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ABSTRACT - T TS
7

Consider a diffusion field induced by a finite number of local- e ’.— T~ L7 - \i \\
ized and instantaneous sources. In this paper, we studydbe p ’ PR ,<\ r,e Sy
lem of estimating these sources (including their inteasjtspa- // /’ P ANV / .\, ) " ‘l
tial locations, and activation time) from the spatiotengdeam- o Ty Vo \‘\ \1’, VA
ples taken by a network of spatially distributed sensorspytie (I ‘\ N ',' ,' \\ I' - PR
pose two estimation algorithms, depending on whether ttie ac ‘\ ‘T T X VN N T S’
vation time of the sources is known. For the case of known acti N S - Ll T~ -
vation time, we present an annihilating filter based metbadt S o7
timate the Euclidean distances between the sources amtsens [ | [ |

which can be subsequently used to localize the sourcesh&or t

case of a single source but with unknown activation time, weFig. 1. Localization of point-like sources (shown as black dots)
show that the diffusion field at any spatial location is aadal in a 2-D diffusive field based on the spatiotemporal samples
and shifted version of a common prototype function, and thataken by a network of sensors (shown as squares). Dashed line
this function is the unique solution to a particular diffietial  represent the isolines of the diffusion fields induced bytihe
equation. This observation leads to an efficient algorithat t sources, respectively.

can estimate the unknown parameters of the source by solving

a _system of Iine:_;\r_equations. For both algorithm_s prqponsed iby Fick [6] in 1855. In its simplest form
this work, the minimum number of sensors required i$ 1,
whered is the spatial dimension of the field. This requirement

is independent of the number of active sources. 9 (@) = pV2f(@,t) + 5, 1), )

Keywords— diffusion field, source localization, finite rate of ot
innovation, spatiotemporal sampling wheref(z,t), z € R? is the spatiotemporal distribution of the
field, u is the diffusion coefficientV?f = Z‘i 2f is the

i=1 9x2
1. INTRODUCTION (spatial) Laplacian of (z,t), ands(x, t) represents the sources
of the field.
Diffusion models many important physical, biological amd s In this paper, we consider the case where the unknown
cial phenomena, including temperature variations, aitutioh sourcess(r, t) are localized and instantaneodus,

dispersion, biochemical substance release, and epideynic d

—when the underlying
medium is isotropic—the diffusion equation can be written a

namics. Sampling and reconstructing diffusion processes u K
ing a network of sensors have applications ranging from data s(@,t) =Y o (@ — @yt —ty), (@)
center temperature monitoring [2] (detecting cold and pots k=1

responsible for energy inefficiencies) to environmentahitoo-
ing [1] and homeland security [5].

At the microscopic scale, diffusion describes the random mo
tion of a large number of particles, migrating from regioffis o
high concentration to those of low concentration. At the raac
scopic scale, the “average” statistical distributionshefse par-
ticles are governed by the diffusion equation, originalyided

for some unknown parametefs;, zy, tk}szl. In practice, this
source model can describe sudden eventg €xplosions or ac-
cidental release of pollutants) that are the key targetaubus
environmental monitoring or security applications.

As shown in Figure 1, we use a network of spatially dis-
tributed sensors to monitor the field, with each sensor tpkin
samples over time. Our goal is to estimate the unknown seurce

P. L. Dragotti is supported in part by a Global Research Aweoth the (.inCIU_ding their intensities{ck_}k, locations{z }, and activa-
Royal Academy of Engineering. tion time{t; },) from the spatiotemporal sensor measurements.




In this paper, we propose two algorithms for estimating thewhere||-|| denotes Euclidean norm and¢) is a unit-step func-
unknown sources, corresponding to two different scenatios tion. On substituting (4) and (2) into (3), we get
Section 2, we consider the case when multiple sources are act
vated at aommorandknowntime instant. We show that, under K Ck R
this assumption, the temporal samples at each sensor can be a flz,t) = Z me HER U —t)- ()
ranged in the form of a linear combination of exponentiale. W

propose to use the annihilating filter method [7, 8, 3] toreate  The diffusion field described above is not bandlimited incgpa

the exponents, which reveal the Euclidean distances batwegyr time; however, it is completely determined by a finite nemb

the sources and sensors. Incorporating the distance iaf@m  of parameters, namely, the intensities, locations andatidn

from multiple sensors, we describe a simple linear algorith  time of the sources. For this reason, the induced field can be

