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ABSTRACT

The notion of a graph wavelet gives rise to more advanced processing of data on graphs due to its ability to operate
in a localized manner, across newly arising data-dependency structures, with respect to the graph signal and
underlying graph structure, thereby taking into consideration the inherent geometry of the data. In this work,
we tackle the problem of creating graph wavelet filterbanks on circulant graphs for a sparse representation of
certain classes of graph signals. The underlying graph can hereby be data-driven as well as fixed, for applications
including image processing and social network theory, whereby clusters can be modelled as circulant graphs,
respectively. We present a set of novel graph wavelet filterbank constructions, which annihilate higher-order
polynomial graph signals (up to a border effect) defined on the vertices of undirected, circulant graphs, and are
localised in the vertex domain. We give preliminary results on their performance for non-linear graph signal
approximation and denoising. Furthermore, we provide extensions to our previously developed segmentation-
inspired graph wavelet framework for non-linear image approximation, by incorporating notions of smoothness
and vanishing moments, which further improve performance compared to traditional methods.
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1. INTRODUCTION

A breadth of recent contributions encompassing the ascendent field of graph signal processing, inspired by the
potential of graphs to capture complex information beyond the classical domain, has extended traditional signal
processing to the higher-dimensional graph domain by establishing equivalencies, while taking advantage of newly
arising data dependencies.1 Wavelets on graphs, in particular, facilitate advanced (and potentially superior)
processing of given data, which is captured in graph signals and the corresponding (often data-driven) underlying
graphs, through localized operations with respect to the inherent geometry of the data, thereby constituting an
intriguing extension of classical wavelet theory. Proposed designs such as the diffusion wavelet,2 the perfect
reconstruction filterbank on bipartite graphs,3 and the spectral graph wavelet,4 with an ensuing discussion of
sparsity on graphs,5 have been tailored to satisfy a (sub-)set of various desirable properties, including, but not
limited to, compact support in the vertex domain, invertibility, and critical sampling.

The objective of this work is to achieve a sparse graph wavelet representation, for the realisation of a superior
non-linear approximation performance on graphs. Hereby, we derive a selection of graph wavelet constructions,
localized in the graph-vertex domain, which annihilate higher-order ‘polynomial’ graph signals on undirected
circulant graphs. The latter represent an appealing class of graphs to operate on, due to a set of properties,
which facilitate downsampling and shifting operations.6 Not least of all, circulant graphs provide an immediate
connection to the traditional signal processing domain due to the fact that circulant matrices are diagonalizable
by the DFT-matrix.
The spline-like graph wavelet filterbank on circulant graphs, introduced by Ekambaram et al.,7 which inspired
our current design, while localized in the vertex domain, only annihilates up to linear polynomial graph signals.
To the best of our knowledge, there does not exist a comparable graph wavelet construction on circulant graphs,
which is tailored to the annihilation of higher-order polynomial graph signals.
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Based on a generalization of the annihilation property of the graph Laplacian matrix, whose associated polyno-
mial function, as we will proceed to demonstrate, has two vanishing moments for a sufficiently small bandwidth,
we explore the design of graph wavelet filterbanks on undirected circulant graphs; in particular, we consider
constructions tailored to data-driven graphs (such as for image processing) as well as constructions for scenarios
where the underlying graph model is fixed and/or independent of the graph signal, such as social networks.
In our prior work,8 we have shown that the application of the existing spline-like circulant graph wavelets6,7

within our proposed, graph-cut inspired scheme to the graph-realisation of a 2D image leads to superior perfor-
mance in non-linear image approximation than traditional 2D transforms. We additionally present refinements
of this scheme, by incorporating a node relabelling step which aims to minimize the total variation of the graph
signal as well as the bandwidth of the associated graph wavelet matrix for a maximum sparse representation.
This paper is organized as follows: in Section 2, we present preliminaries, followed, in Sections 3 and 4, by
the introduction of our higher-order graph wavelet filterbank constructions. Extensions to image processing on
graphs are discussed in Section 5, also including experimental results, and we give concluding remarks and an
outlook on future work in Section 6.

