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Abstract—The image blurring that results from moving a cam-
era with the shutter open is normally regarded as undesirable.
However, the blurring of the images encapsulates information
which can be extracted to recover the light rays present within
the scene. Given the correct recovery of the light rays that
resulted in a blurred image, it is possible to reconstruct images
of the scene from different camera locations. Therefore, rather
than resharpening an image with motion blur, the goal of this
paper is to recover the information needed to resynthesise images
of the scene from different viewpoints. Estimation of the light
rays within a scene is achieved by using a layer-based model to
represent objects in the scene as layers, and by using an extended
level set method to segment the blurred image into planes at
different depths. The algorithm described in this paper has been
evaluated on real and synthetic images to produce an estimate
of the underlying Epipolar Plane Image.

Index Terms—Plenoptic function, Plenoptic camera, Layer
based depth, Blurred images

I. INTRODUCTION

The image blurring that results from moving a camera
whilst the shutter is open is normally regarded as a prob-
lem. However, the structure of the blurring within the image
encapsulates information which can be extracted to recreate
a view of the scene from an arbitrary camera location. We
define a “swiped image” to be one in which objects are blurred
due to the camera moving whilst the shutter remains open.
A swiped image, shown in Figure 1(b), is created from the
integration of the light rays present in the scene as the camera
moves. Camera motion blur within the swiped image is due
to the combination of the many light rays arriving at different
viewpoints. Rather than merely resharpening the image, the
goal of this paper is to retrieve the information needed to
render a sharp images at any of these viewpoints. If the light
rays that created the swiped image can be determined, then
new views of the scene can be synthesised by creating a virtual
camera at an arbitrary position.

A useful framework to describe how images of a scene
change with the position of a camera is the plenoptic function.
This was first introduced by Adelson and Bergen in [3], where
a scene was described in terms of the light rays that travel from
the surface of objects within the scene to a camera [3]-[8].
Obtaining the plenoptic function of a scene is normally not
possible with a typical consumer device containing a single-
lens camera. Plenoptic cameras, or arrays of cameras, can be
used [9]-[12], but these are too complex and expensive for
widespread adoption. The EPI (Epipolar Plane Image) [13],
which is used in this paper, is a subset of the plenoptic function
and is obtained when the camera is constrained to travel along
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a horizontal straight line and the scene is assumed to be
static. An example of the images from which the EPI can be
constructed is shown in Figure 1(a) and the resultant swiped
image is shown in Figure 1(b).
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Fig. 1. Integrating the light rays within an EPI of a scene, shown by (a),
leads to a swiped image, shown by (b). The aim is to recover the EPI from
a swiped image of a realistic scene.

Inferring depth in a scene from swiped images has previ-
ously been studied in [14], [15], where depth is inferred by
estimating the degree of blurring that is present at each pixel
within the image. However the image is deblurred from only a
single perspective and without taking into account occlusions
of objects in the scene caused by camera movement. The
algorithm that is presented in the current paper extends this by
recovering the EPI of the scene. This is achieved by modelling
the scene as comprising layers at different depths, which has
been shown to be a good approximation of real life scenes
[16]-[19].

The challenges of recovering the EPI include that of estimat-
ing the depths present within the image, finding the silhouette
of objects at these depths, recovering the texture surfaces of
these objects, and finally rendering new images of the scene
using the recovered objects and scene geometry. The task of
estimating the depths present within the image is addressed
by creating a histogram of estimated depths within the image
and selecting histogram peak locations as the depths present
within the scene. In this paper an extension to the level set
method whereby the outline of depth layers can be extracted
is demonstrated. The outline of the depth layers is then be
used to recover the surface intensities of the planes. Once
the boundaries of the objects within the scene have been
determined, the scene texture is determined, and a new EPI
can be created.



Besides introducing a variation of the level set method to
segment blurred images (Section IV-B), a novel aspect of
the algorithm presented here is also that, given the estimated
depths within the scene, we create a forward model of the
swiped image acquisition that explicitly models the occlusion
of each layer by others. We use the knowledge of this forward
model to recover the EPI. We then produce an estimate of
the error in the recovered EPI by the colour separation of
the layers, and iteratively improve the estimate of the forward
model to recover the EPI (Section IV-D).

The technique presented assumes a highly controlled image
acquisition, where the swiped image is obtained using a
motorised camera slider. This is the ideal case for camera
movement, reducing the number of free parameters that need
to be estimated for the EPI to be recovered. A key contribution
is a more accurate forward model of the acquisition of the
swiped image, using knowledge of the scene geometry and
the movement of the camera. Although this is not something
that can be obtained by using a casual hand movement with a
typical consumer device, the forward model of the acquisition
could be further developed by adapting it to include knowledge
of non-uniform camera movement. Methods of estimating
camera movement already exists using the inertial sensors and
accelerometers in smartphones, and are already used for high
precision inputs to games [20].

The outline of this paper is as follows: Section II summa-
rizes related work in this area. Section III presents an overview
of the proposed algorithm. Section IV describes in detail the
proposed method that allows the EPI to be calculated from
the swiped image. Section V demonstrates the results of the
proposed algorithm on real images. Finally, we conclude in
Section VI.

II. RELATED WORK

The recovery of the EPI from a swiped image is related
to that of recovering the plenoptic function, and to also the
estimation of depth from motion. We briefly review both of
these in the following subsections.

A. Plenoptic function recovery

Recovery of the plenoptic function of a scene is a problem
that has been well studied in recent years. The full plenoptic
function is complicated to analyse due to its high dimension-
ality, so much of the work has concentrated on simplified
versions. One simplification of the full plenoptic function is
the light field model [21], in which time and wavelength are
fixed. The scene is assumed to lie within a bounding box,
restricting the light field plenoptic function to 4 parameters
I(u,v,s,t). Each ray of light is defined by its intersections
with two parallel planes. The plane with the coordinates (u, v)
is the focal plane, and the plane with the coordinates (s, t) is
the camera plane.

The recovery of the light field of a scene has been accom-
plished by using a grid of images of the scene [10], [12].
A grid of images may be obtained either by a dedicated
plenoptic camera or by an array of cameras, taking multiple
pictures of the scene. A further technique has been developed

to recover the light field from a focal stack, in which the
light field of a scene can be estimated from a set of images
taken with different focuses [22]. This enables, for example,
the refocusing of an image after it has been taken.

