Sampling and Reconstruction driven by Sparsity Models: Theory and Applications

Pier Luigi Dragotti

Communications and Signal Processing Group Electrical and Electronic Engineering Department Imperial College London, United Kingdom p.dragotti@imperial.ac.uk

Abstract—It has been shown recently that it is possible to sample classes of non-bandlimited signals which we call signals with Finite Rate of Innovation (FRI). Perfect reconstruction is possible based on a set of suitable measurements and this provides a sharp result on the sampling and reconstruction of sparse continuous-time signals.

In this paper, we first review the basic theory and results on sampling signals with finite rate of innovation. We then discuss variations of the above framework to handle noise and model mismatch. Finally, we present some applications of this emerging sampling theory.

I. INTRODUCTION

The problem of reconstructing or estimating partially observed or sampled signals is an old and important one that finds application in many areas of signal processing and communications. Traditional acquisition and reconstruction approaches are heavily influenced by the classical Shannon sampling theory which gives an exact sampling and interpolation formula for bandlimited signals. Recently, the classical Shannon sampling framework has been extended to classes of non-bandlimited structured signals. In these new sampling schemes, the prior that the signal is sparse in a basis or in a parametric space is put to contribution and perfect reconstruction is possible based on a set of suitable measurements.

Depending on the set-up and reconstruction method involved, the above sampling problem goes under different names like compressed sensing, compressive sampling [1], [2] or sampling signals with finite rate of innovation (FRI) [3], [4].

The set-up considered here is the one in [3], [4], where the acquisition process is modeled as in Fig. 1. Here the smoothing function $\varphi(t)$ is called the sampling kernel and normally models the distortion due to the acquisition device. The sampling kernel used in [3] is the sinc function, while the work in [4] uses compactly supported functions like for example polynomial splines (B-splines) [5] or exponential splines (E-splines) [6]. In both works it is shown that perfect reconstruction of classes of FRI signals from the measurements y_n is achievable by using a variation of Prony's method

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement Nr. 277800 (RecoSamp). also known as annihilating filter method [7]. Signals that can be sampled with this method include streams of Diracs, piecewise polynomial and piecewise sinusoidal signals.

Fig. 1. Sampling setup. Here, x(t) is the continous-time signal, h(t) the impulse response of the acquisition device and T the sampling period. The measured samples are $y_n = \langle x(t), \varphi(t/T - n) \rangle$.

In this paper, we first review the basic set-up and the fundamental results presented in [3], [4], we then discuss the problem of reconstructing signals when the samples have been corrupted by noise. In this context we present a variation of the robust reconstruction algorithm presented in [8] and we take full advantage of the fact that the kernels considered here have compact support.

We finally discuss applications of this new sampling framework in compression, image super-resolution and neuroscience.

II. SAMPLING SIGNALS WITH FINITE RATE OF INNOVATION

For the sake of clarity we restrict our analysis to the case where the observed signal x(t) is a stream of K Diracs with amplitudes a_k located at distinct instants $t_k \in [0, \tau]$:

$$x(t) = \sum_{k=0}^{K-1} a_k \delta(t - t_k).$$
 (1)

Furthermore, we assume the sampling period is $T = \tau/N$. Consequently, the measurements are

$$y_n = \langle x(t), \varphi(t/T - n) \rangle$$
$$= \sum_{k=0}^{K-1} a_k \varphi(t_k/T - n), \quad n = 0, 1, \dots N - 1.$$

In [3], [4], [8], it was shown that with a proper choice of the acquisition kernel, it is possible to reconstruct x(t) from the samples y_n exactly. The kernels used in [3] are the sinc and

the Gaussian functions. In this paper, we concentrate on the compact support kernels used in [4]. This includes:

• Polynomial reproducing kernels: Any kernel that satisfies

$$\sum_{n \in \mathbb{Z}} c_{m,n} \varphi(t-n) = t^m \qquad m = 0, 1, ..., P \qquad (2)$$

for a proper choice of coefficients $c_{m,n}$.

• Exponential reproducing kernels: Any kernel that satisfies

$$\sum_{n \in \mathbb{Z}} c_{m,n} \varphi(t-n) = e^{\alpha_m t} \quad \text{with } \alpha_m = \alpha_0 + m\lambda \\ \text{and } m = 0, 1, \dots, P \quad (3)$$

for a proper choice of coefficients $c_{m,n}$.

The coefficients $c_{m,n}$ in (2) are given by

$$c_{m,n} = \frac{1}{T} \int_{-\infty}^{\infty} t^m \tilde{\varphi}(t/T - n) dt,$$

where $\tilde{\varphi}(t)$ is chosen to form with $\varphi(t)$ a quasi-biorthonormal set [9]. This includes the particular case where $\tilde{\varphi}(t)$ is the dual of $\varphi(t)$, that is, $\langle \tilde{\varphi}(t-n), \varphi(t-k) \rangle = \delta_{n,k}$. A similar expression applies to the coefficients $c_{m,n}$ in (3).

