
I xR, f

�1
I tR

�
, i.e. the position

corresponding to (xR, tR) at the intermediate scale fI .
Step 6: Let us denote as p̂R the vectorization of a 3-D

patch PR extracted from ŷfI having size D = N1N2N3,
and as ˆ

PR 2 RD⇥K2 the matrix having as columns the K2

vectorized patches. An equivalent ¯

PR can be constructed by
vectorizing the patches in ȳfI . The goal of the error-correction
algorithm is to calculate a linear transformation MR 2 RD⇥D

that maps the dictionary of mutually similar K2 patches in ŷfI
to their corresponding “ground-truth” versions in ȳfI . This can
be solved by minimizing a constrained Tikhonov regularization
problem [13], which admits the closed-form solution

MR = ¯

PR
ˆ

P

>
R

⇣
ˆ

PR
ˆ

P

>
R + �I

⌘�1
, (7)

TABLE I
SETTINGS OF ALL PARAMETERS IN THE PROPOSED SR ALGORITHM.

Section II-A Section II-B Section II-C
�
1

�
2

�
3

W2D ⌧2D N
1

N
2

N
3

⌧3D K
1

W3D � fI K
2

�
.85 .1 .05 15 .15 7 7 3 .3 8 9 -.5 1.625 8 .1

where the superscript > denotes transposition, � 2 R+ is a
regularization parameter and I 2 RD⇥D is the identity matrix.

Step 7: Finally, the operator (7) learned at the intermediate
level fI can be applied to the corresponding reference patch at
the HR level f , and then the corrected patch can be returned
to its original location. The overlapping parts are averaged
in a fashion similar to (6) –this time using unitary weights–
eventually obtaining the final corrected HR video ȳf .

III. COLOR PROCESSING

The proposed method can be also extended to color (RGB)
video processing by first transforming the video from RGB
space to a luminance-chrominance (YUV) space, then our
SR algorithm is applied to luminance channel whereas the
two chrominance channels are upsampled using our motion-
compensated temporal interpolation using the motion field
calculated within the luminance.

IV. EXPERIMENTS

To the best of our knowledge, despite the large amount
of literature on image and video SR1, there seems to be a
lack of easily available software in the context of temporal
SR, thus we only compare the proposed SR algorithm against
common interpolation methods. Our test data will be a set of
both standard2 and real3 video sequences.

A. Algorithm Parameters

The parameters have been set based on a empirical optimiza-
tion, which resulted in reasonably good SR performances for
all the tested sequences. Table I summarizes all the parameters
involved in the proposed algorithm grouped using a reference
to the corresponding section. Observe that in the following
experiments, we will use maximum overlap between adjacent
reference patches.

B. Test Videos

For our objective evaluation, we use the eight standard test
sequences referred in Table II. We design these experiments
by first decimating each sequence along time by a factor 2
(i.e., we remove one every two frames), and then resolving the
missing data using different SR methods. Finally, we compute
the peak signal-to-noise ratio (PSNR) and the SSIM index [19]
of the reconstructed frames.

In Table II we report the objective performances of stan-
dard bicubic interpolation (first column in the table), our
block-wise linear interpolation along the motion trajectories

1http://reproducibleresearch.net/super-resolution/
2https://media.xiph.org/video/derf/
3http://www.wisdom.weizmann.ac.il/ vision/SingleVideoSR.html



Fig. 5. From top to bottom. Reconstruction of the original frame (left column) in Bus, City, Coastguard, Foreman, and Tennis using bicubic interpolation
(middle column) and proposed method (right column).

Fig. 6. Super-resolution of Fan (left), Flag (middle) and Treadmill (right) using bicubic interpolation (left in each pair) and proposed method (right).

(second column), the estimate ŷf obtained after registration
(third column), and the estimate ȳf obtained by the proposed
algorithm (fourth column). As one can see, the proposed
method almost always achieves the best performances in terms
of both PSNR and SSIM. Interestingly, the PSNR favours
bicubic interpolation for Miss America but, we stress, this
is an essentially motion-less video. We also note that the
nonlocal registration method is often outperformed by our
overcomplete temporal interpolation strategy; we explain this
phenomena from the content of the tested sequences which

exhibits little to no temporal artifacts (e.g., motion blur) which
would negatively affect the temporal interpolation model.

