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ABSTRACT

Finite Rate of Innovation (FRI) theory considers sampling
and reconstruction of classes of non-bandlimited continuous
signals that have a small number of free parameters, such
as a stream of Diracs. The task of reconstructing FRI sig-
nals from discrete samples is often transformed into a spec-
tral estimation problem and solved using Prony’s method and
matrix pencil method which involve estimating signal sub-
spaces. They achieve an optimal performance given by the
Cramér-Rao bound yet break down at a certain peak signal-to-
noise ratio (PSNR). This is probably due to the so-called sub-
space swap event. In this paper, we aim to alleviate the sub-
space swap problem and investigate alternative approaches
including directly estimating FRI parameters using deep neu-
ral networks and utilising deep neural networks as denoisers
to reduce the noise in the samples. Simulations show sig-
nificant improvements on the breakdown PSNR over exist-
ing FRI methods, which still outperform learning-based ap-
proaches in medium to high PSNR regimes.

Index Terms— Finite rate of innovation, neural network,
sampling, signal reconstruction, deep learning.

1. INTRODUCTION

Signals with finite rate of innovation (FRI) have finite degrees
of freedom per unit time and include both bandlimited signals
as well as non-bandlimited functions. A typical example of
FRI signals is a stream of K pulses. It has a 2K rate of inno-
vations as the signal can be defined by the amplitudes and the
locations of the K pulses. FRI theory [1–4] has shown that it
is possible to perfectly reconstruct classes of non-bandlimited
continuous signals from discretised samples. This leads to a
wide range of applications, including calcium imaging [5],
functional magnetic resonance imaging (fMRI) [6] and elec-
trocardiogram (ECG) [7].

A typical acquisition process involves filtering the input
signal x(t) with filter h(t) = ϕ(−t/T ) and sampling at a
regular interval t = nT , as illustrated in Fig. 1. Perfect re-
construction of non-bandlimited FRI signals can be achieved
by using a class of kernels ϕ(t) including polynomial and
exponential reproducing functions and functions satisfying
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x(t) h(t) = ϕ(−t/T ) y[n]

t = nT

Fig. 1. Acquisition process that converts continuous
time signal x(t) into discrete time samples y[n] =
〈x(t), ϕ (t/T − n)〉.

generalised Strang-Fix conditions [4, 8]. The reconstruction
task can therefore be transformed into a spectral estimation
problem that can be solved by estimation methods such as
Prony’s method with Cadzow denoising [9, 10] and matrix
pencil method [11] which involve the use of Singular Value
Decomposition (SVD) to estimate signal subspaces. Under
noisy conditions, it has been found that the reconstruction
performance follows the Cramér-Rao bound in low noise
regime [12, 13]. However, the performance breaks down
when peak signal-to-noise ratio (PSNR) drops below a cer-
tain threshold. It is conjectured to be due to the subspace
swap event [14] which refers to the confusion of the orthogo-
nal subspace with the signal subspace under noisy conditions.

To avoid this inherent breakdown in subspace-based
methods, we propose to solve the FRI reconstruction prob-
lem using deep neural networks to learn from training data
pairs. We investigate two approaches: (1) using deep neural
networks to directly estimate FRI parameters, (2) using deep
neural networks to denoise the discrete samples. While there
are works utilising deep neural networks to perform spectral
estimation on problems such as estimating the frequencies of
multisinusoidal signals [15, 16], estimating the direction of
arrival of multiple sound sources [17,18], in this paper, we fo-
cus on solving the original reconstruction problem, which is
to accurately estimate FRI parameters from discrete samples
directly using deep neural networks to avoid the subspace
swap event caused by traditional subspace-based methods.

