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ABSTRACT

We present a fully automated method for the detection of
changes within a scene between a reference and a sample
image whose viewing angles differ by up to 30°. We also
describe an extension to the SIFT technique that allows ex-
tracted feature points to be matched over wider viewing an-
gles. Matched correspondences between reference and sam-
ple images are used to construct a Delaunay triangulation and
changes are detected by comparing triangles after affine com-
pensation using a dense SIFT metric. False positives are re-
duced by using a novel technique introduced as local plane
matching (LPM) to match mean-shift segments in unmatched
areas using the homographies of local planes to compensate
for perspective distortions. The method is shown to achieve
pixel-level equal error rates of 5% at a 10° azimuth view angle
difference.

Index Terms— Change Detection, SIFT, Wide Baseline,
Affine Compensation, Feature Points, Segmentation, Image
Matching, Local Features

1. INTRODUCTION

This paper discusses the problem of wide-baseline image
change detection and presents a method for identifying areas
that have changed when a sample image is compared with a
reference image taken from a different viewpoint. Change de-
tection is important in both civilian and defence applications
for example, the analysis of surveillance images from un-
manned aerial vehicles (UAVs). The capability of automated
change detection allows operator attention to be focused on
regions of possible change. Our goal is to identify any regions
of the reference image that have changed due to the addition,
removal or movement of one or more objects.

If the observed scene is unchanged, images taken from
widely spaced viewpoints may appear different due to (a) the
occlusion or disocclusion of distant objects by nearer objects,
(b) the self-occlusion or disocclusion of objects by them-
selves, (c) perspective distortions arising from the change
in viewpoint. Occlusion occurs when surfaces in view in
one image are hidden behind another object in a different
image while disocclusion is where surfaces are revealed. In
addition, images taken at different times will include small

differences that are normally unimportant such as those aris-
ing from lighting changes and slight movements such as
leaves rustling in the wind.

The appearance of any planar region of the scene in two
different images is related by a 2D projective transformation,
or homography [7]. The corresponding inverse homography
can therefore be used to compensate for its change in appear-
ance between images. A general 2D homography has eight
degrees of freedom and is uniquely defined by determining
four matching points, or correspondences, between the im-
ages. If the depth variation across the planar region is small
compared with the distance from the camera, the 2D homog-
raphy may be well approximated by an affine transformation
which, with only 6 degrees of freedom, is therefore uniquely
determined by three correspondences [7].

Attempts have been made to incorporate affine correction
into feature points [9, 14, 17]. These approaches tend to pro-
duce fewer matches and require a larger computational effort.
This paper utilises a novel adaptation of the Scale Invariant
Feature Transform (SIFT) [12] which incorporates affine cor-
rection into the algorithm in a way that allows for different
levels of distortion at each point. A similar density of feature
points are matched at large angles as SIFT achieves at small
angles with only a small increase in computational load at the
point that the sample image becomes available.

In this paper we extend an approach to change detection
that was introduced in [10]. Correspondences between the
reference and sample images are used to partition them con-
sistently into small triangular regions and we assume that
the depth variation within the observed scene is sufficiently
smooth that the conditions for the affine approximation hold
for most of the regions. Corresponding regions are then
matched between images based on a local pixel intensity gra-
dient metric; any regions that match are classified as change-
free. The remaining regions, which contain potential changes
are then segmented into patches on the basis of the image
content. Patches that are consistent with a local homography
determined from adjacent triangular regions are classified
as change-free while the remaining patches are classified as
containing changes.



2. BACKGROUND

The majority of change detection algorithms described in the
literature address the detection of change in images taken
from overhead such as those captured from satellites or sur-
veying aerial flights [16, 15]. In these cases the reference
and sample images can be aligned by a translation, scaling
and/or rotation. It is important to achieve precise registration
since misregistration has been found to produce a substantial
degradation in the accuracy of remotely sensed change detec-
tion. For example registration errors as small as 0.2 pixels in
standard satellite imagery introduced changed detection er-
rors of up to 10% compared with perfectly registered images
[3]. This means that it is infeasible to attempt wide-baseline
change detection by means of image registration and direct
comparison.

