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Abstract—It has been shown recently that it is possible to
sample classes of non-bandlimited signals which we call signals
with Finite Rate of Innovation (FRI). Perfect reconstruction is
possible based on a set of suitable measurements and this provides
a sharp result on the sampling and reconstruction of sparse
continuous-time signals.

In this paper, we first review the basic theory and results on
sampling signals with finite rate of innovation. We then discuss
variations of the above framework to handle noise and model
mismatch. Finally, we present some applications of this emerging
sampling theory.

I. INTRODUCTION

The problem of reconstructing or estimating partially ob-
served or sampled signals is an old and important one that
finds application in many areas of signal processing and
communications. Traditional acquisition and reconstruction
approaches are heavily influenced by the classical Shannon
sampling theory which gives an exact sampling and interpo-
lation formula for bandlimited signals. Recently, the classical
Shannon sampling framework has been extended to classes
of non-bandlimited structured signals. In these new sampling
schemes, the prior that the signal is sparse in a basis or in a
parametric space is put to contribution and perfect reconstruc-
tion is possible based on a set of suitable measurements.

Depending on the set-up and reconstruction method in-
volved, the above sampling problem goes under different
names like compressed sensing, compressive sampling [1], [2]
or sampling signals with finite rate of innovation (FRI) [3], [4].

The set-up considered here is the one in [3], [4], where
the acquisition process is modeled as in Fig. 1. Here the
smoothing function ¢(t) is called the sampling kernel and
normally models the distortion due to the acquisition device.
The sampling kernel used in [3] is the sinc function, while
the work in [4] uses compactly supported functions like for
example polynomial splines (B-splines) [5] or exponential
splines (E-splines) [6]. In both works it is shown that perfect
reconstruction of classes of FRI signals from the measure-
ments y,, is achievable by using a variation of Prony’s method
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also known as annihilating filter method [7]. Signals that
can be sampled with this method include streams of Diracs,
piecewise polynomial and piecewise sinusoidal signals.
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Fig. 1. Sampling setup. Here, x(t) is the continous-time signal, h(t) the
impulse response of the acquisition device and 7' the sampling period. The
measured samples are yn, = (x(t), p(t/T —n)).

In this paper, we first review the basic set-up and the
fundamental results presented in [3], [4], we then discuss the
problem of reconstructing signals when the samples have been
corrupted by noise. In this context we present a variation of
the robust reconstruction algorithm presented in [8] and we
take full advantage of the fact that the kernels considered here
have compact support.

We finally discuss applications of this new sampling frame-
work in compression, image super-resolution and neuro-
science.

II. SAMPLING SIGNALS WITH FINITE RATE OF
INNOVATION

For the sake of clarity we restrict our analysis to the case
where the observed signal z(t) is a stream of K Diracs with
amplitudes ay, located at distinct instants ¢, € [0, 7[:

K—-1
2(t) =Y ard(t — t). (1)
k=0

Furthermore, we assume the sampling period is 7' = 7/N.
Consequently, the measurements are

Yn = (z(t),ot/T —n))
K1
= > app(ty/T —n), n,=0,1,..N —1.
k=0

In [3], [4], [8], it was shown that with a proper choice of the
acquisition kernel, it is possible to reconstruct x(¢) from the
samples y,, exactly. The kernels used in [3] are the sinc and



the Gaussian functions. In this paper, we concentrate on the
compact support kernels used in [4]. This includes:

o Polynomial reproducing kernels: Any kernel that satisfies

Z cm,n(p(t - 7’L) = tm

neZ

m=0,1,..,P (2

for a proper choice of coefficients ¢, .
o Exponential reproducing kernels: Any kernel that satisfies

> mnsplt—n) = et

neZ

with o, = ag + mA 3)
and m=0,1,..., P

for a proper choice of coefficients ¢, .

The coefficients ¢, ,, in (2) are given by

I
Cmon = [Wt @(t/T —n)dt,
where @(t) is chosen to form with ¢(t) a quasi-biorthonormal
set [9]. This includes the particular case where @(t) is the
dual of ¢(t), that is, (G(t —n), o(t — k)) = 6, . A similar
expression applies to the coefficients ¢, ,, in (3).