A further simplification to the plenoptic function can be
made by constraining the camera movement to a horizontal
line; this leads to the Epipolar Plane Image (EPI) [13]. In the
EPI model, wavelength and time are again omitted, resulting
in a 3-parameter function, I(u,v,t).

The recovery of the entire EPI from a set of images taken
along a line has been studied in, for example, [4], [5], [7].
The spectral properties of the plenoptic function have been
characterised and the minimum sampling density of the EPI
to create images from novel viewpoints without aliasing [4]
has been established. Specifically, it has been shown that real
images of complex scenes can be rendered using a layer-based
model of the scene in which object depths are quantized to
discrete values [16]-[19]. The advantages of the layer-based
model are that it makes occlusion ordering explicit and allows
the spectral properties of the scene to be well defined.

B. Depth from motion blur

Recovery of the EPI from a swiped image is also related
to the problem of recovering depth from motion blur. Without
the multiple images available in the cases discussed in Section
II-A, the locations of objects within the swiped image must
be estimated from the blur. Blur within an image may vary
spatially, owing to variations in, for example, defocus blur or
motion blur. Accurate estimation of blur for each region of an
image can be used to create a sharp image of the scene from
a single perspective.

Over the past two decades, a number of studies have
addressed the issue of analysing motion blur, e.g. [23]-[26].
Frequently the motion blur is assumed to arise only from
the movement of objects within a scene, whilst the camera
remains stationary. The approach in [26] uses the statistics of
the distribution of gradients within an image to estimate blur.
Motion blur is modelled as 1D filtering with a box function
along the direction of the movement of the subject in the
scene during the exposure period. Each window within the
image is artificially blurred in the other dimension to find the
distribution of gradients that best matches the distribution of
gradients in the direction of the motion blur. This technique
can work well, but is dependent upon the assumption that
similar blur in horizontal and vertical directions will produce
similar gradient distributions, which may not be the case in
image regions containing vertical or horizontal edges.

An alternative method of analysing spatially-variant motion
blur is used in [23], with the shape of the Fourier transform of
the pixels in a window being used to calculate the maximum
likelihood blur kernel at each point.

III. ALGORITHM OVERVIEW
A. Problem setup

To gain insights into the proposed algorithm, we first
consider the idealised setting shown in Figure 2. Our goal is to
retrieve the EPI of a scene from a swiped image. We achieve



this by adopting a layer-based model in which we assume
that a complex real-world scene is modelled as comprising
P fronto-parallel planes. Each plane has a surface intensity
corresponding to that of the real-life scene and the depth, or
distance from the camera, of plane p is denoted as z,. This is
illustrated from above in Figure 2, for the case of P = 3. For
this scene, we assume that there is a “background plane” that
fills the field of view of the camera during the entire swipe, to
ensure that the swiped image consists only of light rays from
planes. The background plane is always the plane furthest from
the camera, and has depth zp. Using planes as depth layers is
convenient for rendering and occlusion ordering.

The problem of recovering the EPI from a swiped image is
very challenging, with a large number of unknowns during the
capture of the image. If the swiped image was acquired during
an arbitrary camera movement, we would simultaneously need
to estimate both the path of the camera and the EPIL In this
paper, we reduce the number of free variables by assuming that
the camera is swiped from xp; to xg2 at a constant velocity
along a horizontal line parallel to the planes. This defines an
additional plane, the zeroth plane, at a depth of zo = 0. This
plane can also be viewed as a masking plane, as the situation
equivalent to the camera swiping from minus infinity to plus
infinity with the shutter open, but only being able to see the
scene through the zeroth plane. We define the disparity, ,,, of
each plane to be the shift in its location in the image as the
camera moves between xg; and zy. Given the swiped image
It(u,v), and knowledge of z; and z(2, we wish to recover
the EPI of the scene.
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Fig. 2. A view of the scene with three planes from above. A light ray from
a plane to the camera at position ¢ intersects the image line at v. The camera
is swiped from xo1 to o2 with the shutter open (taken from [1])

A slice, I7(v), of the resultant swiped image is shown in
Figure 3(a) and the corresponding EPI we aim to retrieve in
Figure 3(b), plotted against the camera position, ¢. The slice,
I;(v), is obtained by integrating the EPI over the range xg1 <
t < Toa:

Ir(v) = /3002 I(v,t)dt (D)
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where I(v,t) is a horizontal slice of the EPI of the scene.
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Fig. 3. A row of the swiped image, (a), created by integrating the EPI shown
in (b) for a three plane image with constant plane texture surfaces. Each
switchpoint is indicated by a white line in the EPI and by a cross in the row
of the swiped image (taken from [1])

A “switchpoint” in the swiped image is created every time
one plane occludes or disoccludes another in the EPI. This
can be seen in Figure 3(b) where the darker plane occludes
and disoccludes the lighter plane as the camera is swiped.
The switchpoint locations in v are indicated in Figure 3(a) by
crosses and in the EPI of Figure 3(b) by horizontal white
lines. Switchpoints in the idealised case result in disconti-
nuities in the horizontal gradient %I 1(u,v). In real images,
switchpoints are detected by extrema in the second derivative
of the horizontal gradient of Iy(u,v). Each edge of a plane
will result in a pair of switchpoints where it is occluded by the
zeroth plane (i.e. at the left and right edges of Figure 3) whose
separation is inversely proportional to the depth of the plane.
By finding the extrema of the second derivative of I;(u,v), it
is therefore possible to determine the depths of objects in the
scene [1].

B. Algorithm Description

Leveraging the analysis of the previous section for the
idealised plane case, we present an algorithm that is able
to retrieve the EPI from a real swiped image. The algorithm
described in this paper consists of the following steps illus-
trated in Figure 4. The depths of layers that are present within
the swiped image are estimated (step (a) in Figure 4). This
is achieved by finding peaks in the histogram of estimated
disparities. The silhouette and location of the planes within the
swiped image at each depth layer is then estimated (step (b) in
Figure 4). An extension of the level set method which accounts
for the amount of blur present within each depth layer is used
to establish a silhouette of each plane at the start of the camera
swipe. The surface texture of each plane at each depth layer
is then recovered (step (c) in Figure 4) using the estimated
depths, plane silhouettes and plane locations to deblur from
the swiped image. Finally new images of the scene may be
rendered from any camera location within the original swipe
range (step (d) in Figure 4) using the estimated depths, plane
surface textures and plane locations.