Section 2.3 to estimate the Spatial locations of the sources seen as a parametric Signa| with finite rate of innovation [8]
Section 3 deals with the case when there is a single source

in the field, but the activation time of the source is unknown., 5 Multiple Sources with Known Activation Time

We show that the induced diffusion field at each sensor loca-

tion can be written as a scaled and shifted version of a commofisssume now, that the field in (5) is observed withspatially-

prototype function. We further observe that this prototfypee-  distributed sensors, located{gi;, p,, ..., py} C R?, respec-

tion is the unique solution to a particular differential atjan.  tively. For a fixed timet, the measurement, (¢) obtained with

This observation enables us to build a set of linear equationthenth sensor can be written as

k=1

linking the unknown parameters (time instants and souwee-t K .
sensor distances) to local sensor measurements. Estintlagin Yn(t) = Z Ck efﬁ Ut — tr), (6)
parameters of the source then boils down to solving a setof i ' P drp(t —ty)
ear equations.
As a desirable property, the minimum number of sensors revhere def )
quired by both algorithms ig + 1, independent of the number Dy = ||k — p (1)
of active sources in the field. This demonstrates the bernfefit qS the Squared Euclidean distance betweenkthesource and
taking multiple temporal samples at each sensor. thenth sensor.
In the rest of the paper, we assume that the fild, ¢) is The estimation of both the positions and the activation time

supported on two spatial dimensiong( d = 2). However, our  of the sources is in general difficult. In this section, wesidar

discussion and proposed algorithms can be easily externded 4 simplified scenario where thé sources are all activated at the

the generall-dimensional cases. same timej.e, to =t; = ...t,_1 = 7, With 7 either known or
been correctly estimated. Without loss of generality,rset 0

and (6) then becomes
2. LOCATING POINT SOURCES WITH KNOWN

ACTIVATION TIME

=

D n
yn(t) = ko= fort > 0. (8)

In this section, we consider the case wh€rsources are acti- k=1

vated at a common and known time instant. Our goalis thento g 55056 that the sensors take uniform samples over time
estimate the intensities and spatial locations of thesecesu with sampling intervall’. Let J be the least common multi-

ple of the integers, 2, ...,2K. In what follows, we show that
taking.J samples at each sensor is sufficient to recug} and
{Dkn}, ,» the latter of which can be subsequently used to infer
We start by presenting a parametric form of the diffusiordfiel the sensor locationgey, }4..

governed by (1). Due to the linearity of (1), its solutionséa To this end, consider the sampling time instants

the form {(meT:0=1,2,...,2K}, wherem, % J/t. For exam-

flx,t) = (s*g)(x,t), (3) ple,if K =2, we choose/ =lcm(1,2,3,4) = 12 and pick the
time instants{127, 67,47, 3T}. From (8), the corresponding
whereg(z,t) is the Green’s function of the equation ande-  sensor measurements taken at these time instants are
notes convolutions along the spatial and temporal dimessio
[4]. In this sense, the diffusion equation behaves exaikityd X Ck _Dkn
linear, shift-invariant system, linking the “inpu#{(zx, t) to the yn(meT) = Z ArpdT)e ¢ R
induced “output”f (x, t) through a spatiotemporal impulse re- k=1
sponsgy(x, t).
A closed-form expression for the Green’s function is

2.1. A Parametric Form of the Diffusion Field

Dr,n

Defining a new sequeneey ger Yn(meT)(4mpJT /L), we have

K

1 w|? _ ‘ _
o) = 47”&67”4“‘& U, @) wz_];ckuk, fort =1,2,...,2K 9)




Dg,n
whereuy, = e¢™ #JT,

Note that the sequenae;, above is a linear combination of
exponentialsuy,. Signals of the form (9) are often encoun-
tered in array signal processing [7] and many algorithms ex
ist that permit the retrieval of the parametérs, uk}szl from
2K consecutive samples af;. In our algorithm, we choose to
use the annihilating filter method to estimate these pareset
Due to space limitations, we omit here further discussioth@n
method, and refer readers to [8, 3, 7] for details.

