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Abstract: Modelling signals as sparse in a proper domain has proved useful in many signal
processing tasks and, in this paper, we show how sparsity can be used to solve inverse prob-
lems. We first recall that many inverse problems involve the reconstruction of continuous-
time or continuous-space signals from discrete measurements and show how to relate the
discrete measurements to some properties of the original signal (e.g., its Fourier transform
at specific frequencies or its first L moments). Given this partial knowledge of the original
signal, we then solve the inverse problem using sparsity. We focus on two specific problems
which have important practical implications: localization of diffusion sources from sensor
measurements and reconstrcution of planar domains from samples. We localize diffusion
sources using a variation of the ‘reciprocity gap’ method and use it also to estimate the acti-
vation time of the source. We validate the method by estimating the location and activation
time of a heat source from real measurements. Finally, we show how to reconstruct specific
planar domains which are driven by sparsity models and apply this approach to enhance the
resolution of natural images.
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1 Introduction

The notion of sparsity, namely the idea that signals can be modelled using a small number of
free parameters has proved useful in many signal processing applications and recently sparsity
has been successfully used in sampling. In these new sampling methods, the prior that the
signal is sparse in a basis or in a parametric space is used to perfectly reconstruct classes of
non-bandlimited signals from a set of suitable measurements. Depending on the set-up and re-
construction method involved, the above sparse sampling problem goes under different names like
compressed sensing, compressive sampling [1, 2] or sampling signals with finite rate of innovation
(FRI) [3, 4].

Sampling can be seen as a particular type of inverse problem where one tries to reconstruct
a certain phenomenon or function from a set of discrete measurements. There are two types of
inverse problem of this nature that we consider in this paper.

We first put ourselves in the typical sampling setup depicted in Fig. 1 where the original
continuous-time signal x(t) is filtered before being (uniformly) sampled with sampling period
T . If we call y(t) = h(t) ∗ x(t) the filtered version of x(t), the samples yn are given by yn =
〈x(t), ϕ(t/T − n)〉 where the sampling kernel ϕ(t) is the scaled and time-reversed version of h(t).
In this paper we discuss extensions of this framework to the two-dimensional (2-D) case, we thus
assume that the incoming signal is a 2-D function f(x, y) and try to reconstruct it from the
discrete measurements ym,n = 〈f(x, y), ϕ(x/T −m, y/T − n)〉.
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Figure 1. Sampling set-up. Here, x(t) is the continous-time signal, h(t) the impulse response of
the acquisition device and T the sampling period. The measured samples are yn = 〈x(t), ϕ(t/T −
n)〉.

tivation time; we conclude the section by combining these
solutions to give a single source estimation algorithm. In
Section 4 we generalize the single source algorithm to the
multiple-source case. We validate our findings through nu-
merical simulations in Section 5 and conclude the paper in
Section 6.

2. PROBLEM FORMULATION

In what follows we will formulate the diffusion field sam-
pling and reconstruction problem. Firstly let us consider an
unknown point source distribution f within a region Ω, that
induces a diffusion field u. Such a phenomenon is governed
by the diffusion equation;

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x, t), (1)

where µ is the diffusivity of the medium through which the
field propagates, x ∈ Rd denotes the spatial domain, whilst t
is the temporal domain. Moreover, from the theory of Green’s
functions a solution to this PDE is [15]:

u(x, t) = (g ∗ f)(x, t), (2)

where g(x, t) = 1
(4πµt)d/2

e−
‖x‖2
4µt H(t) is the Green’s func-

tion of the diffusion field, and H(t) is the unit step function.
The implication of Equation (2) is such that finding f given
discrete measurements of u means the entire field can be per-
fectly reconstructed. We consider the case where the sources
are localized in space and concentrated in time leading to the
following source parameterization:

f(x, t) =
M∑

m=1

cmδ(x− ξm, t− tm), (3)

where cm, ξm, tm is the concentration, location and activation
time respectively of the m-th source in a field induced by M
sources.