The general problem of recovering the plenoptic function
from the swiped image arising from arbitrary camera motion
is extremely challenging. In this paper we therefore make the
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Fig. 4. A flowchart of the steps in the algorithm to recover an EPI from a
swiped image. The switchpoints in the swiped image are shown in the image
at step (a). The silhouettes of planes at each depth are shown at step (b). The
surface of the planes at each depth are shown at plane (c).

problem more tractable by considering the case of uniform
linear camera motion.

IV. EPI RECOVERY FROM A SWIPED IMAGE
A. Recovering depth layers

To recover the depths of layers present in the swiped image,
we first analyse the switchpoints derived from the swiped
image. As seen in Figure 3, a switchpoint is created in a
given row in a swiped image every time a plane occludes
or disoccludes another plane in the EPI as the camera is
swiped. Switchpoints are found by detecting discontinuities
in the horizontal intensity gradient of the swiped image. The
occlusion of plane p by the zeroth plane will result in a
pair of switchpoints separated by a distance, [,, inversely
proportional to the distance, 2, of the plane from the camera.
Switchpoints can be considered as forming an image of
switchpoints, M (u,v), which is used to infer scene geometry.
The horizontal autocorrelation for each row of this image can
be calculated:

Ruyy(u,1) =Y M (u,v) My (u,v — 1) 2)
veZ
where M, is the image of switchpoints, [ is the lag and

R, (u,l) is the autocorrelation for each row of the image of
switchpoints. We take the mean of the autocorrelation for each
row to get the autocorrelation for the whole image, R, (1).

This is illustrated in Figure 5, which shows a swiped image
in Figure 5(a) and the estimated image of switchpoints in
Figure 5(b). The average autocorrelation, Ry, (1), of the rows
of the switchpoint image is shown in Figure 5(c).

Peaks in the autocorrelation indicate the shift due to motion
blur of the planes within the swiped image. The lag in (2)
is also referred to as the disparity of the planes. Although
planes occluding each other at the start or end of the camera
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Fig. 5. The swiped image Ij(u,v), shown in (a), leads to the image of
switchpoints M, shown in (b), which contains the repeated outlines of planes.
The autocorrelation histogram shown in (c) has a large peak for each depth.

swipe will supress the switchpoints of the more distant plane,
we assume that sufficient switchpoints from each plane will
remain to correctly estimate depths. The depths of the planes
may be calculated from the disparity as:

2 = f$01l To2 3)
P

where [, is the disparity of plane p at depth z, within the
swiped image, and f is the focal length of the camera. Using
(3) requires knowledge of camera focal length and movement.
From this, we then generate a histogram of estimated dispar-
ities within the image. The geometry of the planes within the
scene are then calculated using trigonometry.

To increase the robustness of detecting the correct depth
layers, a disparity likelihood distribution is created for each
pixel using the method outlined in [23]. The range of the dis-
tribution is the calculated maximum and minimum disparities
of the layers within the scene. This procedure is illustrated in
Figure 6, where Figure 6(a) is the swiped image. The peak of
the likelihood distribution for each pixel is plotted as an image
in Figure 6(b). We sum the likelihood distributions for all the
pixels in the swiped image to create an additional histogram
of disparities within the image, shown in Figure 6(c). The
histograms from Figure 6(c) and Figure 6(e) are normalised
and added together to form a single histogram of disparities
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Fig. 6. The technique in [23] is applied to the simulated swiped image in
(a). The peak of the depth distribution for each pixel forms an estimated
depth map shown in (b). The histogram of estimated disparities is shown
in (¢), and is created by summing the likelihood distributions for all pixels
within the swiped image. The image of switchpoints (d) is found from the
swiped image, which contains repeated outlines of planes. The autocorrelation
histogram shown in (e) has a peak for each disparity. The two histograms are
combined and smoothed with a moving average filter in (f) to produce a
peak at each disparity above the threshold Dy, indicated by a dotted line.
The disparity of each peak, indicated by an X, determines the depth of the
estimated layers in the swiped image.

detected within the image, shown in Figure 6(f), which is then
smoothed by a moving average filter. Using this histogram, the
number of depth layers is estimated as the number of peaks
which are above a fraction, Dy, of the highest peak. The depths
of these layers is determined by the location of these peaks.
The choice of D; is discussed in Section V.

To create a depth map of the swiped image that has only
the detected layers, we retain only the likelihoods of the depth
layers selected and classify each pixel according to the layer
with the highest likelihood.

To improve the classification of the likelihood of each pixel

being at a particular depth, we use a technique derived from
Linear Discriminant analysis (LDA). This technique is used
to build a model to find the common features of the pixels
belonging to each depth layer. LDA is a well-known technique
to extract features by dimension reduction, and has been used
for applications such as image retrieval and face recognition
[27], [28]. The features used in this technique are the values
of red, green and blue colour channels (RGB) for the pixels
within the colour swiped image, which is transformed into a
probability of belonging to each of the depth layers.

A model is created representing the RGB colour intensity
distribution within each layer. To identify the pixels that have
a sufficiently high likelihood of being labelled correctly, only
the pixels with a likelihood at one depth that is much greater
than the likelihoods of belonging to other depths are chosen to
build the model. Therefore, the inputs to build the model are
a list of pixels, x,,,, labelled with the depth layer p to which
they have been assigned. This is shown in Figure 7, where
Figure 7(a) is the swiped image, and Figure 7(b) is the RGB
value of pixels with labels represented by colour.
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Fig. 7. Pixels of a swiped image containing two planes shown in (a). In
(b) green coloured observations are pixels from the foreground plane and red
coloured observations are pixels from the background plane. High likelihood
labelled pixels are used to predict a model to classify other pixels within the
image by depth.