The first family of kernels includes any function satisfying
the so-called Strang-Fix conditions [10]. Namely, ¢(t) satisfies
Eq. (2) if and only if

»(0) # 0 and ¢(m)(2n7r) =0forn#0and m=0,1,..., P,

where ¢(w) is the Fourier transform of ¢(t) and the super-
script (m) stands for the m-th derivative of ¢(t).

One important example of functions satisfying Strang-Fix
conditions is given by the family of B-splines [5S]. A B-spline
of order P is a function of compact support L, = P + 1 and
can reproduce polynomials up to degree P. It is obtained by
the (P + 1)-fold convolution of the zero order B-spline and
has the following Fourier transform

= (52)
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The family of E-splines represents an extension of the
polynomial splines and the Fourier transform of the P-th order
E-spline is:

- B /1= eom—iw
Ba(w) =[] o —an ) “4)
m=0 m

The above E-spline is able to reproduce the exponentials e“m?,

m = 0,1, ..., P. Notice that the exponent «,, in Eq. (4) can
be complex which indicates that E-splines are usually complex
functions. However, this can be avoided by choosing complex
conjugate exponents.

The reconstruction scheme of [4] operates as follows: First
the samples are linearly combined with the coefficients c,,
of (2),(3) to obtain the new measurements

N
Sm = Zcm,nyn m=0,1,..., P. (5)
n=0

Then, if the original signal is a stream of Diracs as the one
in (1), one can show that

K—-1

E m
Sm = AUy,

k=0

where up = t;/T when polynomial splines are used and
ug, = e**/T when exponential splines are involved. In either
cases, the pairs of unknowns {ax,uy} can be retrieved from
the power series s,, = Zk:_ol apuy’ using the classical
Prony’s method. The key ingredient of this method is the
annihilating filter. Call h,,, m = 0,1,..., K the filter with
z-transform

K K—1
H(z) = Z hpz™™ = H (1 —upz™t).
k=0

m=0

That is, the roots of H(z) correspond to the locations wy. It
clearly follows that

K K—1 K
R, * Sy, = Z hiSm—i = Z apup’ Z hiu,'=0. (6)
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The filter h,, is thus called annihilating filter since it annihi-
lates the observed series s,,. Moreover, the zeros of this filter
uniquely define the set of locations uy since the locations are
distinct. The identity in (6) can be written in matrix/vector
form as follows:

SH =0 @)

which reveals that the Toeplitz matrix S is rank deficient. By
solving the above system, we retrieve the uy’s and therefore
the locations t;. Given the locations, the weights aj are then
obtained by solving a system of linear equations. Notice that
the problem can be solved only when P > 2K — 1.

We thus conclude that perfect reconstruction of a stream
of Diracs is possible with any kernel able to reproduce
exponentials or polynomials. The reconstruction procedure is
the same, the only difference is in the choice of the coefficients
Cn,m» Which depends on the properties of the chosen kernel.

Other FRI signals that can be sampled and perfectly
reconstructed using the same procedure include piecewise
polynomial and piecewise sinusoidal signals [3], [4], [11],
multidimensional signals [12], [13] and signals that have a
sparse representation in a basis [14].

III. THE NOISY SCENARIO

The signal and acquisition models discussed before are
ideal and perturbations to this model need to be considered.
For simplicity we assume the perturbation is introduced after
sampling and is modeled as additive noise. Consequently, the
new measurements are

Un = <x(t)’ (p(t/T - n)> + €n,

where ¢,, is assumed to be i.i.d. additive Gaussian noise with

zero mean and variance 2.

n=0,1,...,. N —1,



In order to reduce the effect of noise, the reconstruc-
tion procedure discussed in the previous section need to be
modified. The retrieval of the signal parameters in the FRI
sampling framework is similar to a classical harmonic retrieval
problem [7] and so standard techniques used in noisy harmonic
retrieval can be used in this context. First of all because of
noise Eq. (7) is not satisfied any more. We thus look for
a solution that minimizes ||SH||?> under the constrain that
| H||> = 1. This is a classical total-least-square (TLS) problem
that can be solved using Singular Value Decomposition (SVD).

The algorithm may be further improved by denoising S
before applying TLS. This is done by using the Cadzow
iterative algorithm [15].

