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ABSTRACT

This paper presents a novel theoretical framework for the re-
verse engineering of signal acquisition chains. We investigate
how signals are transformed through a chain of signal acquisi-
tion and reconstruction stages. The signals, at different stages
in the chain, are modelled using the theory of sampling sig-
nals with Finite Rate of Innovation (FRI). The model allows
us to determine the chain structure and corresponding acqui-
sition history from unknown query signals and to retrieve im-
portant parameters relating to the acquisition chain.

Index Terms— Digital Forensics, Reverse Engineering,
Signal Acquisition, Acquisition Chain, Signals with FRI

1. INTRODUCTION

Nowadays digital signals can be captured and manipulated
many times during their lifetime. For example, a signal may
go through multiple A/D and D/A conversions, it might be
encoded and decoded several times or it may be edited. Con-
sequently, it becomes important to be able to recover the pro-
cessing history associated with a digital signal including the
properties of the device used to acquire the signal, the com-
pression algorithms involved and the post-processing tech-
niques used. Reverse-engineering a complex chain of op-
erators is relevant not only in forensics but in areas such as
quality assessment and signal enhancement.

Over the last few years, the digital forensic community
has been highly active in developing novel approaches to re-
covering the processing history of a digital signal. In one ex-
ample, Swaminathan et al. [1] introduce the concept of com-
ponent forensics based on footprints left from different com-
ponents of acquisition devices. The authors propose a method
to predict the components in an information processing chain
from query data using pattern classification theory. Foren-
sics, for a cascade of digital sampling operations, was first
investigated in [2]. The paper develops a resampling detec-
tion algorithm based on the correlation of periodic artefacts
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from resampling with those of neighboring pixels. It was fur-
ther studied in the spectral domain using artifacts from the
residue of a local linear predictor [3]. In [4], the roles of pre-
filtering and cyclostationarity of signals are studied in order
to improve the performance of the resampling detection al-
gorithm. The statistical properties of periodic artefacts left by
interpolation are examined in [5]. In previous work [6] the au-
thors investigate how edge profiles in images are transformed
by the image acquisition chain.

An understanding of when the processing footprint left
by an operator is completely removed by other operators or
when a processing chain becomes too complex to be com-
pletely retrieved is, generally, of interest. It is anticipated that
some operators may accidentally completely remove some
footprints related to previous processing. For example, low
rates of compression can remove many fine features from a
signal. It would, therefore, be nice to obtain an understanding
of the circumstances in which a chain can always be precisely
recovered and when two processing chains, overall, produce
the same artefacts and, therefore, become indistinguishable.

An attempt at addressing this question is presented in this
paper. We focus only on multiple A/D and D/A conversions
and, specifically, consider the case where the digital signal
is recaptured at most once. The A/D and D/A operators are
modelled using generalized sampling theory [7], [8] and the
theory of sampling FRI signals [9], [10] is used to provide
some precise answers. We model the original signal as a step
function because in 2-D this feature would correspond to a
straight edge (a feature that is abundant in natural images)
and we study the conditions under which we can detect re-
capture and identify the parameters of the original A/D and
D/A operators. The major contribution of our framework is a
complete end-to-end analytical method for reverse engineer-
ing of acquisition chains.

The paper is organized as follows: Section 2 presents
the problem model, priori conditions, and associated problem
statements. The background of the theory of sampling sig-
nals with FRI is provided in Section 3. In Section 4 we show
how to employ FRI sampling theory to provide sufficient con-
ditions for reacquisition detection and parameter retrieval of
acquisition chains. We also show with a counter example that
when such conditions are not satisfied two acquisition chains
produce the same output. Finally, we conclude in Section 6.
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Fig. 2. Problem statement diagram for signals with FRI in the chain of signal acquisition.

2. PRELIMINARIES AND PROBLEM SETUP

We use the generalized sampling theory to model the sam-
pling and reconstruction of a signal x(t). This process is
depicted in Figure 1 where the signal x(t) is filtered before
being uniformly sampled. This leads to the measurements
y[n] = 〈x(t), ϕ(t/T − n)〉, where the sampling kernel is the
time reversed and scaled version of the filter’s impulse re-
sponse h(t). Reconstruction is achieved using the linear filter
λ(t) which yields x̂(t) =

∑
n∈Z y[n]λ(t/T −n). We assume

that λ(t) is a polynomial spline or a MOMS function [11] of
order R, and therefore x̂(t) is a piecewise polynomial func-
tion of maximum order R. We also assume x̂(t) 6= x(t).
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Fig. 1. Classical signal acquisition and reconstruction model.