We assume that the intensity distribution of pixels belonging
to depth p follows a multivariate Gaussian distribution, which
is characterised by the sample mean and covariance of the
pixels for each label. The sample mean is calculated as [29]:

N,
1 P
Fo =N ;II(XM “)

where p,, is the mean of the pixels labelled with p, N, is
the number of pixels labelled p and I;(x,,) is the ith pixel
labelled with p from the swiped image. The sample covariance
for each label is calculated as [29]:
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where 33, is the covariance for label p.
A likelihood is assigned to each pixel in the swiped image
that it belongs to each depth layer:
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Fig. 8. Pixels of a swiped image containing three planes at different depths
shown in (a). The probability pixels are at depth 3, the background, is shown
in (b), the probability pixels are at depth 2 is shown in (c) and the probability
pixels are at depth 1 is shown in (d).

The equation in (6) is used to transform each pixel in
Iy, seen in Figure 8(a), into a likelihood of belonging to
each depth layer, V(x|p), seen in Figure 8(b) - (d). Each
pixel in each of the likelihood images is a scalar between
0 and 1, and an extended level set method operates on these
images to estimate the silhouettes of planes at each depth. This
transform makes the outline of each depth plane more reliable,
as mislabelled pixels in the depth map are reclassified.

B. Recovering plane silhouettes

Once the depths of the layers present within the image have
been found, the silhouettes of the planes at each depth are
extracted. To obtain the EPI, the objects present within the
scene that are at different distances from the camera must
be segmented from each other. The use of the layer-based
model makes depth ordering explicit, so we aim to find the
silhouettes of each of the planes that represent objects at each
depth within the scene. For convenience, we choose to recover
the plane silhouettes when the camera is at position zg2, the
rightmost end of the swipe.

For a sharp image, segmenting into regions of interest based
on pixel intensity can be achieved using the level set method.
The level set method was introduced by Osher and Sethian to
track the movement of a front whose speed depends on the
local curvature [30]. This front is defined as the locus of the
zero level of a surface. The level set method has been used
to segment images into different regions, in order to identify
features of interest such as crystal growth [30], [31], flame
propagation [30], [32] and cells [33].

Consider an image comprising of two regions which we
wish to segment, as illustrated in Figure 9(a). To find the
boundary, I', we define it as a function of ¢, such that:
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Fig. 9. An image segmented into two regions (a), and the surface ¢ that
defines the boundary between the two regions (b) [31]

where x is a pixel index in the image. In this way, the two
regions are defined by the single function, ¢(x). The advantage
of defining the regions Q= and Q7T using ¢ is that I" is not
explicitly defined, so regions can merge or split without hard
decisions being made.

Typically the level set method searches for a boundary T’
between the regions, 2~ and 7, that minimises the energy
of a function [34]:

E(¢>)=/ |V(x)—c+|2daz+/ V(%) — = [2da
Qt(¢) Q= (9) ®

where V (x) is a suitable function of the image that is to be
segmented, x indexes the pixel, ¢~ is the mean of V() within
the Q— region and ¢t is the mean of V(z) within the Q-+
region. Use of (7) demonstrates that a change in ¢ produces
a change in the boundaries of Q7 and Q~, with (8) showing
that this changes the energy of the segmentation.

To minimise the energy of (8), we evolve the function ¢(x)
over a time variable, 7, using a steepest descent method. The
objective of the level set method is to find the segmentation
of the two regions that results in the lowest possible energy.

It is shown in [34] that ¢ can be evolved by gradient descent
to minimise E(¢) by choosing:

dp  OF
or 09’

This PDE can be realized numerically by updating ¢ as

follows:

OF
T+1 _ T
10) =¢ AT—8¢
where [34]:



82@) = —(V(x) = ¢ (¢"(x)I” = [V(x) = " (6" (x))I*)
where ¢7 (x) is ¢ at iteration 7(x). At each iteration, 7, we
calculate the updated areas of 2 and Q™ and then calculate
the mean of V(x) within each region to obtain ¢t and ¢™.
When there is noise in the image, the level set algorithm
may segment small, scattered regions which are not of interest.
To counteract this, we penalise the mean curvature of ¢(x),
which is a local measure of the curvature of a surface for each
pixel in ¢. As a result, a region will not be segmented if the
penalty caused by the increase in curvature of ¢(x) outweighs
the decrease in energy of (8). Following [31], [35], we define
the mean curvature of ¢(x) as:

_ o Vo
" =ViSer

Therefore, the update equation becomes [34]:

P =97 — Alg—i + Aok )

where A1 and Ao are the weights attached to the level set
energy and curvature respectively.

Given sufficient iterations, the image is segmented into
two regions based on the intensity of the pixel values. To
successfully use the level set function to obtain a region of
interest, the image being segmented must have features in the
regions that allow them to be distinguished from each other.
Previous implementations of the level set function have used
the intensity of the pixels [31].

An issue with the use of the canonical level set method for
blurred images is that the blur introduced by camera motion
with the shutter open produces a boundary between segments
that is not sharp. Attempts to segment blurred images become
more challenging as the blur within the images increases. We
therefore modify the level set method to account for the blur
at each depth to segment the swiped image into depth layers.

To segment the swiped image, we consider each of the
depths independently. The plane that is the furthest away from
the camera, zp, is defined as the background plane, and is
assumed to cover the entire background of the swiped image.
Therefore, for this depth layer ¢p is uniformly negative. We
assume for now that the planes 27 to zp_; do not occlude each
other, but occlude only the background. The case of planes
occluding each other is discussed in Section IV-D.

For each non-background plane, we model the situation
as the plane at that depth, z,, swiping over only the back-
ground plane. All other planes are considered as part of the
background. We define a different level set surface ¢,(x)
to determine the silhouette of each non-background plane.
To achieve that we introduce the following change to the
calculation of energy for the level set method, defining the
energy of the image at depth p as:

Ep(¢p(x)) = Xakp + A1 /|V(X|p) - Y/Cp(¢p(x))|2dx (10)

where V. (x) is the best approximation for the image
V(x|p) using two regions with set values, blurred with a
known blurring kernel that depends on the depth of the plane.

The approximation of V(x|p) is obtained from ¢,(x) as
follows: we first introduce

v, (x) 1 ¢p(x) <1
X) =
v 0 otherwise

where V; (x) is the current estimate of the silhouette of the
depth layer given ¢,,. Moreover,

‘/bp* (X) = h’P * V¢p (X)
Vi, (%) = By (1 =V, (%))

where h,, is a blurring kernel that is a box function with
a length determined by that of the depth of the layer being
segmented.