The first family of kernels includes any function satisfying the so-called Strang-Fix conditions [10]. Namely, $\varphi(t)$ satisfies Eq. (2) if and only if

$$\hat{\varphi}(0) \neq 0$$
 and $\hat{\varphi}^{(m)}(2n\pi) = 0$ for $n \neq 0$ and $m = 0, 1, ..., P$,

where $\hat{\varphi}(\omega)$ is the Fourier transform of $\varphi(t)$ and the superscript (m) stands for the m-th derivative of $\varphi(t)$.

One important example of functions satisfying Strang-Fix conditions is given by the family of B-splines [5]. A B-spline of order P is a function of compact support L = P + 1 and can reproduce polynomials up to degree P. It is obtained by the (P + 1)-fold convolution of the zero order B-spline and has the following Fourier transform

$$\hat{\beta}_P(\omega) = \left(\frac{1 - e^{j\omega}}{j\omega}\right)^{P+1}$$

The family of E-splines represents an extension of the polynomial splines and the Fourier transform of the P-th order E-spline is:

$$\hat{\beta}_{\vec{\alpha}}(\omega) = \prod_{m=0}^{P} \left(\frac{1 - e^{\alpha_m - j\omega}}{j\omega - \alpha_m} \right).$$
(4)

The above E-spline is able to reproduce the exponentials $e^{\alpha_m t}$, m = 0, 1, ..., P. Notice that the exponent α_m in Eq. (4) can be complex which indicates that E-splines are usually complex functions. However, this can be avoided by choosing complex conjugate exponents.

The reconstruction scheme of [4] operates as follows: First the samples are linearly combined with the coefficients $c_{m,n}$ of (2),(3) to obtain the new measurements

$$s_m = \sum_{n=0}^{N} c_{m,n} y_n \qquad m = 0, 1, ..., P.$$
 (5)

Then, if the original signal is a stream of Diracs as the one in (1), one can show that

$$s_m = \sum_{k=0}^{K-1} a_k u_k^m,$$

where $u_k = t_k/T$ when polynomial splines are used and $u_k = e^{\lambda t_k/T}$ when exponential splines are involved. In either cases, the pairs of unknowns $\{a_k, u_k\}$ can be retrieved from the power series $s_m = \sum_{k=0}^{K-1} a_k u_k^m$ using the classical Prony's method. The key ingredient of this method is the annihilating filter. Call h_m , m = 0, 1, ..., K the filter with z-transform

$$H(z) = \sum_{m=0}^{K} h_m z^{-m} = \prod_{k=0}^{K-1} (1 - u_k z^{-1}).$$

That is, the roots of H(z) correspond to the locations u_k . It clearly follows that

$$h_m * s_m = \sum_{i=0}^{K} h_i s_{m-i} = \sum_{k=0}^{K-1} a_k u_k^m \sum_{\substack{i=0\\H(u_k)}}^{K} h_i u_k^{-i} = 0.$$
(6)

The filter h_m is thus called annihilating filter since it annihilates the observed series s_m . Moreover, the zeros of this filter uniquely define the set of locations u_k since the locations are distinct. The identity in (6) can be written in matrix/vector form as follows:

$$SH = 0 \tag{7}$$

which reveals that the Toeplitz matrix S is rank deficient. By solving the above system, we retrieve the u_k 's and therefore the locations t_k . Given the locations, the weights a_k are then obtained by solving a system of linear equations. Notice that the problem can be solved only when $P \ge 2K - 1$.

We thus conclude that perfect reconstruction of a stream of Diracs is possible with any kernel able to reproduce exponentials or polynomials. The reconstruction procedure is the same, the only difference is in the choice of the coefficients $c_{n,m}$, which depends on the properties of the chosen kernel.

Other FRI signals that can be sampled and perfectly reconstructed using the same procedure include piecewise polynomial and piecewise sinusoidal signals [3], [4], [11], multidimensional signals [12], [13] and signals that have a sparse representation in a basis [14].

III. THE NOISY SCENARIO

The signal and acquisition models discussed before are ideal and perturbations to this model need to be considered. For simplicity we assume the perturbation is introduced after sampling and is modeled as additive noise. Consequently, the new measurements are

$$\hat{y}_n = \langle x(t), \varphi(t/T - n) \rangle + \epsilon_n, \quad n = 0, 1, ..., N - 1,$$

where ϵ_n is assumed to be i.i.d. additive Gaussian noise with zero mean and variance σ^2 .