Hence the sampling and reconstruction problem is equiv-
alent to finding the source parameters {cm, ξm, tm : m =
1, . . . ,M} given spatial and temporal samples of the diffu-
sion field u. In our analysis we consider the 2-D problem
(d = 2) and assume that we have access to field measurements
ϕn(tl) = u(xn, tl), obtained at instants tl for l = 0, . . . , L
and from sensors at spatial locations xn for n = 1, . . . , N
situated along an arbitrary domain boundary ∂Ω and its en-
closed region Ω. We note that the domain boundary ∂Ω may
be arbitrarily chosen provided all active sources are contained
within its domain Ω (see Figure 1). For simplicity however,
our simulations will consider a circular boundary with sen-
sors evenly distributed along the boundary and uniformly dis-
tributed within the region enclosed. We also briefly address
the transient source localization problem, i.e. finding the lo-
cations {ξm : m = 1, . . . ,M} for sources with distribution:

f(x, t) =
M∑

m=1

cme
αm(t−tm)δ(x− ξm)H(t− tm), (4)
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Fig. 1. Sensor placement along and within the boundary.

where αm < 0 is the decay coefficient.

3. DIFFUSION SOURCE ESTIMATION

In this section we first use reciprocity gap functional (RGF)
theory to derive a Vandermonde system which can be solved
for the intensities and locations of multiple point sources.
Next we address the single source activation time estimation
problem given estimates of its intensity and location. Finally
we present the single source estimation algorithm.

3.1. Multiple Source Localization and Intensity Estima-
tion

Reciprocity gap functionals are derived by comparing a field
with its adjoint ψ [16, 17]. In our setting ψ must satisfy the
time-reversed diffusion equation:

∂ψ

∂t
+ µ∇2ψ = 0 in Ω. (5)

Moreover, for the domain Ω with a sufficiently smooth bound-
ary ∂Ω Green’s second identity may be used to relate the field
at the boundary to that inside the domain as follows:
∫

Ω

∂

∂t
(ψu) dV−µ

∮

∂Ω

(ψ∇u− u∇ψ)·n̂∂Ω dS =
∫

Ω

ψf dV

(6)
where n̂∂Ω is the outward pointing unit normal vector to
∂Ω. Henceforth we shall denote the “reciprocity gap,”
the left hand side of Equation (6) as R(ψ, t) for concise-
ness. Hence the reciprocity gap in time integrated form,
on some interval t ∈ [0, T ] is such that

∫ T
0
R(ψ, t) dt =∫

Ω
ψu(x, T ) dV − µ

∮
∂Ω

(ψ∇U − U∇ψ) · n̂∂Ω dS, where
U(x) =

∫ T
0
u(x, t)dt. Therefore

∫ T

0

R(ψ, t) dt =
∫ T

0

∫

Ω

ψf dV dt. (7)

Figure 2. Estimation of diffusion fields driven by localised sources using a sensor network.

The second inverse problem we consider is depicted in Fig. 2. Here a sensor network is
monitoring a diffusion field inside a region Ω and the task is to reconstruct the entire field from
the spatio-temporal measurements given by the sensors under the assumption that the field is
driven by M localised diffusion sources.

In both cases we solve the inverse problem by retrieving some continuous full-field information
about the original signal/phenomenon and then reconstruct them using proper sparsity priors.
Our methods are heavily influenced by the theory of sampling FRI signals introduced in [3, 4]
and extended more recently in [5, 6, 7, 8, 9, 10, 11]. FRI sampling theory has also had impact in
other applications such as image super-resolution [12], for depth sensing [13], for calcium transient
detection [14] and in compression [15, 16, 17].

In what follows, we first discuss the problem of reconstructing 2-D domains from samples
then in Section3 we provide an overview on how to reconstruct diffusion field from sensor mea-
surements.

2 Reconstructing classes of 2-D domains from discrete mea-
surements

For the sake of clarity, we begin by considering the 1-D case and the sampling set-up of Fig. 1.
We want to show how we can retrieve some information about the Fourier transform of x(t) from
the samples yn. The acquisition device or sampling kernel plays a central role in this context and
a family of kernels that we will be considering is the family of exponential reproducing functions.
A function ϕ(t) is an exponential reproducing function of order P , if together with its shifted
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Algorithm 1: Annihilation of indicator function
1. Compute Fourier transform of the indicator plane χ
evaluated at uniformly sampled frequency grids(

2πk
M , 2πl

N

)
;

2. Create annihilation filter according to (6) where the
elements are rearranged lexicographically;

3. Solve the annihilation coefficients ck,l based on (5)
under the Hermitian symmetry constraint on the
coefficients in (2).