2.3. Source Localization from Distance Information

From the parametergu; }, in (9), we can obtain the squared

distanceDy, ,, between any pair of source and sensor. This in'the prototype functior

formation can be used to determine the spatial locatiang

of the sources. For simplicity, we assume that the souresint

sities{cy },, are distinct, and thus there is no ambiguity in the

correct labeling of the sources among different sensors.
Expanding (7), we have the following set of equations

D = (T =Py, T —Pp) = 2] =20} 1+ |, |7, (10)

where{D,,} and{p,,} are known parameters, ada,} are
the unknowns to be estimated. To be clear, (10) is a quadrat
equation ofz;,. However, by treating ||z,[|*} and{z;} as

if they were independent free variables, we can view (10) as
set of KN linear equations witl8 ' unknowns. Whenv >

d + 1 = 3, we can obtaifx } by simply solving a system of
linear equations.

3. ESTIMATING A SINGLE SOURCE WITH
UNKNOWN ACTIVATION TIME
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Fig. 2. The temporal prototype functiop(¢) of the diffusion
process.

functiony(t). Meanwhile, the scale and shift parameters corre-
spond to the spatial locations and activation time of thecses
respectively.

In what follows, we present several important properties of
(t). Figure 2 shows the values ¢ft)
overt € [—1,10]. We can easily verify thap(¢) reaches its
maximum ¢~!/7) att = 1/4, and that it decays at the rate of
1/t for sufficiently larget.

A somewhat surprising fact is that, despite the existence of
the unit stepU(¢) in the definition (11), the functiop(t) is
smoothon the entire real ling,e, it has derivatives of all orders
overt € R.

Lemma 1 The functiony(t) belongs toC* on the real line.
fteanwnhile, att = 0, the derivatives of(t) of all orders are

equal to zero.
a

Proof We prove by induction. Assume that® (0) = 0 for
somek > 0. Itis easy to verify that, fot > 0,

M () = Pt e /1),
whereP(t~1) is some polynomial of ~*. It follows that

(k+1) 0 d:ef li
e (0= i,

(P(fl) e~ 1/t _ o) Jt=0.

In this section, we consider the case when there is a single

source in the field, but the activation time of the source is

d

unknown. We leave the discussion on multiple independentemma 2 The functiony(t) satisfies the following differential

sources to a future work.

3.1. The Temporal Prototype Function of Diffusion Fields

Our proposed algorithm is based on the following obsermatio
at any spatial location, the diffusion field induced by spars

equation:
482 ' (t) + (4t = 1) p(t)

Proof This can be straightforwardly verified from the definition
of p(t) in (11). O

0, forteR. (13)

sources can be represented by a linear combination of a pro-

totype function. To see this, we define

deft 1 1/

4t (11)

p(t) (t)-

We can easily verify that, at any given spatial locatiofx #
i, 1 < k < K), the fieldf (z, t) in (5) can be written as

)

wheres, &' ||z — z4|2/u andc, ® e /(sk). In words, the
diffusion field at any spatial location can be written as &din
combination ofK scaled and shifted versions of the prototype

K

f(w,t)—zcw<

k=1

t—ty
Sk

(12)

3.2. Sampling and Reconstructing Diffusion Fields with
One Localized Source

Based on the properties of the prototype functidt) presented
above, we propose a sampling and reconstruction algoritinm f
diffusion fields induced by singlesourcec §(x — &, t — 7) with
unknown location and activation time.
Considewy,, (t), the diffusion field observed at theh sensor
at locationp,,. It follows from (12) that
t—1 )

v (Dn/ [
whereD,, = [|¢ — p,||? is the squared distance between the
source locatiorf and the sensor locatigy, .

c

Yn(t) = D

n



Proposition 1 The functiony,, (¢) satisfies the following differ-
ential equation

Yn(t)
4p

Dot (yalt) + 28 y,() ) 7 = ¥ (8) 72

(14)

fort e R.

Proof This follows directly from Lemma 2. In particular, we
can obtain (14) by replacingwith (¢ — 7)u/D,, in (13) and
rearranging the terms. |

Consider the unknown parametér, , 7, 72| as an unknown
vector inR3. Then, for each, (14) provides a differentin-
ear equation, whose coefficients can be obtained figr(r)
andy/ (t). In practice, reliably estimating the derivative of a
function is problematic, due to the noise amplification
of the differentiation operation. However, this concern rio
bustness can be alleviated by exploiting the linearity d)(as
shown in the following proposition.