In order to reduce the effect of noise, the reconstruction procedure discussed in the previous section need to be modified. The retrieval of the signal parameters in the FRI sampling framework is similar to a classical harmonic retrieval problem [7] and so standard techniques used in noisy harmonic retrieval can be used in this context. First of all because of noise Eq. (7) is not satisfied any more. We thus look for a solution that minimizes $||SH||^2$ under the constrain that $||H||^2 = 1$. This is a classical total-least-square (TLS) problem that can be solved using Singular Value Decomposition (SVD).

The algorithm may be further improved by denoising S before applying TLS. This is done by using the Cadzow iterative algorithm [15].

Cadzow algorithm is based on the fact that, in the absence of any perturbation, the matrix S is Toeplitz and rank deficient (i.e., it has rank K, where K represents the number of Diracs in the signal). When noise is present S becomes full rank. So in the first step of the Cadzow iteration an SVD of S is performed leading to $S = U\Lambda V$, where Λ is a diagonal matrix. Then only the first K diagonal elements of Λ are kept and S is reconstructed. The new matrix S is now by construction rank deficient but is not Toeplitz anymore. This condition is then imposed by averaging the diagonal elements of S. The procedure is then iterated.

Finally, we further improve resilience to noise by exploiting the fact that the sampling kernels considered are of compact support. This means that in absence of noise many of the samples y_n are exactly zero. When noise is present this is not the case, we therefore set to zero the small observed samples which are probably carrying only noise and no signal information. The important point here is that after thresholding, groups of consecutive non-zero samples are separated by zero samples. We use this fact as an indication that the Diracs have generated samples that do not interfere with each other and can therefore be treated independently. We thus run the reconstruction algorithm on each group of non-zero samples independently.

The overall algorithm can be summarized as follows:

- 1) Given the observed measurements \hat{y}_n , set to zero those whose amplitude is smaller than a predetermined threshold T_h (typically, $T_h = 3\sigma$).
- 2) For each group of consecutive non-zero samples, Do
 - a) Construct the rectangular matrix S.
 - b) Estimate K.
 - c) Apply Cadzow iterative algorithm to S.
 - d) Apply TLS method: Perform the singular value decomposition of S and choose the eigenvector $[h_0, h_1, ..., h_K]^T$ corresponding to the smallest eigenvalue.
 - e) Compute the roots of $H(z) = \sum_{k=0}^{K} h_k z^{-k}$ and retrieve the locations t_k , k = 0, ..., K 1.
- 3) End.

An example of the behavior of the algorithm is shown in Fig. 2. In this example we have K = 6 Diracs and we observe N = 128 samples. The noiseless and the noisy samples

are shown in Fig. 2(a), they are obtained using a real E-spline of order P = 13. In this example the SNR=5dB. The reconstructed Diracs are shown against the original signal in Fig. 2(b).

Fig. 2. Reconstruction of K = 6 Diracs from N = 128 noisy samples.

Notice that the sampling of FRI signals is equivalent to a parametric estimation problem. It is therefore possible to evaluate the performance of the algorithm by using the Cramer-Rao bounds (CRB). In [8], [16] such bounds were computed and it was shown that the proposed algorithm exhibit an almost optimal behavior since it can achieve the CRB up to noise levels of about 5dB.

IV. APPLICATIONS

The theory of sampling signals with finite rate of innovation has been successfully used in various applications. These include image super-resolution [17], compression of piecewise regular signals [18] and more recently in spike sorting for neuroscience [19].

The basic idea behind image super-resolution is to combine several blurred low-resolution images or video frames to produce a single detailed high resolution image. Superresolution techniques, therefore, allow to overcome the hardware limitation of the acquisition devices and to obtain images that would otherwise require much more expensive hardware. Mathematically, super-resolution is a challenging ill-posed inverse problem that involves two main steps: registration and restoration. The first step consists in aligning the different images as precisely as possible (up to sub-pixel level), while the second one tries to restore the best possible single image out of the aligned ones. In [17], an improved registration is achieved using FRI sampling theory. In Figure 3, we show numerical results presented in [17]. Sixty pictures of the Moon are taken with a digital SLR camera and a lens with a focal length at 38mm (35mm equivalent: 57mm) and settings: F16, 1/60s, ISO 200. The PSF in this case is not estimated and is directly approximated with a cubic B-spline. Figure 3(a) shows the Moon as acquired by the camera and Figure 3(b) presents the obtained super-resolved image.