An alternative approach to wide baseline change detec-
tion is to use additional sensors to capture depth information.
LASERS can be used in systems such as in light detection
and ranging (LIDAR) [1, 6] or airborne laser scanning (ALS)
[8, 18, 13]. By using the depth information the 3D position of
each pixel can be found in each image which allows for the
comparison of the pixel information without the ambiguities
introduced by projective distortion or occlusion.

This paper presents an approach for wide-baseline change
detection that does not require range data or aligned images,
allowing for the use of standard imaging equipment. This al-
lows for the use of a larger range of input images in a larger
range of scenarios which increases the scope of change detec-
tion.

3. AFFINE COMPENSATED SIFT

In order to compare two unregistered images, it is necessary
to locate points in the two images that correspond to the same
positions in the scene. A widely used technique for finding
such correspondences is SIFT [12] which both identifies dis-
tinctive points within an image and also provides a mecha-
nism for matching them between images using a descriptor
based on the local pixel intensity gradient.

A modified SIFT algorithm known as ‘Affine SIFT’
(ASIFT) was introduced in [10]. In ASIFT a number of
anisotropic scaling factors are applied to the reference image
in a range of orientations to create a set of modified refer-
ence images. SIFT points and descriptors are collected from
the original and modified images to form an extended set of
dictionaries. These dictionaries can be created offline before
the sample image is available. A SIFT descriptor from the
sample image is matched to each of the dictionaries using
the SIFT matching procedure. If more than one match is
found for a sample point across the reference dictionaries the
match with the smallest matching distance is used. In some
applications the positions and orientations of the cameras
are accurately known. In this case, the appropriate scaling
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Fig. 1. Left: Effect of affine compensation of SIFT match-
ing. Matching performance improves with affine compensa-
tion of SIFT in the planar image and more realistic village
scene. Right: Planar image used for evaluation.

orientation for each feature point is determined by the corre-
sponding epipolar line and the number of dictionary sets can
be correspondingly reduced.

3.1. Affine SIFT performance

Figure 1 illustrates, on a logarithmic scale, the performance
gain of ASIFT over SIFT in three test image sets. The red
lines with crosses show the number of matches obtained by
SIFT as a function of scene rotation angle. The blue lines
show the corresponding performance of the ASIFT algorithm
which always exceeds that of SIFT. The solid lines show
the performance when the planar image shown in Fig. 1 is
rotated around a vertical axis. We see that the number of
matches obtained by SIFT falls rapidly for rotation angles
above 40° whereas ASIFT maintains a good performance for
angles up to 60°. The dashed lines show the performance
when the axis of rotation is at a worst-case angle relative to
the compensation orientations used in ASIFT. We see that
although the performance of ASIFT degrades slightly, it still
comfortably exceeds that of SIFT for rotation angles above
30°. The dotted lines show the performance on the more
realistic model village scene that is shown in Fig. 2(b). This
scene includes surfaces at many different orientations and the
number of matches falls off more rapidly with rotation angle.
In all three cases ASIFT significantly outperforms SIFT and
achieves good performance at angles up to 50°.

4. IMAGE CHANGE DETECTION SYSTEM

This section describes an image change detection system
which produces consistent segmentation of the reference and
sample images using ASIFT points to construct a Delaunay
triangulation in combination with mean-shift [2] segmenta-
tion. The first stage of the algorithm compares corresponding
pairs of triangles between the two images and flags any tri-
angles that include a scene-change. The second stage of the
algorithm refines this initial classification by segmenting the
flagged triangles into patches on the basis of image content.
Patches from the reference image are mapped onto the sam-



ple image and classified individually. The mapping between
reference and sample images is a homography determined
from adjacent triangular regions. Each step of the system is
described in more detail below.