The value of ¢y, is chosen to minimise:

IV, e, = vl

where
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where n is the number of pixels, V,,_ 1,Vs,_2 ... Vo,_1n
are the elements of V; _(x) and V;,, 1,Vp, 2 ... Vi, . are
the elements of V3 . (x), and v, is the elements in V'(x|p)
formed into a column vector. Finally, the best approximation
to V(x|p) is given by:

ch = prcbp
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Fig. 10. (a) shows the initial ¢ boundary for a blurred object and (b) shows
this object being successfully segmented. The white outline segments the plane
silhouette for the rightmost camera position.

Given the equation for the energy of the segmentation,
(10), the change in energy due to a change in the value of
¢p(x) is determined. For each pixel, the value of ¢,(x) is
changed to —¢,(x), thereby reversing the sign of ¢,(x) for



that pixel and changing the boundary. Given the new boundary,
the new energy is calculated. This gives a numerical method
for estimating the partial derivative:

08, o _ Bpl04,00) ~Bp(6,00)
Oy |dp(x)]

where ¢, (x) is the ¢, at the current iteration where the
value of ¢, at x is positive and ¢_  (x) is the ¢, at the current
iteration where the value of ¢, at x is negative.

In principle the energy of the entire image must be calcu-
lated for every pixel being considered. To reduce the amount
of calculation required, it is assumed that only pixels within
a predefined distance of the boundary are likely to reduce the
energy with a sign change, and so only these pixels need to be
considered. This is known as the narrow band level set [36].

Using (11) in (9), we evolve each non-background ¢,, as in
Figure 10, for a set number of iterations to estimate the plane
silhouette for each non-background plane.

C. Recovering plane surfaces

Once the depths in the scene have been found using the
method in Section IV-A, and the plane silhouettes and loca-
tions using the method in Section IV-B, the texture surfaces
of the planes may be recovered.

For the simplest scene type, in which there is only a single
plane, a sharp image of the plane can be turned into the swiped
image by a simple linear convolution of the sharp plane image
with a 1D box function with a length equalling the disparity
of the plane due to the depth. Therefore, to recover the surface
of the original plane from the swiped image, the well-studied
techniques in the field of deblurring will, for this case, produce
a good result.

When we consider a more realistic scene comprising mul-
tiple planes, the process of recovering the plane surfaces
becomes more complicated. This is because as the camera is
swiped, planes at different depths will have different disparities
in the swiped image and may occlude each other due to their
positioning within the scene. The effect of these occlusions
turns the problem of recovering plane surfaces from a linear
one to a non-linear one, making the recovery more difficult.
To recover the plane surfaces, we first consider a situation
including planes of different depths which do not occlude each
other.

Planes within the scene at different depths will have a
disparity during the camera swipe inversely proportional to
their depth, and will have different occlusions depending on
depth, so are recovered separately. To get the forward model
of the effect of camera swiping, we define a matrix A,, that
when multiplied by a row of the sharp image of a plane will
produce a row of the swiped image of the plane:

12)

where A, is the swiping matrix, measuring n x m, where
n is the width of the swiped image, m is n + b, where b is
a buffer the size of the maximum disparity expected in the
swiped image, to account for planes wider than the width of
the image. v, is a transposed row of the sharp image of plane

Apvy =11y

p measuring m by 1 and Iz, is a transposed row of the swiped
image of plane p measuring n by 1.

The A, matrix in (12) is populated with the following
elements to model the effect of swiping the camera:

a(i.i) = {0.5(2L —(L-M?)JL ifM=0

0.5/L if M >0
S5(L—M)?)L if M =
aliyi — 1) = { VAT ML ATAT=0
0 it M >0
. 0 it M=0
ali, j) = , N
1/Lfori— M <j<i if M>0

(iri— M) 0 if M =0
a(?,? — = oM —(L— .
0.5(1+2L 224 (L—M)?) if M >0

. 0 if M =0
a(i,i— M —1)= 0.5(LEA1)2 M0
where L is the disparity, M is floor(L), i is the row index,
and j is the column index.
To find the forward model of a multiple-plane scene, we
concatenate the A, matrices and v,, vectors for each plane to
form:

A=[A, A, Ap] (13)
and
v =[v1;V3;..vp]" (14)

where A is the swiping matrix for the entire scene and v
is a concatenated row of the sharp image of planes at each
depth layer. Use of these matrices gives the equation:

AV =1;

where 1 1 is defined as:

~ P
=1,
p=1

and represents the swiped image from the planes in the
absence of the effects of occlusions.

The difficulty of recovering the scene is due to the non-
linear effects of the occlusions on the swiped image. To
account for the occlusions of the planes on the swiped image,
we modify the A, matrices in depth order, taking advantage
of the explicit depth ordering of the layer-based model. A,
is related to the closest plane to the camera, and so cannot
be occluded by another plane, and remains unchanged. The
entries of Ao which are calculated to be occluded by plane
1, by our knowledge of plane silhouette and location from
Section IV-B, are deleted. This process is repeated for each
layer in turn, with the elements occluded by planes closer to
the camera changed to zero. The A matrix for the situation
where the effect of occlusions is disregarded is shown in Fig-
ure 11(a). The A matrix incorporating the effects of occlusions
is shown in Figure 11(b), where some of the elements for the
plane further from the camera have been changed to zero due
to occlusion.

15)

(16)



(a)
Fig. 11. (a) shows the A matrix for a scene with two planes without
considering the effects of occlusion. (b) shows A for the same scene when
occlusion is considered. The elements for the closer plane (on the right), are

unchanged, but some elements for the further plane (on the left) are set to
zZero.

The forward model of using (15) to obtain a row of the
swiped image is demonstrated in Figure 12. A row of the
image in Figure 12(a) is generated from the multiplication of
the A matrix with the concatenated sharp images of planes,
v, shown in Figure 12(b).

(a) -

—

(b)

Iy

<

Fig. 12. Each row of the swiped image, I7 shown in (a), can be formed by
a row of the sharp image of each plane in ¥ multiplied by A. The resultant
row of the swiped image created in (b) is indicated in (a) by arrows. In this
figure, there are two depths present within the image, related to a red and
blue plane shown within V.