The rest of the paper is organised as follows: In Section 2,
we discuss the occurrence of the breakdown event by illustrat-
ing an example of using subspace-based methods to recover a
stream of Diracs. We then propose two deep neural network-
based approaches to solve the reconstruction problem in Sec-
tion 3. In Section 4, we present the simulation results and
compare them against the traditional subspace methods. We
then conclude in Section 5.
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Fig. 2. Average standard deviation of retrieved locations of
a stream of Diracs over 1000 realisations as compared to the
Cramér-Rao bound. Both Prony’s method with Cadzow de-
noising and matrix pencil method breaks down when PSNR
drops below a threshold (indicated by the red arrow).

2. BREAKDOWN IN SUBSPACE-BASED METHODS

In this paper, we consider the most basic FRI signal: a
stream of K Diracs. We are particularly interested in the
performance related to retrieving locations of the K Diracs.
To compare our proposed methods with the subspace-based
methods in their optimal settings, we consider the reconstruc-
tion of a τ -periodic stream of K Diracs:

x(t) =
∑
l∈Z

K−1∑
k=0

akδ(t− tk − lτ), (1)

where {ak ∈ R}K−1
k=0 , {tk ∈ R}K−1

k=0 are the amplitudes and
locations of the Diracs. To sample the continuous signal x(t),
we use an exponential reproducing kernel ϕ(t) that can repro-
duce complex exponentials:∑

n∈Z
cm,nϕ(t− n) = ejωmt, (2)

with ωm = ω0 +mλ form = 0, 1, ..., P . Assuming sampling
period T = τ/N , it is possible to map the obtained samples
y[n] into a sum of exponentials:

s[m] =

N−1∑
n=0

cm,ny[n] =

K−1∑
k=0

ak
∑
n∈Z

cm,nϕ

(
tk
T
− n

)

=

K−1∑
k=0

ake
jω0tk/T︸ ︷︷ ︸
bk

ejλtk/T︸ ︷︷ ︸
uk

m

=

K−1∑
k=0

bku
m
k . (3)

The amplitudes of Diracs {ak}K−1
k=0 has been mapped to the

amplitudes of the exponentials {bk}K−1
k=0 while the locations

of Diracs {tk}K−1
k=0 have been transformed to {uk}K−1

k=0 . This
forms a spectral estimation problem that can be solved using
the aforementioned subspace-based methods. Particularly, we
are interested in retrieving the locations of Diracs {tk}K−1

k=0
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Fig. 3. Relationship between breakdown PSNR and the dis-
tance between Diracs in the case of K = 2, N = 21 =
P + 1 and λ = 2π

N (after [14]).

due to its non-linear nature in the problem seen in Eq. (3).
Previous works [1–4] have shown that the subspace-based
methods achieve an optimal reconstruction performance de-
fined by the Cramér-Rao bound until peak signal-to-noise
ratio (PSNR) drops below a threshold as shown in Fig. 2.
In [14], Wei and Dragotti have conjectured that the reason
of the breakdown in subspace-based methods is due to the
confusion between noise and signal subspaces in performing
spectral estimation. A mathematical relationship [14] has
then been drawn between this breakdown PSNR and the rel-
ative distance between two neighbouring Diracs ∆tk/T with
∆tk = tk+1 − tk. For instance, when there are two Diracs
of same amplitude, the necessary condition for the subspace
swap event is when

PSNR < 10 log10

8
(
P
2 + 1

)
ln
(
P
2 + 1

)(
P
2 + 1− sin(λ2 (P2 +1)∆t0/T )

sin(λ2 ∆t0/T )

)2 . (4)

Fig. 3 visualises the breakdown condition in Eq. (4). It shows
that the smaller the distance between two nearby Diracs, the
higher the breakdown PSNR will be. Thus, the subspace swap
event occurring inherently in current FRI methods stops us
from recovering FRI signals with a higher resolution under
strong noise.

3. PROPOSED METHODS

In this paper, we propose to utilise deep neural networks
which are learnt using training data pairs as a tool to alleviate
the subspace swap problem.