4.1. Delaunay Triangulation Segmentation

The first step is to partition both the reference and sample
images into consistent triangular regions. A set of matched
ASIFT points described in Sec. 3 are used to construct a De-
launay triangulation [4, 11] to partition the reference and sam-
ple images. A initial set of high matching threshold fea-
ture points are used to find the fundamental matrix between
the two images using a RANSAC approach [5]. A second
pass collects a larger set of correspondences by using a lower
matching threshold. Errors are reduced by checking for con-
sistency with the fundamental matrix. Delaunay triangula-
tion is performed on the matches in the reference image and a
consistent triangulation applied to the sample image. In rare
cases, triangles in the sample image will overlap due either to
a correspondence error or to a large variation in depth within
a triangle; where this occurs, the corresponding feature points
are removed.

The results of the partitioning are illustrated in Fig. 2(b)
and 2(c) where we see that it results in dense triangles in most
regions of the image. Where a change has occurred, such as
the missing building on the left of the image, no matches are
found in the changed region, so the triangles are larger.

4.2. Stage 1: Region matching with dense SIFT

The above segmentation approach produces segment areas
within the two images that approximately coincide. The three
corners of each triangle allow for affine compensation by
mapping the triangle in the reference image to the triangle
in the sample image and interpolating pixel values. If the
scene within a triangle in the reference and sample images is
approximately planar a comparison of the areas after affine
compensation can determine if they contain changes.

Even if the scene is unchanged, corresponding triangles
will not match perfectly for a number of reasons. First, the
localisation errors of the ASIFT feature points result in small
misalignments of the compensated triangles. Second, the in-
accuracies from using an affine approximation to represent
the homography between the segments will also produce ad-
ditional misalignments. Third, the scene area within a triangle
may not be exactly planar and so a single transformation will
not be correct for the entire triangle. Because of these errors,
it is not possible to match the segments using techniques, such
as autocorrelation, that require near perfect alignment.

In our algorithm we use the SIFT descriptor to compare
each mapped triangle from the reference image with the cor-
responding triangle from the sample image because it is ro-
bust to lighting changes and also to small pixel misalign-

ments. SIFT descriptors with a 4 pixel window size are com-
puted for both triangles on a dense grid with approximately
2-pixel spacing. To detect changes. the euclidean squared
distance between corresponding descriptors is found. The re-
gions are said to match if the number of descriptor distances
above a first threshold is below a second threshold. The first
threshold is set high so that only significant differences be-
tween the images are highlighted. The second threshold is set
so that triangular regions with a significant number of non-
matching 4 pixel descriptor windows are marked as changed.

4.3. Stage 2: Local plane matching

The procedure described in Sec. 4.2 identifies the triangular
regions that potentially include scene changes. However, the
procedure may include a substantial number of pixels that are
falsely classified as having changed for two reasons. First, a
genuine change within a triangular region will normally only
occupy a portion, perhaps a small portion, of the entire region.
Second, if the scene within a triangular region is very far from
planar, then perspective effects will prevent a match between
the reference and sample images even if no scene change is
present. In the second stage of our algorithm, we divide the
triangles into smaller patches on the basis of the image con-
tent and assess whether or not each of the patches represents
a genuine change in the scene.

The first step is to form groups of adjacent triangular re-
gions that are approximately coplanar in the scene. This is
done using a growing cluster algorithm. The three correspon-
dences that form the vertices of a triangular region are used
to define an affine mapping between the reference and sample
images. This mapping is then applied to the vertices of each
adjacent triangular region in the reference image. If their cor-
respondences in the sample image lie within a defined thresh-
old distance of the mapped reference-image vertices, the ad-
jacent triangle is added to the current cluster. This procedure
is then iterated and results in clusters of contiguous triangles
that are approximately coplanar.

A modified RANSAC [5] procedure is now used to find a
homography for each local plane. The random samples using
in the procedure used to define a candidate homography are
constrained to exclude image points that are very close to each
other. This constraint is introduced to increase the stability of
the resulting homography.