The subjective results shown in Fig. 5 attest the extremely
good performances of the proposed SR algorithm. We high-
light quality of the fine details in the fence and trees in Bus,
the rocks in Coastguard, the ball and paddle in Tennis, the face
of Foreman, and the buildings in City. On the other hand, we
sometimes observe excessive smoothing around the moving
features in the video, such as in the background around the
hands of the player in Tennis.



TABLE II
PERFORMANCES IN TERMS OF PSNR (DB, LEFT VALUE IN EACH CELL)

AND SSIM [19] (RIGHT VALUE) CALCULATED ON THE RECONSTRUCTED
FRAMES USING A SR FACTOR EQUAL TO 2.

Bic. int. Temp. int. ŷf ȳf

Bus 17.10 0.4723 21.74 0.8193 21.20 0.7716 21.85 0.7854
City 23.58 0.6254 27.57 0.8622 27.52 0.8556 28.93 0.8905
Coastg. 25.84 0.8050 30.57 0.9327 29.44 0.9181 31.21 0.9402
Forem. 29.16 0.9027 30.71 0.9221 30.55 0.9200 31.86 0.9349
Fl. Gard. 16.11 0.5841 22.03 0.8844 20.96 0.8461 23.02 0.8990
Miss Am. 37.18 0.9157 36.66 0.9172 36.41 0.9172 36.93 0.9191
Salesm. 37.46 0.9822 37.59 0.9829 36.52 0.9794 38.44 0.9846
Tennis 20.93 0.6612 24.96 0.8252 24.76 0.8019 25.72 0.8441

C. Real Videos

For these experiments we use the real videos Fan, Flag
and Treadmill originally presented in [10]. In this case no
decimation is performed, and thus new frames are effectively
created in the super-resolved video. As can be seen from
Fig. 6, the proposed method is able to reduce the motion blur
in the reconstructed frames, such as the ripples in Flag, but
we note a degradation of performances when the motion blur
becomes severe, e.g., around the blades of Fan or the feet of
Treadmill.

D. Computational Complexity

The current single-thread MATLAB/C++ implementation of
the proposed algorithm, running on a Intel(R) Core(TM) i7-
3770 3.40-GHz with 8GB RAM, processes between 500 and
600 3-D patches per second. Therefore, depending on the cho-
sen overlapping between adjacent patches, one CIF-resolution
frame (352⇥240 pixels) can take between 30 seconds to 5
minutes to be resolved. However, since the Fourier transform
has been implemented as a linear operation, this complexity
can be greatly reduced by simply using the FFT algorithm.

V. CONCLUSIONS

We have presented an effective temporal super-resolution
(SR) algorithm for both grayscale and RGB videos. The
foundation of the proposed algorithm is a robust coarse-
to-fine motion-estimation strategy embedding a regularized
block-wise distance metric which takes into account both
photometric similarity and coherence of neighbouring motion
vectors. Temporal SR is then achieved by first extracting 3-D
patches along the motion trajectories of the video, and then
registering mutually similar patches at sub-pixel precision in
3-D Fourier domain. Self-similarity at an intermediate scale
is finally leveraged to further improve the SR quality of the
registered video estimate by applying an error-correcting linear
mapping to each 3-D patch. Experimental results on both test
sequences and real videos showed promising performances
from an objective (PSNR and SSIM [19]) as well as subjective
point of view.

As future works, we target to improve the motion estimation
and the registration by including more sophisticated priors in
the distances (2) and (3). In particular, (3) could favour target
patches that also exhibit a sub-pixel translation with respect

to the reference one. Additionally, we argue that extending
the proposed method to a pyramidal approach, where the
reconstructed estimate is iteratively improved at each scale,
would greatly benefit the performances in cases of extreme
motion blur. Finally, it is interesting to see how the method
generalizes to the problem of joint spatio-temporal super-
resolution.
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