The A matrix is calculated row by row due to variations
within the scene geometry with height. Using the minimum
solution to the following equation, we estimate each row of
the original images of the planes from the swiped image using:

AV —1,]]* = 0. (17)
The equation in (17) is not well posed due to the low pass
filtering effects of swiping the camera. In situations such as

this, standard least squares estimation can produce unwanted
effects due to the large norm of the least squares solution.
To obtain the best estimate of the original planes, we use the
regularisation method of the iterative shrinkage thresholding
algorithm (ISTA) to stabilize the solution [37], [38].

(b) (c) (d)
®

Fig. 13. Image of recovered planes at depth 3 (b), depth 2 (c), and depth 1
(d), from swiped image (a) when the depths and planes outlines are correct.
When plane silhouettes are incorrect the recovered planes at depth 3 (e), depth
2 (f), and depth 1 (g) are incorrect.

D. Plane recovery optimisation

The technique outlined above can be used to recover the
plane surfaces within the image, given an estimate of the plane
silhouettes from Section IV-B. In this section, we propose a
method of further refining the recovery of the planes. The
reasons for this are twofold, with the first being that the as-
sumption from Section I'V-B, that non-background planes only
occlude the background and not each other, is not generally
true in real world images. Therefore, we get a good result
when non-background planes do not overlap, but inaccuracies
in the plane silhouettes when they do. The second is that the
more accurate the plane silhouettes are, the more accurate the
recovered plane surfaces and therefore recovered EPI will be.
When the planes in the image are segmented wrongly, the
content of the planes will leak into each other in v, as can be
seen in Figure 13(e). This leakage does not occur when plane
silhouettes are correct, such as in Figure 13(b). Minimising
the error in the boundary estimate will minimise this leakage.

The level set method in Section IV-B operates on a trans-
form of the swiped image, the probability of each pixel be-
longing to each depth. When non-background planes occlude
each other in the swiped image, then a pixel can belong to
more than one plane. Use of the algorithm from Section IV-B
on the 3-plane swiped image in Figure 14(a), will result in
incorrect plane silhouettes where the planes overlap, resulting
in the recreated swiped image shown in Figure 14(b).

To solve the problem of overlapping planes, we use the
level set method again, but now calculate ¢ using the recovered
planes. This method uses the recovered planes, where a change



(b)

Fig. 14. The recreated swiped image from the recovered planes (b) from the
swiped image (a) are estimated wrongly due to occlusion due to the swipe.

in the silhouette of a plane results in a different plane surfaces
at other depths due to occlusion. Therefore, the ¢ for each
depth cannot be considered separately, and so ¢ is defined as:

¢ = [(,bl, ¢23 d)P]

where ¢1, @2 and ¢p are the level set surfaces for depth
layers 1,2 and P respectively. As the recovered planes are
separated by depth, a pixel in the swiped image can belong to
any combination of planes. For this method, we use the RGB
value of a pixel v(x) in a recovered plane, and compare it
to the RGB distributions of the planes at each depth. If the
recovered pixel closely matches the colours of the planes at
its depth, then we assume the pixel is correctly part of the
plane silhouette. If the recovered pixel matches more closely
the colours in a plane at another depth, we assume it is not
part of the plane silhouette.

To assess how closely the colour of the pixel matches the
colour of the plane around it, we calculate the mean and
sample covariance of the pixels in a window around the pixel:

1 ok

= N7L ; V(X L,i)

where p; (x) is the mean of the pixels, where ¢(x) is
negative, in a window around x, Ny, is the number of pixels,
where ¢(x) is negative, in a window around x and ¥(xy, ;) is
the ith pixel, where ¢(x) is negative, in a window around the
pixel x. The sample covariance for each label is calculated by
[29]:

(%) (18)

Np

D ((xr) = mp () (F(xe) = py(x))T

=1

1
TN -1

EL(X)

19)
where X, (x) is the covariance of the pixels, where ¢(x)
is negative, in the window around x. We then calculate the

likelihood the pixel at x matches the distribution:

1 _
M) = s oDt

N

(20)

where My (x) is the likelihood the pixel at x matches

distribution defined by X1, (x) and p (x). The energy at the
pixel is defined as:

Er(x) = —In(Mp(x)). (1)

To find the likelihood the pixel matches the planes at other
depths, we consider the recovered planes as being composed of
the recovered plane at each depth, as in (14). We repeat (18),
(19), (20) and (21) for a window with the same coordinates
as xr,; for each depth v{, Vo ... vp to obtain E 1, Er o ...
Er, p, a measure of the energy of the pixel at x against the
pixels in a window at each depth.

To evolve the level set function we calculate the gradient:
OE(x) _ (Epp—q— min(ELpzq)) 22)
9¢(x) |¢(x)]

where d is the depth that pixel x belongs to in ¢(x),
Er p—aq is the energy from the depth that x belongs to and
min(Ey, ,-+q) is the minimum energy from a depth that x does
not belong. To calculate (22), for each pixel ¢(x) where the
sign is positive we must recalculate the A matrix and therefore
the recovered planes for when the sign of ¢(x) is negative to
compare the colours of the recovered pixel.

As in Section IV-B, ¢ is evolved iteratively using a steepest
descent algorithm to find plane silhouettes and therefore
plane surfaces. We initialise ¢ using the plane silhouettes in
Section IV-B. After each iteration A is recalculated based on
¢ and the recovered planes are re-estimated.

Creating the LDA for each plane relies on having a good
initial estimate of plane boundaries, so the plane silhouettes
must be close to correct answer before this procedure is
applied. Furthermore, a different v needs to be recovered
for each pixel within each depth, creating a high amount of
complexity. The fast marching method is used to limit the
pixels tested to near the boundaries, limiting the speed of the
boundary change.

E. EPI recovery and image rendering

Once the surface intensities of the planes have been ob-
tained, this information is combined with the knowledge of
the plane silhouettes and plane geometry from the switchpoints
to reconstruct the EPI of the scene. To render an image for a
novel camera position, we select the new camera distance from
Zo2, and use (3) to find the shift of the location of the planes
within the new image. Once the planes have been shifted,
we create the new image by copying the pixels where ¢(x) is
negative from each depth layer into the corresponding pixels of
the new image. This process repeats for each depth, beginning
with the furthest plane, to account for occlusions. The full EPI
recovery algorithm is summarised in Algorithm 1.