A segmentation algorithm such as mean-shift [2] is
now used to subdivide triangles identified by the method
in Sec. 4.2 as potential changes. If the triangle is within or
adjacent to a clustered plane the homography of the plane
is applied to the segment which is then matched against the
corresponding region of the sample image. The matching is
conducted using the dense SIFT matching method used in
Sec. 4.2, if the two regions match this the change classifica-
tion of this segment is marked as negative.
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Fig. 2. Delaunay segments formed using ASIFT points on images at a 10° with scene changes visible shown in reference image
(b) and sample image (c). Change mask shown in (a) with true negatives highlighted in white, false positives and negatives in
red (labelled ‘R’) and blue (labelled ‘B’) respectively and false positives that are re-classified as negatives using the technique
described in Sec. 4.3 in green (labelled ‘G’). Areas of change incorrectly re-classified as not containing change are too small to
be visible. (d) shows the ROC curve of pixel classification performance for scene rotations of 10°, 20° and 30° using the model
scene shown in Fig. 2. Benefit gained from local plane matching marked as LPM shows the performance boost gained from the

technique in Sec. 4.3.

5. PERFORMANCE

In this section, we illustrate the algorithm performance using
a model village scene for which reference and sample images
are shown in Fig. 2(b) and 2(c) respectively. There are five
changes between the two images: two buildings have been
removed (one from bottom left and one from middle right),
two jeeps have been removed (one from the road and one from
bottom right) and a car at top right has been replaced by a
jeep.

The first stage of the algorithm classifies all the pixels
within a given triangular region as changed (positive) or un-
changed (negative) and these decisions are compared with the
ground truth. The second stage then reclassifies some of the
positive pixels as negative. In Fig. 2(a) false positives from
the first stage are labelled G (shaded green) if they are cor-
rectly reclassified after the second stage or R (shaded red)
otherwise. False negatives from the first stage are labelled B
(shaded blue) and are never reclassified. True negatives are
shown as white. We see that all the true changes have been
correctly identified and that the false negative triangles occur
only at the boundaries of true changes. All the false positives
that remain after the second stage of the algorithm arise be-
cause the scene is far from planar within the affected triangle.

The majority of triangles overlaying areas of change have
been detected and no changes have been missed completely.
All of the false positives are caused by the triangle not lying
on the plane of the scene.

The ROC curve showing system performance is shown in
Fig. 2(d) and is based on a false positive and false negative
rate judged per pixel in the reference image. As the algo-
rithm functions on a triangle region basis, the false positive
rate includes any unchanged pixels that lie within the trian-
gles correctly identified as changed. The local plane matching

described in Sec. 4.3 reduces these false positives as shown in
Fig. 2 by the areas in green marked ‘G’. 43% of the false
positives and a large majority of the false positives on the
ground level are re-classified as negative. No significant areas
of change have been marked as negative (these are too small
to be visible in Fig. 2. The effect can also been seen in the
ROC curves labelled LPM in Fig. 2.

As Fig. 2(d) shows, the performance of the system is de-
pendent on the angle between the sample and reference im-
ages and the number of false positives increases at higher an-
gles. The reason for this is partly a reduction in the density
of feature point matches and partly an increase in occlusions.
The system works best on scenes with low depth variation
where occlusions occur less often.

6. SUMMARY

We have presented a method for detecting and locating
changes in a scene from two images taken from widely
separated viewpoints. The method partitions the reference
image into triangular regions and, in a first stage, identifies
the triangles that contain scene changes. A second stage
refines this initial classification by detecting any unchanged
patches within the triangles identified in the first stage. We
have shown that the method performs well when comparing
views with an angular separation of up to 30° and that the
procedure effectively combines the low false negative rate of
the first stage with the low false positive rate of the second.

Overall the approach allows for change detection using
images that are not registered and without the use of addi-
tional input data such as depth information.
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