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ABSTRACT

Consider a diffusion field induced by a finite number of local-
ized and instantaneous sources. In this paper, we study the prob-
lem of estimating these sources (including their intensities, spa-
tial locations, and activation time) from the spatiotemporal sam-
ples taken by a network of spatially distributed sensors. Wepro-
pose two estimation algorithms, depending on whether the acti-
vation time of the sources is known. For the case of known acti-
vation time, we present an annihilating filter based method to es-
timate the Euclidean distances between the sources and sensors,
which can be subsequently used to localize the sources. For the
case of a single source but with unknown activation time, we
show that the diffusion field at any spatial location is a scaled
and shifted version of a common prototype function, and that
this function is the unique solution to a particular differential
equation. This observation leads to an efficient algorithm that
can estimate the unknown parameters of the source by solving
a system of linear equations. For both algorithms proposed in
this work, the minimum number of sensors required isd + 1,
whered is the spatial dimension of the field. This requirement
is independent of the number of active sources.

Keywords— diffusion field, source localization, finite rate of
innovation, spatiotemporal sampling

1. INTRODUCTION

Diffusion models many important physical, biological and so-
cial phenomena, including temperature variations, air pollution
dispersion, biochemical substance release, and epidemic dy-
namics. Sampling and reconstructing diffusion processes us-
ing a network of sensors have applications ranging from data
center temperature monitoring [2] (detecting cold and hot spots
responsible for energy inefficiencies) to environmental monitor-
ing [1] and homeland security [5].

At the microscopic scale, diffusion describes the random mo-
tion of a large number of particles, migrating from regions of
high concentration to those of low concentration. At the macro-
scopic scale, the “average” statistical distributions of these par-
ticles are governed by the diffusion equation, originally derived
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Fig. 1. Localization of point-like sources (shown as black dots)
in a 2-D diffusive field based on the spatiotemporal samples
taken by a network of sensors (shown as squares). Dashed lines
represent the isolines of the diffusion fields induced by thetwo
sources, respectively.

by Fick [6] in 1855. In its simplest form—when the underlying
medium is isotropic—the diffusion equation can be written as

∂

∂t
f(x, t) = µ∇2f(x, t) + s(x, t), (1)

wheref(x, t), x ∈ R
d is the spatiotemporal distribution of the

field, µ is the diffusion coefficient,∇2f =
∑d

i=1
∂2f
∂x2

i

is the

(spatial) Laplacian off(x, t), ands(x, t) represents the sources
of the field.

In this paper, we consider the case where the unknown
sourcess(x, t) are localized and instantaneous,i.e.,

s(x, t) =

K
∑

k=1

ck δ(x − xk, t − tk), (2)

for some unknown parameters{ck, xk, tk}
K
k=1. In practice, this

source model can describe sudden events (e.g., explosions or ac-
cidental release of pollutants) that are the key targets of various
environmental monitoring or security applications.

As shown in Figure 1, we use a network of spatially dis-
tributed sensors to monitor the field, with each sensor taking
samples over time. Our goal is to estimate the unknown sources
(including their intensities{ck}k, locations{xk}k and activa-
tion time{tk}k) from the spatiotemporal sensor measurements.



In this paper, we propose two algorithms for estimating the
unknown sources, corresponding to two different scenarios. In
Section 2, we consider the case when multiple sources are acti-
vated at acommonandknowntime instant. We show that, under
this assumption, the temporal samples at each sensor can be ar-
ranged in the form of a linear combination of exponentials. We
propose to use the annihilating filter method [7, 8, 3] to estimate
the exponents, which reveal the Euclidean distances between
the sources and sensors. Incorporating the distance information
from multiple sensors, we describe a simple linear algorithm in
Section 2.3 to estimate the spatial locations of the sources.

Section 3 deals with the case when there is a single source
in the field, but the activation time of the source is unknown.
We show that the induced diffusion field at each sensor loca-
tion can be written as a scaled and shifted version of a common
prototype function. We further observe that this prototypefunc-
tion is the unique solution to a particular differential equation.
This observation enables us to build a set of linear equations
linking the unknown parameters (time instants and source-to-
sensor distances) to local sensor measurements. Estimating the
parameters of the source then boils down to solving a set of lin-
ear equations.