Next, we construct a study problem for the chain of acqui-
sition and reconstruction as shown in the diagram in Figure 2.
The chain contains sampling, reconstruction, and sampling
modules aligned serially as shown in the diagram. The pa-
rameters ϕ1(t), T1, ϕ2(t), and T2, represent the sampling ker-
nels and sampling periods of the first and second acquisition
devices, respectively. With this chain structure, the problem
conditions are set as follows:
1) The input signal is fixed as a box function f(t) = u(t −
t1) − u(t − t2), where t1 and t2 are the unknown locations
of the unit step functions and t1<t2. Initially, we consider
t2 →∞. Thus, the input f(t) can be approximated by a step
u(t− ts). The role of t2 will be discussed in Section 4.
2) The type of interpolation is polynomial, with maximum de-
gree R.
3) The second sampling kernel ϕ2(t) was introduced in [10]
and has the special properties that it can reproduce polynomi-
als or exponentials.

Given access to only a query digital signal q[n], the key

questions are:
a) What stages in the chain are the samples q[n] from? That
is, was q[n] obtained by acquiring f(t) directly with ϕ2(t) or
was q[n] the reacquired signal ĝ[n] in Figure 2?
b) In the case of reacquisition, how can we retrieve the follow-
ing important parameters: i) the maximum order R of poly-
nomial used for interpolation ii) the sampling period T1, and
iii) the sampling kernel ϕ1(t)?
c) Under what conditions of, ϕ2, T2, can we solve (b)?

3. THE THEORY OF SAMPLING SIGNALS WITH
FINITE RATE OF INNOVATION

A signal with FRI is defined as a signal which has a finite
number of degrees of freedom per unit of time. Given a finite
number of shifts tk and amplitudes αk,r, a signal with FRI
x(t) can be described by known functions {fr(t)}R−1r=0 as
follows:

x(t) =
∑
k∈Z

R−1∑
r=0

αk,rfr(t− tk). (1)

Examples of signals with FRI include a stream of Diracs,
a stream of differentiated Diracs and piecewise polynomial
functions. With reference to the classical sampling diagram
shown in Figure 1, we now consider a sampling scheme for
signals with FRI. Let the input signal x(t) be a train of K
Diracs which is described by K pairs of free parameters: the
locations tk and the amplitudes ak as follows:

x(t) =

K−1∑
k=0

akδ(t− tk). (2)

The input is then sampled with the sampling kernel ϕ(t) with
period T before discrete samples y[n] are obtained. In this pa-
per, we assume that the sampling kernel used is a function that
can reproduce polynomials as described in [10]. For polyno-
mial reproducing kernels there exists a set of coefficients cn,p
such that:∑

n∈Z
cn,pϕ(

t

T
− n) = tp ; p = 0, 1, 2, ..., P. (3)
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Next, the moments τp of order p of the signal can be com-
puted as follows:

τp =
∑
n

cn,py[n]
(a)
= 〈x(t),

∑
n

cn,pϕ(t/T − n)〉

(b)
= 〈

K−1∑
k=0

akδ(t− tk),
∑
n

cn,pϕ(t/T − n)〉

(c)
=

K−1∑
k=0

akt
p
k ; p = 0, 1, 2, ..., P, (4)

where (a) follows from the linearity of the inner product while
(b) and (c) are from equations (2) and (3) respectively. Once
the moments τp; p = 0, 1, ..., P and P ≥ 2K have been
computed, the following Toeplitz matrix is constructed:

S =


τK τK−1 · · · τ0
τK+1 τK · · · τ1

...
...

. . .
...