() =, ()T (BL (%) (F(x) —pp, (%))



Algorithm 1 Compute EPI from swiped image

1: Find switchpoints in swiped image (Section IV-A)
2: Calculate horizontal autocorrelation of image to estimate
number of layers and layer depths using (2)
3: Transform pixels in swiped image to probabilities for each
depth using (6)
4: Initialise plane silhouettes
5: for Iterations less than threshold do
Calculate (11) using depth probabilities and evolve
plane silhouettes using extension to level set method
7: end for
8: for Iterations less than threshold do
: Evolve plane silhouettes using recovered plane sur-
faces using (22)
10: end for
11: Recreate EPI using scene geometry from depths, plane
positions and plane surfaces

V. RESULTS

To evaluate the algorithm proposed in Section IV, we tested
it on both simulated and real images. To create real swiped
images, fronto-parallel images at different depth layers were
arranged to form a diorama that resembles a real life scene. A
CineMoco camera slider was used to create a swiped image by
moving a DSLR camera between two points with the shutter
open.

The number of depth layers was calculated as in Sec-
tion IV-A. The parameter D; was chosen empirically as
D; = 0.7. If the value is too high then too few or zero
depths are detected. If the parameter is set too low then
spurious depths are detected. This is illustrated by Figure 15,
where a swiped image in Figure 15(a) produces the depth
probability histogram in Figure 15(b). The number of depths
detected from the image varies with the value of D,, as shown
in Figure 15(c). For a scene with no fronto-parallel planes,
there is no correct answer for the number of layers, so the
number of layers detected will be quantised depending on the
value of D;. The boundary of the planes in the swiped image
was segmented using a ¢ defined by the method proposed in
Section IV-B, as illustrated in Figure 16. The level set method
is initialised with multiple segments, as shown in Figure 16(a),
in which the initial boundary contains a set percentage of the
energy within each depth. The boundary is then evolved using
the level set method, resulting in the plane boundary shown
in Figure 16(b).

The run time of the algorithm on MATLAB running on a
computer with an Intel i7-3770 CPU and 8GB of RAM when
two depth layers were present was approximately 6 minutes
for a swiped image of dimension 450 by150 pixels. Most of
the complexity of the algorithm comes from the optimisation
step described in Section IV-D, as the plane surfaces have
to be estimated for each change in the sign of ¢(x). As the
optimisation step is run on each depth layer, the complexity
of the algorithm is proportional to O(P).

The results of the algorithm on a dataset of simulated images
are shown in Figure 17, and with real images in Figure 18,

Combined depth map histogram

(b) 0.5

Depth probability
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Fig. 15. (a) shows a swiped image with two layers. (b) shows the depth
probability at each disparity using the technique in Section IV-A. (c) shows
how the number of depth layers detected varies with D for this image. The
value of Dy is set empirically, as if it is too high then only a single layer is
detected, and if it is too low then spurious depths are detected.

Fig. 16. (a) shows the initial guess of I' as a white rectangle, and (b) shows
the I" for level set method extension after 20 iterations. The leftmost plane is
a background plane, so ¢ is always negative in that area.

demonstrating the validity of the algorithm under a variety of
scenes.

The depth maps that we estimate using the proposed tech-
nique are shown in Figure 19. Figure 19(a) shows the swiped
images, with Figure 19(b) showing the ground truth depth map
from the mid-point of the camera swipe. Figures 19(c) and (d)
compare the results from [23] with the depth map resulting
from the mid-point in the camera swipe of the recovered EPI.
As the technique in this paper uses the algorithm from [23]
to obtain an initial estimate of the depth in the image, the
improved depth map from our technique justifies the iterative
updates of the depth silhouettes using colour information.



Fig. 17. Column (a) are simulated swiped images, which are made from two planes at different depths, constructed from cropped planes in [39], [40]. Column
(b) is the estimated plane silhouettes, in descending depth order, with column (c) being the recovered plane surfaces. From the recovered planes, we recover
the EPIs of the scenes, and so can create novel views of the scene for different camera position, such as in column (d), which shows the scene captured at

the mid-point of the swipe.

Fig. 18. Column (a) are real swiped images, which are made from two planes at different depths to form a diorama, constructed from cropped planes in
[39], [40]. Column (b) is the estimated plane silhouettes, in descending depth order, with column (c) being the recovered plane surfaces. From the recovered
planes, we recover the EPIs of the scenes, and so can create novel views of the scene for different camera position, such as in column (d), which shows the

scene captured at the mid-point of the swipe.

Given a swiped image (e.g. Figure 20(a)), the depths in the
image can be detected using the switchpoints (Figure 20(b)).
The plane surfaces can then be recovered (Figure 20(c)),
allowing the EPI to be recovered, and new images of the
scene generated for arbitrary intermediate camera positions
(Figure 20(d) and (e)).

In the recovered planes, areas which are always occluded
during the swipe cannot be recovered as they are never seen.
This can be seen in Figure 20(c), where those parts of the
background plane that are never visible in Figure 20(a) cannot
be recovered, leading to a hole in the recovered background
plane. These holes are smaller in width than the objects
occluding them due to the motion of planes during the swipe.
Slices of the recovered EPI from the two upper examples
of Figure 17 are shown in Figure 21, demonstrating that the
algorithm presented in this paper successfully fulfils the goal

of recovering the EPI of a scene from a single swiped image.

A further set of recovered EPIs can be seen in Figure 22
where there are three planes present within the scene. The
scenes shown in Figure 22 have 3 depths present within the
image. Some of the pixels in the final example in Figure 22
include contributions from all three planes. This can be
seen from the leftmost panel of image Figure 22(c) which
includes recovered background pixels that lie between the
two foreground objects. This would not be possible using the
traditional methods of segmenting and deblurring by depth.
The results of the algorithm on a simulated swiped image with
four depths is shown in Figure 23. Simulated images are used
in this case, as it is challenging to get all the planes within
focus for a real image with four depth layers, whilst having
enough of a difference in disparity to enable detection of each
layer.



Fig. 19. (a) are simulated swiped images, which are made from two planes at
different depths to form a diorama, constructed from cropped planes in [39],
[40]. (b) are the ground truth depth maps, from the mid-point of the camera
swipe. (c) are the estimated depth maps using the technique from [23], and
(d) are the estimated depth maps using the technique in this paper at the
mid-point of the camera swipe as a comparison of techniques.