As a desirable property, the minimum number of sensors re-
quired by both algorithms isd + 1, independent of the number
of active sources in the field. This demonstrates the benefit of
taking multiple temporal samples at each sensor.

In the rest of the paper, we assume that the fieldf(x, t) is
supported on two spatial dimensions (i.e., d = 2). However, our
discussion and proposed algorithms can be easily extended to
the generald-dimensional cases.

2. LOCATING POINT SOURCES WITH KNOWN
ACTIVATION TIME

In this section, we consider the case whenK sources are acti-
vated at a common and known time instant. Our goal is then to
estimate the intensities and spatial locations of these sources.

2.1. A Parametric Form of the Diffusion Field

We start by presenting a parametric form of the diffusion field
governed by (1). Due to the linearity of (1), its solutions have
the form

f(x, t) = (s ∗ g)(x, t), (3)

whereg(x, t) is the Green’s function of the equation and∗ de-
notes convolutions along the spatial and temporal dimensions
[4]. In this sense, the diffusion equation behaves exactly like a
linear, shift-invariant system, linking the “input”s(x, t) to the
induced “output”f(x, t) through a spatiotemporal impulse re-
sponseg(x, t).

A closed-form expression for the Green’s function is

g(x, t) =
1

4πµt
e−

‖x‖2

4µt U(t), (4)

where‖·‖ denotes Euclidean norm andU(t) is a unit-step func-
tion. On substituting (4) and (2) into (3), we get

f(x, t) =

K
∑

k=1

ck

4πµ(t − tk)
e
−

‖x−xk‖2

4µ(t−tk) U(t − tk). (5)

The diffusion field described above is not bandlimited in space
or time; however, it is completely determined by a finite number
of parameters, namely, the intensities, locations and activation
time of the sources. For this reason, the induced field can be
seen as a parametric signal with finite rate of innovation [8].

2.2. Multiple Sources with Known Activation Time

Assume now, that the field in (5) is observed withN spatially-
distributed sensors, located at{p1, p2, . . . , pN} ⊂ R

2, respec-
tively. For a fixed timet, the measurementyn(t) obtained with
thenth sensor can be written as

yn(t) =
K

∑

k=1

ck

4πµ(t − tk)
e
−

Dk,n
4µ(t−tk ) U(t − tk), (6)

where
Dk,n

def
= ‖xk − pn‖

2 (7)

is the squared Euclidean distance between thekth source and
thenth sensor.

The estimation of both the positions and the activation time
of the sources is in general difficult. In this section, we consider
a simplified scenario where theK sources are all activated at the
same time,i.e., t0 = t1 = . . . tk−1 = τ , with τ either known or
been correctly estimated. Without loss of generality, setτ = 0
and (6) then becomes

yn(t) =
K

∑

k=1

ck

4πµt
e−

Dk,n
4µt for t > 0. (8)

Suppose that the sensors take uniform samples over time,
with sampling intervalT . Let J be the least common multi-
ple of the integers1, 2, . . . , 2K. In what follows, we show that
takingJ samples at each sensor is sufficient to recover{ck} and
{Dk,n}k,n, the latter of which can be subsequently used to infer
the sensor locations{xk}k.

To this end, consider the sampling time instants

{mℓT : ℓ = 1, 2, . . . , 2K}, where mℓ
def
= J/ℓ. For exam-

ple, if K = 2, we chooseJ = lcm(1, 2, 3, 4) = 12 and pick the
time instants{12T, 6T, 4T, 3T }. From (8), the corresponding
sensor measurements taken at these time instants are

yn(mℓT ) =

K
∑

k=1

ck

4πµJT/ℓ
e−

Dk,n
4µJT

ℓ.

Defining a new sequencewℓ
def
= yn(mℓT )(4πµJT/ℓ), we have

wℓ =

K
∑

k=1

ckuℓ
k, for ℓ = 1, 2, . . . , 2K (9)



whereuk = e−
Dk,n
4µJT .