4.1. Fourier Transform of Indicator Plane

In order to apply the annihilation Algorithm 1, Fourier trans-
form of the annihilable curve Γ has to be evaluated exactly. FRI
signals investigated previously in 1-D cases, are either streams
of Diracs [7] [2] or piecewise polynomials [1] whose Fourier
transform can be computed exactly. However, in the case of
annihilable curves here, no explicit expression of the Fourier
transform χ̂Γ is available in general. And we can not use DFT
of χΓ directly either. Because the indicator plane χΓ has infi-
nite bandwith, results obtained from DFT suffers from server
aliasing effect. But we can relate the Fourier transform χ̂Γ with
its samples gk,l and calculate the Fourier transform exactly. As
is in the case of streams of Diracs [7] [2], we can prove that
the Fourier transform coincides with the bandlimited discrete
Fourier transform of gk,l.

4.2. Retrieval of Signal Innovation

Once the exact Fourier transform χ̂ is evaluated, the annihilat-
ing filter is constructed according to (5), from which we can
retrieve the coefficients ck,l with annihilation filter method, a
well known approach in the reconstruction of FRI signals. Sup-
pose both ck,l and hk,l are rearranged based on the same rule,
say column-by-column rearrangement, then (5) is equivalent to
a system of equations:

HC = 0 (8)

where H is a block circulant matrix built from frequency sam-
ples of χ̂ and C is the vector that corresponds to ck,l rearranged
column-by-column. Thus we can determine the annihilating co-
efficients uniquely up to a multiplicative constant by solving the
linear system of equations (8) for noise-free cases. However,
noise is ubiquitous in signal processing, which may arise from
the sampling process (Fig 1), the computational inaccuracy as
a result of numerical integration in (7), or model mismatch dis-
cussed in Section 2 in our case here.

In the presence of noise, the annihilation equation (8) is
not satisfied exactly, yet we can still obtain the solution with
the least square approach for the same reasoning as is in 1-D
cases [7] [2]. For cases that suffer from more sever noise cor-
ruptions, it is better to denoise the samples prior to applying the
least square approach with e.g. Cadzow’s method [2] for the
robustness of the annihilation algorithm against noise perturba-
tion.

(a) Original indicator plane (b) Reconstructed indicator plane

(c) Difference image (d) Samples of indicator plane

Fig. 2. Annihilation results for noiseless case

Notice that the annihilation algorithm presented here is non-
iterative and is extremely fast. Except for the DFT step which
is O(n log n) with the FFT implementation, execution time for
all the other steps are linear with KL, the degree of freedom of
the annihilable curve. Thus the algorithm can easily cope with
large scale problems.

5. SIMULATION RESULTS AND DISCUSSIONS

Several experiments are set up to verify the exact annihilation
for noiseless cases. In all the subsequent simulations, we use
the same annihilation coefficients ck,l, which are 5×5 randomly
generated real numbers subject to the Hermitian symmetry con-
straint in (2). The period of the annihilable curve are chosen to
be equal along x, y-axis: τx = τy = 1.

Another uncertainty we need to take into account of is the
accuracy of numerical integration in (7), which is controlled
by the total number of points used for calculation. To avoid
ambiguity, we refer to it as “number of numerical integration
control points”. With less computational accuracy, the samples
obtained deviate more from the actual values. The discrepancy
can be considered as additive noise. Its effect on the robustness
of annihilation algorithm is also investigated in our experiments.
To evaluate the relative accuracy, we define the percentile error
as:

% error =
total number of non-zero pixels in error image

total number of pixels along curve Γ

5.1. Exact annihilation for noiseless case

For noise-free cases, the algorithm should exactly annihilate the
interior indicator function. In simulations, the number of nu-
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Figure 3. Sampling and reconstruction of classes of 2-D domains. Here, in (a) the original
domain is acquired using exponential reproducing kernels. This leads to the samples of part (b).
From these samples the Fourier transform of the original signal at specific frequencies is obtained
and then the domain is perfectly reconstructed as shown in part (c). We refer to [19] for more
details.