2. PRELIMINARIES

A graph G = (V,E) is defined by a vertex set V , of cardinality |V | = N , and an edge set E, and throughout this
work, we primarily focus on graphs that are undirected, connected, weighted, and do not contain self-loops. The
connectedness of G is represented via an adjacency matrix A, whose entries are ai,j 6= 0 if there exists an edge
between vertices i and j, and ai,j = 0 otherwise, and a diagonal degree matrix D, with entries di,i =

∑
j ai,j .

The (non-normalized) graph Laplacian matrix L = D−A, is positive semi-definite, and therefore has a complete
set of orthonormal eigenvectors {ul}N−1l=0 , with corresponding non-negative eigenvalues {λl}N−1l=0 . We denote a
graph signal x, which is a real-valued scalar function defined on the vertices of a graph G, as a vector x ∈ RN , with
value x(i) at node i. The Graph Fourier Transform (GFT) of x is defined as: XG = UHx, with U = [u0|...|uN−1],
where H denotes the Hermitian transpose.
The class of circulant graphs, formally defined as graphs with generating set S = {sk}Pk=1, whose elements
0 < sk ≤ N − 1 determine an edge between the node pair (i, (i + sk)modN ), or in simplified terms, the class of
graphs whose adjacency matrix is circulant (see Figure 1 for examples), has been shown to facilitate the develop-
ment of particularly convenient concepts and operations in graph signal processing, ranging from downsampling
operations to graph filterbank constructions.6,7, 9 In particular, the spline-like graph wavelet filterbank poses an
interesting graph-generalization of the traditional simple spline:

Definition 1. The spline-like graph wavelet filterbank, comprising the following low-and high-pass filters

HLP =
1

2

(
IN +

A

d

)
(1)

HHP =
1

2

(
IN −

A

d

)
(2)

where A is the adjacency matrix of an undirected, connected and circulant graph and d the degree per node, is
invertible as long as at least one node retains the low-pass component.7

Hereby, the downsampling operation can be conducted with respect to any element of the generating set S.6 In
this paper, however, unless indicated otherwise, we choose to adhere to the standard downsampling by 2 with
respect to the outmost cycle of the graph (i.e. with respect to s1 = 1 ∈ S) for even N , whereby every other
labelled node is skipped, and assume that the graph in question is connected, for simplicity.
Furthermore, we can define the symmetric, circulant graph Laplacian matrix L, with first row [l0 ... lN−1],

via its representer polynomial l(z) =
∑N−1

i=0 liz
i; in particular, for the circulant permutation matrix Π with first

row [0 1 0 ...], we obtain L =
∑N−1

i=0 liΠ
i.
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Figure 1. Circulant Graphs with generating sets S = {1}, S = {1, 2}, S = {1, 3} and S = {1, 2, 3, 4} (f. left)

3. THE GRAPH LAPLACIAN AS A HIGH-PASS FILTER

It has been observed9 that the graph Laplacian matrix carries the notion of a high-pass filter, by annihilating
constant graph signals via its weighted difference operation; furthermore it is well known that the localized
filtering operation in the graph vertex domain can be defined as a polynomial in the graph Laplacian matrix
acting on a graph signal.1 In light of this, we introduce the following interesting result pertaining to the graph
Laplacian matrix of circulant graphs in particular:

Lemma 1. For an undirected, circulant graph G = (V,E) of dimension N , the associated representer polynomial

l(z) = l0 +
∑M

i=1 li(z
i + z−i) of the graph Laplacian matrix L = D −A, with first row [l0 l1 l2 ... l2 l1], has

two vanishing moments. Therefore, the operator L annihilates polynomial graph signals of up to degree n = 1,
subject to a border effect determined by the bandwidth M of L, whereby M << N .