Fig. 3. Real super-resolution of the Moon from 60 images acquired with a Nikon D70s SLR camera and a lens (18-70mm, F3.5-4.5) set at a focal length of 38mm (35mm equiv.: 57mm). (a) The Moon as acquired by the camera (60x60 px); (b) Super-resolved image of the Moon (600x600 px) with MRNSD restoration method.

The above registration method was further improved by Hirabayashi et al. in [20]

V. CONCLUSIONS

Recent developments in sampling theory have shown that some classes of sparse signals can be sampled below the Nyquist rate. In this paper, we have briefly reviewed the main aspects of the theory and discussed some possible applications. Numerical results have shown the potential impact of this new framework.

REFERENCES

- [1] D. Donoho, "Compressed sensing," *IEEE Trans. Information Theory*, vol. 52(4), pp. 1289–1306, April 2006.
- [2] E. Candès, J. Romberg, and T. Tao, "Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information," *IEEE Trans. Information Theory*, vol. 52(2), pp. 489–509, February 2006.
- [3] M. Vetterli, P. Marziliano, and T. Blu, "Sampling signals with finite rate of innovation," *IEEE Trans. Signal Processing*, vol. 50(6), pp. 1417– 1428, June 2002.
- [4] P. Dragotti, M. Vetterli, and T. Blu, "Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix," *IEEE Trans. on Signal Processing*, vol. 55(5), pp. 1741–1757, May 2007.
- [5] M. Unser, "Splines: a perfect fit for signal and image processing," *IEEE Signal Processing Magazine*, vol. 16(6), pp. 22–38, November 1999.
- [6] M. Unser and T. Blu, "Cardinal Exponential Splines: Part I-theory and filtering algorithms," *IEEE Trans. on Signal Processing*, vol. 53(4), pp. 1425–1438, April 2005.
- [7] P. Stoica and R. Moses, Introduction to Spectral Analysis. Englewood Cliffs, NJ, Prentice-Hall, 2000.
- [8] T. Blu, P. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, "Sparse sampling of signal innovations: Theory, algorithms and performance bounds," *IEEE Signal Processing Magazine*, vol. 25(2), pp. 31–40, March 2008.
- [9] T. Blu and M. Unser, "Approximation errors for quasiinterpolators and (multi-) wavelet expansions," *Applied and Computational Harmonic Analysis*, vol. 6 (2), pp. 219–251, March 1999.
- [10] G. Strang and G. Fix, "A Fourier analysis of the finite element variational method," in *Constructive Aspect of Functional Analysis*, Rome, Italy, 1971, pp. 796–830.
- [11] J. Berent, P. Dragotti, and T. Blu, "Sampling piecewise sinusoidal signals with finite rate of innovation methods," *IEEE Trans. on Signal Processing*, vol. 58(2), pp. 613–625, February 2010.
- [12] P. Shukla and P. Dragotti, "Sampling schemes for multidimensional signals with finite rate of innovation," *IEEE Trans. on Signal Processing*, vol. 55(7), pp. 3670–3686, July 2007.
- [13] I. Maravic and M. Vetterli, "Exact sampling results for some classes of parametric nonbandlimited 2-d signals," *IEEE Trans. on Signal Processing*, vol. 52(1), pp. 175–189, January 2004.
- [14] A. Hormati and M. Vetterli, "Annihilating Filter Based Decoding in the Compressed Sensing Framework," in *Wavelets XII*, 2007. [Online]. Available: www.spie.org
- [15] J. Cadzow, "Signal enhancement: A composite property mapping algorithm," *IEEE Trans. on Acoustic, Speech and Signal Processing*, vol. 36(1), pp. 149–62, January 1988.
- [16] P. Dragotti and F. Homann, "Sampling signals with finite rate of innovation in the presence of noise," in *Proc. of IEEE Int. Conf. on* acoustic, speech and signal processing (ICASSP), Taipei (Taiwan), April 2009.
- [17] L. Baboulaz and P. Dragotti, "Exact feature extraction using finite rate of innovation principles with an application to image super-resolution," *IEEE Trans. on Image Processing*, vol. 18(2), pp. 281–298, February 2009.
- [18] V. Chaisinthop and P. Dragotti, "Centralized and distributed semiparametric compression of piecewise smooth functions," *IEEE Trans.* on Signal Processing, vol. 59(7), pp. 3071–3085, July 2011.
- [19] J. Caballero, J. Uriguen, P. Dragotti, and S. Schultz, "Spike sorting at sub-nyquist rates," in *Proc. of IEEE Int. Conf. on acoustic, speech and* signal processing (ICASSP), Kyoto (Japan), March 2012.
- [20] A. Hirapayashi and P. Dragotti, "E-spline sampling for precise and robust line-edge extraction," in *Proc. of IEEE Int. Conf. on Image Processing* (*ICIP*), Kong Kong, October 2010.