3.1. Direct inference of FRI parameters from deep neural
network

The first proposed approach is to infer the FRI parameters di-
rectly from the noisy samples {ỹ[n]}N−1

n=0 using a deep neural
network. The occurrence of the subspace swap event analysed
in [14] is inherent to subspace-based reconstruction methods.



Fig. 4. Neural network architecture to perform inference from
the observed noisy samples {ỹ[n]}N−1

n=0 to the locations of
Diracs {tk}K−1

k=0 .

Hence, to avoid subspace swap event and the eventual per-
formance breakdown, we consider as alternative to learn the
transformation from the noisy samples {ỹ[n]}N−1

n=0 to ground-
truth FRI parameters {tk}K−1

k=0 directly using a deep neural
network.

Furthermore, contrary to the traditional subspace methods
where the information of the sampling kernel is encoded in
{cm,n}, this approach does not require any explicit informa-
tion about the sampling kernel ϕ(t). Instead, by training the
network with large amount of data from the same sampling
kernel, the network aims to obtain this information implicitly.

3.1.1. Proposed Network Architecture

The neural network consists of 3 convolutional layers fol-
lowed by 3 fully connected layers as shown in Fig. 4. Each
of the convolutional layers has 100 filters of size 3. Rectified
linear unit (ReLU) is used as the activation function between
each two layers. Backpropagation with Adam optimiser [19]
is used for learning.

3.1.2. Cost Function

As the goal of the task is to infer the true locations {tk}K−1
k=0

from the noisy samples {ỹ[n]}N−1
n=0 , we aim to minimise

the discrepancy between the estimated locations {t̂k}K−1
k=0

and the ground truth locations {tk}K−1
k=0 . Two candidates

of the cost function are the absolute differences (L1 loss)
f1 =

∑K−1
k=0

∣∣t̂k − tk∣∣ , and the squared differences (L2 loss)

f2 =
∑K−1
k=0

(
t̂k − tk

)2
. Both cost functions yield a similar

performance in simulations.

3.2. Deep neural network as a denoiser

The second approach is to use deep neural network as a
denoiser on the noisy samples {ỹ[n]}N−1

n=0 , followed by a
subspace-based method to estimate the FRI parameters. This
approach is motivated by the possibility to lower the break-
down PSNR without significantly altering the performance
in the low noise regime because the subspace-based methods
are still used to perform FRI reconstruction.

The training setting is similar to that used in the direct
inference approach. The only modification in the network ar-

chitecture from Fig. 4 is the change in size of the 3 fully con-
nected layers to 100N, 20N and N, respectively. The train-
ing loss function is the squared difference between the noisy
samples {ỹ[n]}N−1

n=0 and the noiseless samples {y[n]}N−1
n=0 .

4. SIMULATION RESULTS

In this section, we compare the performance of our proposed
methods with the subspace-based matrix pencil method [11].
This is measured by the standard deviation of the retrieved
locations of Dirac tk, defined as:

fsd =

√√√√∑I−1
i=0

(
t̂
(i)
k − tk

)2

I
, (5)

where t̂(i)k and I are the i-th estimation and the number of
realisations respectively. For sampling kernel, we consider
optimal settings for the subspace-based methods [14], where
the sampling kernel ϕ(t) is an exponential reproducing ker-
nel of maximum order and minimum-support (eMOMS) [4]
that can reproduce P + 1 = N exponentials at ω0 = −Pπ

P+1

and λ = 2π
P+1 . The simulation focuses on a basic setting of

reconstructing a stream of 2 Diracs with tk ∈ [−0.5, 0.5) and
ak ∈ R+. The number of samples and signal period are set to
N = 21 and τ = 1, respectively.

To evaluate the reconstruction methods at different lev-
els of noise, the samples y[n] are corrupted with additive
white Gaussian noise. A network is trained for every PSNR
∈ [−5, 70] dB with a step of 5 dB. The training set for each
network consist of 105 training data with tk ∈ U(−0.5, 0.5)
and ak ∈ U(0.5, 10) for k = 0, 1 where U(a, b) denotes
uniform distribution between a and b.