Cadzow algorithm is based on the fact that, in the absence
of any perturbation, the matrix .S is Toeplitz and rank deficient
(i.e., it has rank K, where K represents the number of Diracs
in the signal). When noise is present S becomes full rank.
So in the first step of the Cadzow iteration an SVD of S is
performed leading to S = UAV, where A is a diagonal matrix.
Then only the first K diagonal elements of A are kept and S
is reconstructed. The new matrix S is now by construction
rank deficient but is not Toeplitz anymore. This condition is
then imposed by averaging the diagonal elements of S. The
procedure is then iterated.

Finally, we further improve resilience to noise by exploiting
the fact that the sampling kernels considered are of compact
support. This means that in absence of noise many of the
samples y,, are exactly zero. When noise is present this is not
the case, we therefore set to zero the small observed samples
which are probably carrying only noise and no signal infor-
mation. The important point here is that after thresholding,
groups of consecutive non-zero samples are separated by zero
samples. We use this fact as an indication that the Diracs
have generated samples that do not interfere with each other
and can therefore be treated independently. We thus run the
reconstruction algorithm on each group of non-zero samples
independently.

The overall algorithm can be summarized as follows:

1) Given the observed measurements ,,, set to zero those
whose amplitude is smaller than a predetermined thresh-
old T}, (typically, T}, = 30).

2) For each group of consecutive non-zero samples, Do

a) Construct the rectangular matrix S.

b) Estimate K.

¢) Apply Cadzow iterative algorithm to S.

d) Apply TLS method: Perform the singular value
decomposition of S and choose the eigenvec-
tor [ho, b1, ..., hx]T corresponding to the smallest
eigenvalue.

e) Compute the roots of H(z) = ZkK:o hixz~" and
retrieve the locations t, £k =0,..., K — 1.

3) End.

An example of the behavior of the algorithm is shown in
Fig. 2. In this example we have K = 6 Diracs and we observe
N = 128 samples. The noiseless and the noisy samples

are shown in Fig. 2(a), they are obtained using a real E-
spline of order P = 13. In this example the SNR=5dB. The
reconstructed Diracs are shown against the original signal in
Fig. 2(b).
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Fig. 2. Reconstruction of K = 6 Diracs from N = 128 noisy samples.
Notice that the sampling of FRI signals is equivalent to a
parametric estimation problem. It is therefore possible to eval-
uate the performance of the algorithm by using the Cramer-
Rao bounds (CRB). In [8], [16] such bounds were computed
and it was shown that the proposed algorithm exhibit an almost
optimal behavior since it can achieve the CRB up to noise
levels of about 5dB.

IV. APPLICATIONS

The theory of sampling signals with finite rate of innovation
has been successfully used in various applications. These
include image super-resolution [17], compression of piecewise
regular signals [18] and more recently in spike sorting for
neuroscience [19].

The basic idea behind image super-resolution is to com-
bine several blurred low-resolution images or video frames
to produce a single detailed high resolution image. Super-
resolution techniques, therefore, allow to overcome the hard-
ware limitation of the acquisition devices and to obtain images
that would otherwise require much more expensive hardware.



Mathematically, super-resolution is a challenging ill-posed
inverse problem that involves two main steps: registration and
restoration. The first step consists in aligning the different
images as precisely as possible (up to sub-pixel level), while
the second one tries to restore the best possible single image
out of the aligned ones. In [17], an improved registration is
achieved using FRI sampling theory. In Figure 3, we show
numerical results presented in [17]. Sixty pictures of the Moon
are taken with a digital SLR camera and a lens with a focal
length at 38mm (35mm equivalent: 57mm) and settings: F16,
1/60s, ISO 200. The PSF in this case is not estimated and
is directly approximated with a cubic B-spline. Figure 3(a)
shows the Moon as acquired by the camera and Figure 3(b)
presents the obtained super-resolved image.

(b)

Fig. 3. Real super-resolution of the Moon from 60 images acquired with
a Nikon D70s SLR camera and a lens (18-70mm, F3.5-4.5) set at a focal
length of 38mm (35mm equiv.: 57mm). (a) The Moon as acquired by the
camera (60x60 px); (b) Super-resolved image of the Moon (600x600 px)
with MRNSD restoration method.

The above registration method was further improved by
Hirabayashi et al. in [20]

V. CONCLUSIONS

Recent developments in sampling theory have shown that
some classes of sparse signals can be sampled below the
Nyquist rate.

In this paper, we have briefly reviewed the main aspects
of the theory and discussed some possible applications. Nu-
merical results have shown the potential impact of this new
framework.
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