Fig. 20. Creation of new views of the scene from a generated swiped image.
(a) shows a swiped image of a scene, (b) shows an image of the detected
switchpoints, (c) shows the recovered planes from furthest on the left to closest
on the right, with each depth separated by a white line, and (d) and (e) show
new views of the scene rendered from different perspectives.

This demonstrates that the technique can be extended to
more complex scenes that include multiple objects, as would
be typically seen in real world swiped photographs.

The structural similarity (SSIM) index [41], using the de-
fault settings of the MATLAB implementation, was used to
compare the recovered images in the EPI, and the recovered
swiped image from the created EPI, to the ground truth
synthetic images. The results of the proposed EPI recovery
algorithm are shown in Table I. The third column gives the
SSIM of the recovered EPI while the fourth column gives
the SSIM of a reconstructed swiped image. As a comparison,
the Mean Squared Error (MSE) of the recovered EPIs and
reconstructed swiped imaged are the fifth and sixth columns.
To create the reconstructed swiped image, the recovered EPI
was integrated between xp; and xge. It can be seen that,
although there are small errors in the recovered EPI, the
recreated swiped image is, in all cases, almost perfect.

Table I shows results for different swipe lengths corre-

Camera movement

Camera movement

(b)

Fig. 21. The EPI slices denoted by (b) are recovered from the swiped images
denoted by (a) using the proposed algorithm from Section IV.

TABLE 1
COMPARISON OF RECOVERED IMAGES OF THE SCENE AGAINST GROUND
TRUTH IMAGES.

Recovered Recovered Recovered Recovered

Swiped image | Layers disparity EPI swiped image EPI MSE swiped image
SSIM SSIM MSE
Pin 510 0.993 1.000 14.25 0.0443
Pin 10 20 0.988 1.000 27.64 0.0587
Pin 15 30 0.985 1.000 34.84 0.0703
Monopoly 510 0.982 1.000 22.99 0.0885
Monopoly 10 20 0.969 1.000 40.33 0.1453
Monopoly 15 30 0.958 1.000 5851 0.1825
Moebius 510 0.975 1.000 34.55 0.0920
Moebius 10 20 0.957 1.000 64.69 0.1411
Moebius 15 30 0.939 1.000 89.53 0.1938
Laundry 510 0.964 0.998 50.30 0.1899
Laundry 10 20 0.904 0.993 103.07 0.2398
Laundry 15 30 0.882 0.995 134.48 0.2774
Lampshade 510 0.982 1.000 64.52 0.2264
Lampshade 10 20 0.970 0.999 110.39 0.2274
Lampshade 15 30 0.959 1.000 158.33 0.2571

sponding to maximum disparities of 10, 20 or 30 pixels. The
results of this are plotted in Figure 24. From the simulations
performed, it can be seen that there is a trade-off between
having a larger camera swipe, which enables an EPI which
encompasses more camera locations, and having an EPI with
more accuracy. This makes intuitive sense, since with all
deblurring algorithms, the larger the amount of blur the harder
it is to recover a sharp image.

Figure 25 compares the proposed method with a recent
blind deblurring algorithm [43]. Although [43] creates a view
of the scene from only a single perspective, as shown in
Figure 25(d), it can be compared with a rendered image from
the recovered EPI using the technique from this paper, as
shown in Figure 25(b) as well as with the ground truth in
Figure 25(c). An attempt to create an EPI from a single
deblurred image would have the disadvantage against the
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Fig. 22. (a) are real swiped images, which are made from three planes at different depths to form a diorama, constructed from cropped planes in [39], [40].
(b) are the estimated plane silhouettes, in descending depth order, with (c) being the recovered plane surfaces. From the recovered planes, we recover the
EPIs of the scenes, and so can create novel views of the scene for different camera position, such as in (d) and (e).

Fig. 23. (a) are simulated swiped images containing four planes, which are made from four planes at different depths to form a diorama, constructed from
cropped planes in [39], [40]. (b) are the estimated plane silhouettes, in descending depth order, with (c) being the recovered plane surfaces. From the recovered
planes, we recover the EPIs of the scenes, and so can create novel views of the scene for different camera position, such as in (d) and (e).



‘ ‘ 1
-—
0.95 =
[7]
—Pin ;
| —Monopoly | w
Moebius 0.9
—Laundry
—Lampshade
: : 0.85
10 15 20 25 30

Maximum disparity (pixels)

Fig. 24. A graph plotting the SSIM of the recovered EPI against the ground
truth EPI as the maximum disparity in the swiped image is varied.

proposed technique of not recovering plane surfaces which are
occluded during part of the swipe and introducing holes in the
rendered image as the planes are shifted. From the comparison,
it can be seen that the technique from this paper performs
well against the blind deblurring algorithm, especially at the
boundaries between planes, where there are more artifacts
present in the deblurred images.

The images from the recovered EPI in Figure 25 are taken
from the mid-point between xp; or xps. The accuracy of
the recovered EPI decreases as the position of the camera
tends towards xg; or xgo, as the recovered pixels of occluded
planes are less accurate if they are unoccluded for only a
small proportion of the swiped image acquisition. However,
Figure 26, taken from the top recovered EPI in Figure 25,
shows the effect on the recovered EPI quality is small.

A further comparison is made on real swiped images in
Figure 27 between the proposed method and a commercially
available deblurring software package [44], using blind decon-
volution for deblurring. The real swiped images in Figure 27(a)
are deblurred using [44] in Figure 27(c) and compared with
a rendered image from the recovered EPI using the technique
from this paper, as shown in Figure 27(b). The comparison
shows that a single image from a real recovered EPI performs
well against [44], with improved definition of the outline of
deblurred objects.

VI. CONCLUSION

In conclusion, we have presented a method to retrieve the
EPI from a single swiped image. The method is derived from
a depth-based layer model of the scene and a variation of
the level set method. Numerical results on real and simulated
images confirm the validity of the algorithm.
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in [39], [40]. Column (b) are the newly rendered images at the camera mid-position from (a) using the techniques outlined in this paper. Column (c) are the
ground truth images for comparison. Column (d) are the images from (a) deblurred using the software from [42], which implements the technique from [43].
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