To investigate the breakdown effect caused by relative
distance between two Diracs, we further assume constant
amplitudes for two Diracs with a0 = a1 = 2. We then fix the
first Dirac at t0 = 0 and change ∆t0 ∈ [10−0.5, 10−3] evenly
on a logarithmic scale with a step of 10−0.25. For each pair of
PSNR and ∆t0, Monte Carlo simulations with 1000 realisa-
tions have been applied to evaluate the standard deviation of
estimated locations. Fig. 5 shows the reconstruction perfor-
mance of the deep neural network methods and matrix pencil
method. Despite the outperformance of the traditional ma-
trix pencil method over the deep neural network approaches
when the PSNR is high and the Diracs are sufficiently far
apart, we can see that both deep neural network approaches
lowers breakdown PSNR, indicated by spread of the low
standard deviation region. For instance, when ∆t0 = 10−2,
both deep neural network-based methods requires PSNR ≥
30 dB whereas matrix pencil method requires PSNR ≥ 45
dB. Nonetheless, there exists a discrepancy between the deep
neural network methods in the high PSNR breakdown re-
gions, where the deep neural network denoiser fails to push
the breakdown PSNR boundary. This could possibly be ex-
plained by the low noise power in the samples, which leads



(a) Matrix pencil (b) Direct inference (c) Denoiser with matrix pencil

Fig. 5. Average standard deviation of the retrieved locations of a stream of Diracs (N = 21,K = 2) over 1000 realisations at
each PSNR-∆t0 pair using different methods. The red dotted line refers to the breakdown PSNR using subspace-based methods
shown in Eq. (4) [14].
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Fig. 6. Scatter plot of the retrieved locations over 100 realisa-
tions, where the horizontal lines indicate the true locations of
the Diracs at t0 = 0, t1 = 10−2.
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Fig. 7. Scatter plot of the retrieved locations over 100 realisa-
tions, where the horizontal lines indicate the true locations of
the Diracs at t0 = 0, t1 = 10−1.

to minimal differences between the noisy and ground truth
samples. Thus, in spite of outperforming the direct infer-
ence approach when the PSNR is high and the Diracs are
sufficiently far apart, the denoiser has a limited impact to the
breakdown PSNR in the breakdown regions with low noise.

As our goal is to enhance the performance in the break-
down regions of the traditional subspace-based methods, we
focus on the distinction between the matrix pencil method and
the direct inference method we proposed. We take a closer
look by selecting two representative cases when the distance
of the Diracs are ∆t0 = 10−2 and ∆t0 = 10−1. Fig. 6 and
Fig. 7 shows the respective scatter plot of the estimated lo-
cations. We can see that the breakdown PSNR of the ma-
trix pencil method is lower when the Diracs are further apart,
while our proposed method has a similar breakdown regard-
less of the Diracs position. This observation is consistent with
the result in Fig. 5. On the other hand, we can also recognise
the discrepancy in performance between both methods when
the PSNR is high and the Diracs are sufficiently far apart by
observing that the centers of the scatters at high PSNR in

Fig. 7(b) is not entirely aligned with the true locations. A
possible reason could be the generalisation error of the neu-
ral network in performing the reconstruction tasks with a high
precision. These results suggest that deep neural network is
successful in lowering the breakdown PSNR regardless of the
locations of the Diracs. Nonetheless, it has a room for im-
provement when the signal of interest is far from the break-
down PSNR.

5. CONCLUSION

This paper addresses the breakdown of performance in recon-
struction of FRI signals caused by the subspace swap event in
traditional subspace-based methods under noisy conditions.
We hence proposed two approaches to retrieve the FRI sig-
nal by direct inference of FRI parameters and denoising the
samples using deep neural networks. Simulation results show
that our proposed direct inference method can reconstruct FRI
signals at a low PSNR region where the existing FRI methods
would break down, yet with a slight performance compromise
in high PSNR region.
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