Proposition 2 Letw(t) be an arbitrary window function. Then
(/Mdt) Dy, + (/ (yn(t) + 2ty;(t))w(t) dt> T

4p

_ (/ v, (t)w(t) dt) 2= / (tojl(t) +tyn(t))w(t) "
(15)

take more temporal samples [by setting- 2, 3, ... in (16)] or
incorporate measurements taken at different sensors. afhe |
ter approach is feasible because each additional sensaysbri
in two more linear equations in the form of (17) but only one
new variableie., D,,), while 7 and7? remain the same for all
Sensors.

Finally, once we obtai{D,,}, i.e., the squared distances
from the source to the sensors, we can use the same technique
presented in Section 2.3 to recover the spatial locatiomef t
source. For that purpose, we need at least three different se
Sors.

4. CONCLUSION

We studied the problem of estimating the unknown sources (in
cluding their intensities, spatial locations, and actoatime)

of a diffusion field from the spatiotemporal samples takeraby
network of spatially distributed sensors. When the souaces
activated at a common and known time, we first estimate the
Euclidean distances between the sources and sensors lusing t
annihilating filter method. Then the distance informatioomi
multiple sensors is used to localize the sources. When ibere
single source but with unknown activation time, we showexd th
the sensor measurements at any sensor location is a scaled an
shifted version of a common prototype function. The proper-
ties of the prototype function leads to a set of linear caists,
linking the unknown parameters of the source to local sensor
measurements. Estimating the spatial location and aictivat
time of the pointwise sources then boils down to solving a set

Let {yn,m},, denotes the set of measurements taken by thef linear equations.
nth sensor. To apply the result of Proposition 2, we set the

measurements to
yn()w(t — kT)

Yn,1+4k = / 4#

Yn,2+4k = / (yn(t) + 2ty;(t))w(t —kT)dt,

dt,
(16)
Yn,3+4k = —/y;(t)w(t — kT dt,

Yn,a+ak = / (to;(t) + tl/n(t))w(t — kT dt,

for K = 0,1, and some fixed sampling interval > 0. In
practice, the derivatives and integrations in (16) can lpe@p-

mated by finite differences and finite sums on a dense sampling

grid. By choosing the window functiom(t) to be polynomial
B-splines, it is also possible to compueactlythe sample val-
ues in (16). Detailed discussion on this implementatiorft |
to a future paper.

After obtaining the sampleg, ,,, it follows from (15) that

Yn,1 _ Yn,4
Yn,5 Yn,8 '

Note that (17) gives two linear constraints for three vddab

y n
n,3) T
Yn,7 72

yn,2

17
yn,6 ( )

5. REFERENCES

[1] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vett@liCouach,
and M. Parlange. SensorScope: Out-of-the-box envirorethent
monitoring. InProc. 7th Int. Conf. on Information Processing in
Sensor Networks (IPSN 2008t. Louis, USA, Apr. 2008.

R. Bianchini and R. Rajamony. Power and energy managefaoen
server systemsComputey 37(11):68—76, November 2004.

P.L. Dragotti, M. Vetterli, and T. Blu. Sampling momenasd

reconstructing signals of finite rate of innovation: Shannweets
Strang-Fix. I[EEE Trans. Signal Process$5(5):1741-1757, May
2007.

L. C. Evans.Partial Differential Equations American Mathemat-
ical Society, Providence, RI, 1998.

[5] A. Nehorai, B. Porat, and E. Paldi. Detection and locian of
vapor-emitting sourceslEEE Trans. Signal Process43(1):243—
253, Jan. 1995.

[6] J. Philibert. One and a half century of diffusion: FickinEtein,
before and beyondDiffusion Fundamental2(1):1-10, 2005.

P. Stoica and R. L. Moses.Introduction to spectral analysis
Prentice-Hall, Englewood Cliffs, NJ, 1997.

M. Vetterli, P. Marziliano, and T. Blu. Sampling signalsth finite
rate of innovation|EEE Trans. Signal Proces$0(6):1417-1428,
Jun. 2002.

(2]

(3]

[4]

[7]

(8]

To uniquely solve for the unknown parameters, we can either