Proof: Consider the polynomial representation of the first row of the graph Laplacian matrix with degree
d =

∑M
i=1 2di per node and symmetric weights di:

l(z) = (−dMz−M − ...− d1z−1 + d− d1z − ...− dMzM ) =

M∑
i=1

di(z
i − 1)(z−i − 1),

whereby M is the bandwidth of L. We observe that the factors on the RHS are divisible by (z±1−1) respectively,
using the equality zn − 1 = (z − 1)(1 + z + ...+ zn−1), thus proving that the representer polynomial associated
with the matrix L has two vanishing moments.
Therefore, if the adjacency matrix of G is a symmetric, banded circulant matrix of bandwidth M , the cor-
responding graph Laplacian matrix L annihilates linear polynomial graph signals on the graph G up to the
boundary effect; the latter increases with parameter M , thus requiring M to be sufficiently small with respect
to the dimension N of G.

4. HIGHER-ORDER GRAPH WAVELETS

In the following, we present a breadth of design options for the construction of higher-order graph wavelet filter-
banks, which take advantage of the previously introduced annihilation property of the graph Laplacian matrix
L. We begin by extending the spline-like graph wavelet filterbank in Eqs. (1-2), whose high pass-filter is conve-
niently given by the normalized L, to higher order by raising it to the k-th power.

Proposition 1. Given the undirected, and connected circulant graph G = (V,E) of dimension N , with adja-
cency matrix A and degree d per node, we define the higher-order graph-spline wavelet transform (HGSWT),
composed of the low-and high-pass filters

HLP =
1

2k

(
IN +

A

d

)k

(3)

HHP =
1

2k

(
IN −

A

d

)k

(4)



whose associated ‘high-pass’ polynomial function hHP (z) has 2k vanishing moments. This filterbank is invertible
for any downsampling pattern, as long as at least one node retains the low-pass component.

Proof: It is evident that if the polynomial representation l(z) of graph Laplacian L has 2 vanishing moments,

the function hHP (z) = l(z)k

(2d)k
associated with Lk will have 2k vanishing moments due to the equivalency between

polynomial and circulant matrix multiplication, generalizing the annihilation property to higher order; thus we
proceed to demonstrate invertibility of the above filterbank. The core of the proof follows a similar line of
argumentation as the one provided in Ref. 9 for k = 1 with generalizations pertaining to the parameter k; for
completeness we present it here in its entirety.
By the binomial theorem, we have

1
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and we need to demonstrate that the nullspace of the filterbank (after downsampling)

1

2k

∑
j=0

(
k

2j

)(
A

d

)2j

+ K
∑
j=0

(
k

2j + 1

)(
A

d

)2j+1


is empty, where K is the diagonal downsampling matrix with entries K(i, i) = ±1 if node i retains the low- or
high-pass component. Assume the contrary by letting a vector z = Vr lie in the nullspace:
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where Eq. (6) results from the eigendecomposition VΓjVH =
(
A
d

)j
and subsequently taking the l2-vector norm

of both sides of the rearranged equation. At last, we obtain

N−1∑
i=0

r(i)2
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γ2ji
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=
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i=0

r(i)2(B2
i −A2

i ) = 0, (7)

whereby in (a), we let Ai and Bi represent the sum of odd and even terms in the binomial series respectively.
For the nullspace to be empty, we need to show that r = 0N , or (B2

i −A2
i ) 6= 0. By utilizing the fact that for a

general binomial series (x+ a)n, with terms Ai and Bi, the following holds: (x2 − a2)n = A2
i −B2

i , we obtain

N−1∑
i=0

r(i)2(B2
i −A2

i ) =

N−1∑
i=0

r(i)2(γ2i − 1)k = 0.

Since the eigenvalues of the normalized, Hermitian adjacency matrix A
d are given by |γi| ≤ 1,10 where γ = −1

exists only if the graph is bipartite, we have that |r(i)| > 0 only if |γi| = 1 and r(i) = 0 otherwise. Thus, we

let z = r(0)√
N

1N + Ṽr, with Ṽ being the set of eigenvectors of γ = −1 and r(0)√
N

1N corresponding to γ = 1. We

consider the case of a non-bipartite graph first:

r(0)√
N
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Since
∑

j=0

(
k
2j

)
=
∑

j=0

(
k

2j+1

)
, we need at least one entry K(i, i) = 1, such that r(0) = 0.