τP τP−1 · · · τP−K

 . (5)

Note that, one can show [10] that S always has rank K (num-
ber of Diracs in x(t)) and that x(t) is determined from the
knowledge of the null space of S. Next, consider an input
signal which is a piecewise polynomial signal with K pieces
of maximum degree R > 0, that is:

x(t) =

K∑
k=1

R∑
r=0

ak,r(t− tk)r. (6)

Clearly the (R + 1) order derivative x(R+1)(t) = d(R+1)x(t)
dt(R+1)

is given by a train of differentiated Diracs at the locations tk
as follows:

x(R+1)(t) =

K−1∑
k=0

R∑
r=0

r!ak,rδ
(R−r)(t− tk). (7)

We observe that x(R+1)(t) is an FRI signal. We also note that
the finite difference z(1)[n] satisfies [10]:

z(1)[n] = y[n+ 1]− y[n]
= 〈x(t), ϕ(t/T − n− 1)− ϕ(t/T − n)〉

= 〈dx(t)
dt

, ϕ(t/T − n) ∗ β0(t/T − n)〉, (8)

where β0 is the box function. Therefore, the moments
of the derivative of x(t) are given by τp =

∑
n c

(1)
n,pz(1)[n],

where c(1)n,p are the polynomial reproduction coefficients of (3)
for the new kernel ϕ(t) ∗ β0(t). The moments of the R + 1
derivative of x(t) can be obtained similarly. Finally, it is again
possible to show that the Toeplitz matrix S of the moments of
x(R+1)(t) has rank proportional to the degrees of freedom of
x(R+1)(t) .

4. REACQUISITION DETECTION AND THE
RETRIEVAL OF CHAIN PARAMETERS

We are given a query digital signal q[n] and we want to deter-
mine whether this is the result of acquiring the unit step func-
tion, f(t) = u(t− ts), with ϕ2(t) or whether this is the result
of reacquisition. An illustrative example of the two possible
shapes of q[n] is shown in Figure 3. In Figure 3(c) we show
the case of a single acquisition of f(t) shown in Figure 3(a),
whereas Figure 3(d) shows a reacquired signal obtained af-
ter linear interpolation of (c) to yield 3(b) and sampling of
3(b) with ϕ2(t). We note that g[n] and ĝ[n] are hardly distin-
guishable yet they still contain all the information necessary
to reverse engineer the acquisition chain as is shown next.
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Fig. 3. Comparative plots of continuous input signals (a) step
input f(t) (b) reconstructed signal f̂(t) with corresponding
discrete samples (c) g[n] and (d) ĝ[n] and reconstructed loca-
tions using FRI sampling theory (e) and (f) respectively.

The input signal f(t) is a unit step function which is described
by only one free parameter – the location of step ts. When the
input signal f(t) is acquired, the observed samples g[n] are
distorted by the sampling kernel. All possible g[n], however,
are still determined by one free parameter. In contrast, f̂(t)
is obtained by polynomial interpolation and is a polynomial
function with discontinuities at multiple locations of period
T1. The signal is a special case of FRI signals in (6).

We thereby use this principle to create an algorithm for
reacquisition detection. We first aim to detect whether a query
q[n] was acquired singly or was reacquired. Since a step func-
tion is a piecewise polynomial of maximum degree R = 0,
the moments are computed using a first order finite difference
of the query as τp =

∑
n cn,pq

(1)[n]. The moments are then
used to construct the Toeplitz matrix S. The matrix S of size
2x2 is sufficient for reacquisition detection since the matrix is
always rank-deficient with rank = 1 if q[n] was acquired from
a step input. If, on the other hand, S is full rank, it means q[n]
was obtained by reacquisition.
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When a query signal is detected as having been reacquired,
the question arises of how important image chain parame-
ters such as the sampling period T1, the interpolation function
λ(t), and the first sampling kernel ϕ1 can be retrieved.

Firstly, the maximum order R of the polynomial interpo-
lation function λ(t) can be retrieved from the properties of
FRI reconstructed signals. According to Section 3, piece-
wise polynomial functions of maximum order R are fully
suppressed by differentiation by order R + 1. If we mea-
sure the number of degrees of freedom using Toeplitz matrix
S, the matrix will be full rank until a finite difference of order
r ≥ R+1 is applied to query samples q[n]. When r = R+1,
the matrix will be rank deficient with rank, K, equal to the
number of K pieces of a piecewise polynomial function. Fig-
ure 4 summarizes the retrieval algorithm, using iterative finite
difference and rank measurement, for order R until S is rank
deficient.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

,    

Moment Computation 

Rank Computation 
or SVD 

Rank 
Deficient ?

K = 1? 

Yes 

No 

Single 
Capture

Multiple 
Capture

Higher Order of 
Finite Difference 

Count number 
of loops: r 

Yes

No

Maximum Order of 
Polynomials: R 

 
Query Edge 

Rank Computation 
Using SVD 

Rank   
Deficient ?