Note that the sequencewℓ above is a linear combination of
exponentialsuk. Signals of the form (9) are often encoun-
tered in array signal processing [7] and many algorithms ex-
ist that permit the retrieval of the parameters{ck, uk}

K
k=1 from

2K consecutive samples ofwℓ. In our algorithm, we choose to
use the annihilating filter method to estimate these parameters.
Due to space limitations, we omit here further discussion onthis
method, and refer readers to [8, 3, 7] for details.

2.3. Source Localization from Distance Information

From the parameters{uk}k in (9), we can obtain the squared
distanceDk,n between any pair of source and sensor. This in-
formation can be used to determine the spatial locations{xk}
of the sources. For simplicity, we assume that the source inten-
sities{ck}k are distinct, and thus there is no ambiguity in the
correct labeling of the sources among different sensors.

Expanding (7), we have the following set of equations

Dk,n = 〈xk−pn, xk−pn〉 = ‖xk‖
2−2pT

nxk +‖pn‖
2, (10)

where{Dk,n} and{pn} are known parameters, and{xk} are
the unknowns to be estimated. To be clear, (10) is a quadratic
equation ofxk. However, by treating

{

‖xk‖
2
}

and{xk} as
if they were independent free variables, we can view (10) as a
set ofKN linear equations with3K unknowns. WhenN ≥
d + 1 = 3, we can obtain{xk} by simply solving a system of
linear equations.

3. ESTIMATING A SINGLE SOURCE WITH
UNKNOWN ACTIVATION TIME

In this section, we consider the case when there is a single
source in the field, but the activation time of the source is
unknown. We leave the discussion on multiple independent
sources to a future work.

3.1. The Temporal Prototype Function of Diffusion Fields

Our proposed algorithm is based on the following observation:
at any spatial location, the diffusion field induced by sparse
sources can be represented by a linear combination of a pro-
totype function. To see this, we define

ϕ(t)
def
=

1

4πt
e−1/(4t) U(t). (11)

We can easily verify that, at any given spatial locationx (x 6=
xk, 1 ≤ k ≤ K), the fieldf(x, t) in (5) can be written as

f(x, t) =

K
∑

k=1

c′k ϕ

(

t − tk
sk

)

, (12)

wheresk
def
= ‖x − xk‖

2/µ andc′k
def
= ck/(skµ). In words, the

diffusion field at any spatial location can be written as a linear
combination ofK scaled and shifted versions of the prototype
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Fig. 2. The temporal prototype functionϕ(t) of the diffusion
process.

functionϕ(t). Meanwhile, the scale and shift parameters corre-
spond to the spatial locations and activation time of the sources,
respectively.

In what follows, we present several important properties of
the prototype functionϕ(t). Figure 2 shows the values ofϕ(t)
over t ∈ [−1, 10]. We can easily verify thatϕ(t) reaches its
maximum (e−1/π) at t = 1/4, and that it decays at the rate of
1/t for sufficiently larget.

A somewhat surprising fact is that, despite the existence of
the unit stepU(t) in the definition (11), the functionϕ(t) is
smoothon the entire real line,i.e., it has derivatives of all orders
overt ∈ R.

Lemma 1 The functionϕ(t) belongs toC∞ on the real line.
Meanwhile, att = 0, the derivatives ofϕ(t) of all orders are
equal to zero.

Proof We prove by induction. Assume thatϕ(k)(0) = 0 for
somek ≥ 0. It is easy to verify that, fort > 0,

ϕ(k)(t) = P (t−1) e−1/(4t),

whereP (t−1) is some polynomial oft−1. It follows that

ϕ(k+1)(0)
def
= lim

t→0+

(

P (t−1) e−1/(4t) − 0
)

/t = 0.

2

Lemma 2 The functionϕ(t) satisfies the following differential
equation:

4t2 ϕ′(t) + (4t − 1)ϕ(t) = 0, for t ∈ R. (13)

Proof This can be straightforwardly verified from the definition
of ϕ(t) in (11). 2

3.2. Sampling and Reconstructing Diffusion Fields with
One Localized Source

Based on the properties of the prototype functionϕ(t) presented
above, we propose a sampling and reconstruction algorithm for
diffusion fields induced by asinglesourcec δ(x−ξ, t−τ) with
unknown location and activation time.