In the bipartite case, due to spectral folding, if γ is an eigenvalue of A with eigenvector [vB ,vBC ], so is −γ with
eigenvector [vB ,−vBC ], where B is the set of the node indices in one bipartite set.10 Then γ = 1 and γ = −1
each have multiplicity one with respective eigenvectors 1N and [1B ,−1BC ], where |B| = |BC | = N/2, giving
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[1B ,−1BC ] = 0N . (8)

Hereby we have used the property A
d v = γv, in

(
A
d

)j
[1B ,−1BC ] = (−1)j [1B ,−1BC ], leading to an alternating

pattern when j is odd.
In particular, we note that for any choice of downsampling pattern K, the terms T1 and T2 in the first and second
summands respectively in Eq. (8), will have zero entries along the main diagonal, which lie in complementary
index sets. Therefore, as long as at least one node retains the lowpass component K(i, i) = 1, we have that
r(0) = 0 and r(1) = 0, which again implies that z = 0, completing the proof.

4.1 Complementary Graph Wavelets

A 1-D discrete-time signal can be represented as the graph signal defined on the vertices of a simple cycle,
establishing a link between traditional and graph signal processing; hereby, we observe that the derived higher-
order filterbank then produces the traditional higher-order splines obtained via convolution of the linear spline
β1(t) = β0(t) ∗ β0(t) with itself, where β0(t) is the box function.11 We can extend this property to general
circulant graphs, given that the corresponding graph wavelet matrices are circulant and diagonalizable by the
DFT-matrix (the GFT-representation), while adding the higher-dimensional element given by the complex con-
nectivity of such graphs.
While the filterbank introduced in Eqs. (3-4) is well-defined in the graph vertex domain via the analysis branch,
it does not give rise to a concrete definition of the corresponding synthesis branch. Furthermore, we observe
that while the high-pass filter can annihilate polynomial graph signals, the low-pass filter does not necessarily
reproduce such (unless it is bipartite, i.e. the elements in S are odd). In addition, both analysis filters have
compact support of the same length, while the synthesis filters are comparatively longer. This has motivated
the development of a new class of graph wavelet filterbanks on circulant graphs, which make use of traditional
spectral factorization techniques.

Let the analysis high-pass filter be given by the normalized graph Laplacian matrix L with the associated polyno-
mial H1(z) = 1

(2d)k
l(z)k, and let the synthesis low-pass filter be defined by the polynomial G0(z) = −z−1H1(−z).

We derive the corresponding analysis low-pass filter H0(z) via spectral factorisation, whereby P (z) = H0(z)G0(z)
is subject to the constraint of the halfband condition P (z) + P (−z) = 2.
In general, given the normalized higher-order (graph Laplacian) high-pass filter polynomial

H1(z) = (0.5− d1(z + z−1)− ...− dM (zM + z−M ))k,

we determine H0(z) by noting that P (z) is a polynomial of odd powers, and setting the constraint that H0(z) =∑N
i=0 ri(z

i + z−i) be symmetric:(
0.5−

M∑
i=1

(−1)idi(z
i + z−i)

)k( N∑
i=0

ri(z
i + z−i)

)
= 1 +

L∑
i=0

p2i+1(z2i+1 + z−(2i+1)).

In addition, we may further impose the restriction that the analysis and synthesis filters have an equal number
of vanishing moments 2k, by setting H0(z) = (z + 1)k(z−1 + 1)kR(z), where R(z) is the polynomial to be deter-
mined. In the case of k = 1, we require the highest degrees of each equation to be 2L+ 1 = M +N ; as we have
L + 1 constraints p2n = 0, n = 1, ..., L, and p0 = 1, and N + 1 unknowns ri, we require L = N = M+N−1

2 , or
N = M − 1, leading to a linear system of equations with a unique solution.



In case of a higher-order filterbank with k > 1, the constraints change as follows: N = L = Mk+N−1
2 , or

N = Mk − 1. If we further impose that both synthesis and analysis filters have an equal number of vanish-
ing moments, we need to include the additional term (z + 1)k(z−1 + 1)k for H1(z) = 1

(2d)k
l(z)k, and require

N = Mk + k − 1. Hereby, the resulting graph wavelet filters are symmetric.