Higher Order of 
Finite Difference

Count number      
of loops: r 

Yes

No

Maximum Order of 
Polynomials: R=r-1 

 Query Edge 

Moment Computation 

  ∑ ,     

K=Rank

Fig. 4. Iterative algorithm for the retrieval of maximum order
R of polynomials used in interpolation function λ(t).

Next, the locations of all the discontinuities tk and the
continuous function f̂(t) can be retrieved using the annihi-
lating filter method as discussed in [10]. Each tk represents
the location of samples g[n] used in the interpolation. From
the retrieval results in Figure 3(f), the distances between the
differentiated Diracs f̂ (2)(t) are uniform and the sampling pe-
riod T1 can be estimated from the average of the distances.

The retrieved f̂(t) and T1 then can be used to estimate
the samples g[n] through the reverse sampling. Finally, the
retrieval of ϕ1 can be further achieved using the best match
between the samples and all possible dictionary elements as
proposed in [6]. We omit this proof due to lack of space.
Instead we focus on providing the sufficient conditions on ϕ2

and T2 that allow us to retrieve the chain.
Firstly, the maximum degree P of polynomial which the

second kernel ϕ2 can reproduce must be sufficiently large.
From [10], the kernel must be able to reproduce polynomials
of maximum degree P > 2(R + 1)K − R − 2 in order to
achieve perfect reconstruction of a piecewise polynomial of
maximum degree R with K discontinuities. In our case, the
unit step input signal is sampled with uniform sampling pe-
riod T1 and the samples are then interpolated to the continu-
ous domain again. The number of discontinuities can be com-
puted asK 6 L1

T1
+1, where L1 is the support of the first sam-

pling kernel ϕ1. Therefore, the order P which provides the
precisely retrieved results is given by P > 2(R+ 1)L1

T1
+R.

Secondly, we consider the role of t2 which is now a con-
stant with t2 > t1. The input, a rectangular pulse f(t) = u(t -
t2) - u(t - t1), is then acquired and reproduced by the chain.
Since signal reconstruction creates a new group of K piece-
wise polynomials from samples of a unit step input, one needs
to ensure that the two groups of piecewise polynomials are
sufficiently distant in order to avoid overlap. The minimum
interval required is greater than 2KT1. From[10], a piecewise
polynomial function with two groups of K pieces of maxi-
mum degreeR can influence an interval of size 2K(L2+R+
1)T2. One therefore can calculate the bound T1 > (L2+R+
1)T2, which imposes a constraint on the maximum sampling
period T2. Here L2 is the support of ϕ2(t).

When sampling signals with these requirements, a one-
to-one mapping between discrete samples and chain struc-
tures is guaranteed. We conclude by providing a counter ex-
ample to show that signals obtained from different acquisi-
tion chains cannot be distinguished when the sufficient con-
ditions are violated. Let qa[n] and qb[n] be query discrete
samples acquired from different chain structures. The signal
qa[n] is obtained from a single acquisition of the step input
fa(t) = u(t− (T2 +

T2

2 )) using a box spline kernel [12] and
T1 = T2 or ϕ1a(t) = β0(

t
T2
). The signal, qb[n], is from a

reacquisition. Given fb(t) = u(t − (T2 +
T2

4 )) is the initial
input, the signal is sampled using ϕ1b(t) = β0(

2t
T2
) before

the samples are linearly interpolated to f̂b(t). From Figure 5,
one can compute q[n] = 〈f(t), ϕ2(t/T2 − n)〉 and we have
qa[n] = qb[n] = [0 1

2 1 1
2 0]. The signals from different chains

become indistinguishable because the kernels used can repro-
duce polynomials to degree P = 0 which violates the condi-
tion. Thus, a one-to-one mapping is not guaranteed and the
proposed algorithm cannot retrieve a unique chain solution.
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Fig. 5. Counter examples when sampling fa(t) and f̂b(t) with
a sampling kernel ϕ(t) = β0(

t
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)

5. CONCLUSIONS
In this paper we have presented a theoretical scheme for the
retrieval of a signal acquisition chain. With the theory of sam-
pling signals with FRI, we are able to classify discrete sam-
ples from different stages in the chain model and to create
a reacquisition detection algorithm. In addition, the method
allows us to develop a retrieval algorithm for important pa-
rameters in the reacquisition chain. Lastly, a discussion on
the conditions needed for the retrieval of the acquisition pa-
rameters was presented.
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