Consideryn(t), the diffusion field observed at thenth sensor
at locationpn. It follows from (12) that

yn(t) =
c

Dn
ϕ

(

t − τ

Dn/µ

)

,

whereDn = ‖ξ − pn‖
2 is the squared distance between the

source locationξ and the sensor locationpn.



Proposition 1 The functionyn(t) satisfies the following differ-
ential equation

yn(t)

4µ
Dn+

(

yn(t) + 2 t y′

n(t)
)

τ − y′

n(t) τ2

= t2y′

n(t) + t yn(t),

(14)

for t ∈ R.

Proof This follows directly from Lemma 2. In particular, we
can obtain (14) by replacingt with (t − τ)µ/Dn in (13) and
rearranging the terms. 2

Consider the unknown parameters[Dn, τ, τ2] as an unknown
vector inR

3. Then, for eacht, (14) provides a differentlin-
ear equation, whose coefficients can be obtained fromyn(t)
andy′

n(t). In practice, reliably estimating the derivative of a
function is problematic, due to the noise amplification property
of the differentiation operation. However, this concern for ro-
bustness can be alleviated by exploiting the linearity of (14), as
shown in the following proposition.

Proposition 2 Letw(t) be an arbitrary window function. Then
(

∫

yn(t)w(t)

4µ
dt

)

Dn +

(
∫

(

yn(t) + 2 t y′

n(t)
)

w(t) dt

)

τ

−

(∫

y′

n(t)w(t) dt

)

τ2 =

∫

(

t2y′

n(t) + t yn(t)
)

w(t) dt.

(15)

Let {yn,m}m denotes the set of measurements taken by the
nth sensor. To apply the result of Proposition 2, we set the
measurements to

yn,1+4k =

∫

yn(t)w(t − kT )

4µ
dt,

yn,2+4k =

∫

(

yn(t) + 2 t y′

n(t)
)

w(t − kT ) dt,

yn,3+4k = −

∫

y′

n(t)w(t − kT ) dt,

yn,4+4k =

∫

(

t2y′

n(t) + t yn(t)
)

w(t − kT ) dt,

(16)

for k = 0, 1, and some fixed sampling intervalT > 0. In
practice, the derivatives and integrations in (16) can be approxi-
mated by finite differences and finite sums on a dense sampling
grid. By choosing the window functionw(t) to be polynomial
B-splines, it is also possible to computeexactlythe sample val-
ues in (16). Detailed discussion on this implementation is left
to a future paper.

After obtaining the samplesyn,m, it follows from (15) that

(

yn,1 yn,2 yn,3

yn,5 yn,6 yn,7

)





Dn

τ
τ2



 =

(

yn,4

yn,8

)

. (17)

Note that (17) gives two linear constraints for three variables.
To uniquely solve for the unknown parameters, we can either

take more temporal samples [by settingk = 2, 3, . . . in (16)] or
incorporate measurements taken at different sensors. The lat-
ter approach is feasible because each additional sensor brings
in two more linear equations in the form of (17) but only one
new variable (i.e., Dn), while τ andτ2 remain the same for all
sensors.

Finally, once we obtain{Dn}, i.e., the squared distances
from the source to the sensors, we can use the same technique
presented in Section 2.3 to recover the spatial location of the
source. For that purpose, we need at least three different sen-
sors.

4. CONCLUSION

We studied the problem of estimating the unknown sources (in-
cluding their intensities, spatial locations, and activation time)
of a diffusion field from the spatiotemporal samples taken bya
network of spatially distributed sensors. When the sourcesare
activated at a common and known time, we first estimate the
Euclidean distances between the sources and sensors using the
annihilating filter method. Then the distance information from
multiple sensors is used to localize the sources. When thereis a
single source but with unknown activation time, we showed that
the sensor measurements at any sensor location is a scaled and
shifted version of a common prototype function. The proper-
ties of the prototype function leads to a set of linear constraints,
linking the unknown parameters of the source to local sensor
measurements. Estimating the spatial location and activation
time of the pointwise sources then boils down to solving a set
of linear equations.
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