Proposition 2. Given the undirected, and connected circulant graph G = (V,E) of dimension N , with adjacency
matrix A and degree d per node, we define the higher-order ‘complementary’ graph-spline wavelet transform
(HCGSWT) via the set of analysis filters:

HLP,an = CH̃LP = C

(
IN +

A

d

)k

(9)

HHP,an =
1

2k

(
IN −

A

d

)k

(10)

and the set of synthesis filters:
HLP,syn = c1(HHP,an) ◦ IHP (11)

HHP,syn = c2(HLP,an) ◦ ILP (12)

where ci, i ∈ {1, 2} are normalization coefficients, and ILP/HP are circulant indicator matrices, whose entries
{1,−1} coincide with those of HLP/HP,an.

Hereby, we note that the spread of the new lowpass filter HLP,an in the vertex domain does not coincide

exactly with the adjacency matrix of the graph, but rather encompasses a subset S̃i of vertices within the k-hop
local neighborhood N(i, k) of vertex i ∈ V , which we denote as a simple convolution operation between the
polynomial representation of the circulant filter-like coefficient matrix C and the associated polynomial of the
traditional lowpass-graph filter H̃LP in Eq. (1); the latter is based on the adjacency matrix and is easily shown
to be generally invertible (if G is non-bipartite). In addition, the set S̃ depends on the initial constraints we
impose on HLP,an(z).
We further note that unlike the constructions in Eqs. (3-4), this type of filterbank facilitates only the standard
alternating downsampling pattern on graphs with respect to s = 1 ∈ S, whereby every other node is skipped.

5. EXPERIMENTAL RESULTS

In the following, we distinguish between two major categories of possible applications for graph wavelets. On
the one hand, these include scenarios for which the graph at hand is fixed and data-independent of the graph
signal, and on the other hand, we consider scenarios for which the graph and corresponding graph signal are
both data-driven, commonly used, for instance, for the representation of images.

5.1 Polynomial Signals on Graphs

We consider a fixed circulant graph G = (V,E), whose adjacency matrix is of sufficiently small bandwidth M ,
and define a set of (piecewise) polynomial graph signals P = {pj}Mj=1 to lie on the vertices of G, whereby pj ∈ RN

is the vectorized form of the discrete-time piecewise polynomial pj [n]

pj [n] =

K∑
i=0

p̃i[n]1[ki,ki+1][n], n ∈ [0, N − 1], i = 0, ...,K

with k0 = 0, and kK+1 = N , and p̃i[n] is a sampled polynomial of maximum degree D.
It becomes evident that the aforementioned set of graph signals can be highly compressible in the graph domain as
well, given that we can achieve a sparse multiresolution representation in the graph wavelet domain by applying
the proposed transforms iteratively on the low-pass branch. Amongst possible applications, we note for instance
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Figure 2. Non-Linear Approximation Performance Comparison between the regular GWT and proposed higher-order
GWT on a fixed graph with S = {1, 2} at 5 levels for a Cubic Graph Signal (left) with N=1600
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the analysis of suitable graph signals supported on graphs, modelling clusters in social networks. Hereby, we
represent individual clusters as circulant sub-graphs (M -regular subgraphs, in particular), whose nodes exhibit
similar neighborhoods, while the underlying graph signal(s) can be expressed in terms of and/or approximated
by (piecewise) polynomials, yet are not necessarily smooth with respect to the graph.
In Figure 2, we compare the non-linear approximation performance between the exisiting (Eqs. (1-2)), and
proposed (Eqs. (3-4) and (9-12)) graph wavelets of the same order (k = 2), and note that we can achieve perfect
reconstruction for the latter at a small number of retained graph wavelet coefficients due to their higher-order
sparsifying effect. In addition, we investigate the performance of the proposed constructions in the presence of
noise, which reveals that the balanced construction with the same number of vanishing moments (4.4) at the
analysis and synthesis branch performs best for the example at hand (see Figure 3). For both scenarios, we
perform a multiscale decomposition at 5 levels, and reconnect edges in the graphs after downsampling such that
they retain their original generating set S.