versions, it is able to reproduce exponentials:
∑

n∈Z
cm,nϕ(t− n) = ejωmt, (1)

for proper coefficients cm,n, with m = 0, . . . , P and ωm ∈ R. For the sake of argument, we are
restricting our discussion to exponentials with purely imaginary exponents, however, the analysis
can be extended to exponentials with arbitrary complex exponents. It is possible to show that a
function satisfies (1) if and only if it meets the generalised Strang-Fix conditions [18]:

ϕ̂(jωm) 6= 0 and ϕ̂(jωm + j2πl) = 0 l ∈ Z \ {0}

where ϕ̂(·) is the Fourier transform of ϕ(t).
Exponential reproducing kernels are important because they allow us to map the samples yn

with the Fourier transform of x(t) at jωm m = 0, 1, .., P and this independently of the property
of the incoming signal. For the sake of clarity, assume that the signal x(t) has compact support
such that it is characterised by only N non-zero samples. Moreover, assume that T = 1. We thus
have that the N samples are of the form yn = 〈x(t), ϕ(t− n)〉, n = 0, 1, .., N − 1.

We now linearly combine the samples yn using the coefficients cn,m of Eq. (1) to obtain:

sm =
∑N−1
n=0 cm,nyn

(a)
= 〈x(t),

∑N−1
n=0 cm,nϕ(t− n)〉

(b)
=

∫∞
−∞ x(t)ejωmtdt, m = 0, 1, .., P,

where (a) follows from the linearity of the inner product and (b) is due to Eq. (1) and to the fact
that x(t) has compact support.

We note that
∫∞
−∞ x(t)ejωmtdt = x̂(jωm) is precisely the Fourier transform of x(t) evaluated

at jωm, m = 0, 1, .., P .
The above derivation, therefore, shows that it is possible to obtain a partial knowledge of the

continuous-time Fourier transform of the original signal from proper discrete samples. A similar
derivation can be applied to the 2-D scenario showing that a partial knowledge of the Fourier
transform of f(x, y) can be obtained from the samples ym,n.

We are now faced with the more traditional problem of estimating the entire signal from this
partial knowledge. This can be achieved by assuming that the original signal is sparse in a proper
domain. In [19], we introduced a class of 2-D domains whose contour can be described using a
small number of parameters. These domains are therefore sparse and an example of how perfect
reconstruction can be achieved from the samples is shown in Fig. 3.
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3 Inversion of Diffusion Fields

The propagation of a diffusion field follows the diffusion equation:

∂

∂t
u(x, t) = µ∇2u(x, t) + f(x, t), (2)

where u(x, t) is the field and µ is the diffusivity of the medium through which the field propagates.
We assume that the field is monitored by a sensor network over a 2-D region Ω as shown in Fig. 2.
Moreover we assume the field is generated by M sources localised in space and time. Therefore
the source can be written as follows:

f(x, t) =
M∑

m=1

cmδ(x− ξm, t− τm). (3)

Given the above assumption, the inversion problem reduces to the problem of retrieving the
location and activation time of the sources from the sensor measurements. This is because once
f(x, t) has been estimated, the field u(x, t) can be obtained by convolving f with the heat kernel.
The problem is therefore sparse, because the whole field is driven by a small number of free
parameters.

As in the previous application, we want to estimate some full-field measurements of the diffu-
sion field from the spatio-temporal sensor readings. In the previous case, we used the exponential
reproduction formula to have an exact mapping between the samples and the Fourier transform
of the original signal at specific frequencies. In this new case, this is not possible and we can only
obtain approximate full-field measurements. The aim is to estimate the generalized measurements
of the form:

Q(k)=〈Ψk(x)Γ(t), f〉=
∫

Ω

∫

t

Ψk(x)Γ(t)f(x, t)dtdV, (4)

where Ψk(x) = e−k(x1+jx2) and Γ(t) is a properly chosen window. By replacing (3) into (4), we
obtain:

Q(k) =
M∑

m=1

cmΓ(τm)e−k(ξ1,m+jξ2,m).

This is a sum of exponentials and the source locations can then be estimated from this sum using
Prony’s method - a method commonly used in array signal processing [20]. The activation times
are estimated in a similar way [21]. It is possible to show [21] that these generalised samples can
be obtained from the boundary and interior sensor measurements when Ψk is analytic, which is
the case here. We refer to [21] for further details.
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