5.2 Graph Wavelets for Non-Linear Image Approximation

In prior work,8 we considered the application of the spline-like GWT (see Eqs. (1-2)) (with 2 vanishing moments)
to images. In particular, we constructed a graph G via a bilateral similarity measure based on the image at
hand, whereby we let each node in G represent a pixel, and define the edge weights between the node pair (i, j)
as

wi,j = e
−
||pi−pj ||

2
2

σ2p e
− |I(i)−I(j)|

2

σ2
I , i, j,∈ {1, ..., N}
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Figure 4. Non-Linear Approximation Performance Comparison between the 2D Haar, the 2D Linear Spline and a variety
of proposed GWT at 5 levels on a 64× 64 Image Patch from ‘cameraman’

for spatial and intensity parameters p and I. We subsequently proceed to conduct the graph wavelet analysis on
smooth regions of the image, which are obtained by performing a graph cut12 on G, and computing the nearest
circulant graph-approximations G̃i of the individual subgraphs Gi, see Ref. 8 for a more detailed discussion.
Hereby, we resorted to minimising the Frobenius-norm error13 by averaging over the diagonals of a given, general
matrix A to obtain its nearest circulant matrix approximation C:

C =

N−1∑
i=0

1

N
〈A,Πi〉FΠi,

where Π is the permutation matrix. Moreover, we use this scheme for the reconnection of nodes after downsam-
pling.
We extend our approach by considering the smoothest possible representation of the resulting sub-graph signals
xi ∈ RN , whose samples are composed of the intensity values of the individual pixels, i.e. x(k) = I(k) at node
k for graph signal x on G. In particular, given the subgraph Gi, we perform a thresholding on the weights
in the corresponding adjacency matrices Ai to obtain sparse graphs, followed by the RCM algorithm,14 which
determines the banded form of smallest possible bandwidth via a node relabelling, before computing their nearest
circulant approximations.
While the primary purpose for using the RCM has been to obtain a reordered matrix (re-labelled graph) with
more similar neighborhoods, whose structure is closer to that of a circulant matrix, it appears that in light of
our treatment of maximum annihilation, the obtained, smallest possible bandwidth may be used for an increased
sparse representation in the graph wavelet domain if the corresponding re-ordered graph signal is smooth. When
the similarity measure in Ai is based solely on the intensity measure I of the graph signal xi, the relabelling
obtained via the proposed approach on Ai converges toward performing a simple sort operation on xi, due to
the breadth-first traversal of the RCM. We can further generalize the given subgraph to be approximated by
the simple cycle, i.e. the ‘sparsest’ possible circulant graph, or alternatively, the ‘smoothest possible cycle’ in
Gi, and define the sorted graph signal xi on its vertices. Thereby, we obtain maximum sparsity in the graph
wavelet domain by simultaneously minimizing the bandwidth of the adjacency matrix and (graph-unrelated)
total variation

||x||TV =

N∑
i=2

= |x(j)− x(j − 1)|

of the graph signal. Figure 4 illustrates the non-linear approximation performance comparing traditional methods
with our proposed smoothness-inspired designs. In particular, we observe that the sparsest representation for
subgraphs with generating set S = {1} and intensity-based weights achieves the best performance by a high
margin, followed by more connected, circulant approximations ((I,sort), for an appropriately chosen sparsifying
threshold). We also note that, while subgraph-representations with bilateral weights (bil,RCM ) still outperform
traditional methods, they are overall less effective.



6. CONCLUSION AND FURTHER DIRECTIONS

We have introduced a variety of higher-order graph wavelet constructions on circulant graphs, which can annihi-
late (and reproduce) polynomial graph signals, based on the fundamental annihilation property of a circulant and
symmetric graph Laplacian matrix, and discussed data-driven as well as data-independent applications, where a
sparse graph wavelet representation is desirable. In future work, we aim to extend the range of applications to
image denoising using ‘sparsifying’ graph wavelets. Moreover, it would be of interest to explore additional designs
of graph wavelets, which can possibly annihilate further classes of graph signals, with the aim to move beyond
the current limitation of achieving the highest sparsity for the least connected graphs. Current developments
include a graph-based framework for the e-spline wavelet.
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