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ABSTRACT

We propose a deep dictionary model for single image super-
resolution (SISR) made of multiple layers of analysis dicti-
onaries interlaced with corresponding soft-thresholding ope-
rations and a single synthesis dictionary. In this paper, we
introduce a novel method for learning analysis dictionary
and thresholding pairs as building block for the deep dicti-
onary model. Each analysis dictionary contains two sub-
dictionaries: an information preserving analysis dictionary
(IPAD) and a clustering analysis dictionary (CAD). The
IPAD and thresholding pair passes the key information from
the previous layer, while the CAD and thresholding pair gi-
ves a sparse representation of its input data that facilitates
discrimination of key features. Simulation results show that
the proposed deep dictionary model achieves comparable
performance with a deep neural network which has the same
structure and is optimized using backpropagation.

Index Terms— Sparse representation, dictionary lear-
ning, sparse dictionary, deep learning

1. INTRODUCTION

Deep Neural Networks (DNNs) are computational models
which are composed of multiple layers of linear trans-
forms and point-wise non-linearities. Backpropagation algo-
rithm [1] is usually applied to optimize this highly non-linear
and non-convex system. With the help of massive labeled
training data and powerful graphics processing units (GPU),
DNNs have achieved outstanding performance in many sig-
nal processing and computer vision tasks. However, a clear
understanding of the functioning of the linear transforms and
the non-linearites is still lacking.

Contrary to DNNs, the sparse representation theory [2]
is much more established. Therefore building a deep model
using sparse representation and redundant dictionaries could
be a way to facilitate the interpretation of DNNs. The sparse
representation model [3] can be divided into synthesis model
and analysis model. In the synthesis model [2], an input signal
is represented as a sparse combination of column vectors of a
redundant synthesis dictionary. In the analysis model [3, 4] ,
a redundant analysis dictionary Ω is a tall matrix where each
row is an atom of the dictionary. The analysis model aims to

sparsify the analysis representation α = Ωx.
A Multi-Layer Convolutional Sparse Coding (ML-CSC)

model is proposed in [5, 6] and gives a new interpretation
about the workings of the Convolutional Neural Networks
(CNNs). The linear models in CNNs are interpreted as
synthesis dictionaries with convolutional structure and the
function of the non-linearities is interpreted as a simplified
sparse pursuit procedure. Tariyal et al. [7] proposed a greedy
layer-wise deep dictionary learning method which performs
synthesis dictionary learning layer-by-layer. A parametric ap-
proach is proposed in [8] to learn a deep dictionary for image
classification tasks. The proposed dictionary learning met-
hod contains a forward pass which performs sparse coding
with the given synthesis dictionaries and a backward pass
which updates the dictionaries by gradient descent. Instead
of using synthesis dictionary as building block, Huang and
Dragotti [9] proposed a deep dictionary model (DDM) for
the image super-resolution task which is composed of mul-
tiple layers of analysis dictionaries with associated soft-
thresholding operators and a synthesis dictionary. During
testing, the estimated high-resolution patch is obtained by
multiplying a synthesis dictionary with a feature representa-
tion of the input low-resolution patch which is obtained using
the multi-layer analysis dictionary. The forward model of
DDM is similar to that of DNNs.

In this paper, we follow the same architecture as [9] but
propose a novel method to learn the analysis dictionary and
soft-thresholding pairs. Each analysis dictionary consists
of two sub-dictionaries: an information preserving analysis
dictionary (IPAD) and a clustering analysis dictionary (CAD).
The IPAD together with the thresholding step preserves the
key information from its previous layer, while the CAD with
thresholding generates a disentangled representation. With
multiple layers of analysis dictionary and thresholding, the
input signal is non-linearly transformed into a sparse vector
which is both informative and discriminative. Finally, the
regression task is achieved by multiplying this sparse vector
with a synthesis dictionary. Single image super-resolution
(SISR) [10–16] will be used as a sample application to vali-
date the proposed method.

The rest of the paper is organized as follows: Section 2 in-
troduces our proposed method. Section 3 presents simulation
results and Section 4 draws conclusions.



Fig. 1: The layer i of the proposed deep dictionary archi-
tecture which consists of an analysis dictionary followed by
soft-thresholding. The analysis dictionary Ωi consists of an
information preserving dictionary ΩIP i and a clustering dicti-
onary ΩCi. The soft-thresholds corresponding to ΩCi are
much higher than those used for ΩIP i.

2. PROPOSED METHOD
Good signal representations should be both informative and
discriminative. In deep dictionary model, an input signal goes
through multiple layers of linear transformations and point-
wise non-linearities. The signal representation αi at layer i
should also be informative and discriminative with respect to
its input signal αi−1. That is, αi should contain sufficient
information of αi−1, and the signal space of αi should be
more disentangled when compared to that of αi−1.

In this paper, we achieve that by learning a novel analy-
sis dictionary and soft-thresholding pair (Ω,λ). Here Ω is
composed of an Information Preserving Analysis Dictionary
(IPAD) and a Clustering Analysis Dictionary (CAD) which
are followed by a different set of thresholds λIP and λC re-
spectively leading to the two pairs of operators (ΩIP ,λIP )
and (ΩC ,λC). The IPAD with its corresponding set of thres-
holds is responsible for passing the key information from its
previous layer, while the CAD and thresholding pair facilita-
tes the separation of key feature in the signal. We learn ΩIP

and λIP using [9, 17], whereas we propose a new approach
to learn ΩC and λC . Given the CAD is used to discriminate
features, the learned thresholds tend to be much higher than
λIP . Figure 1 illustrates the analysis dictionary and the thres-
holding operation at layer i.

2.1. Background
Our L-layer deep dictionary model [9] is composed of L −
1 redundant analysis dictionaries

{
Ωi ∈ Rdi×di−1

}L−1
i=1

with

the corresponding soft-threshold
{
λi ∈ Rdi

}L−1
i=1

and a re-
dundant synthesis dictionaryD ∈ RdL×dL−1 . The row atoms
of the analysis dictionary are assumed to be of unit norm. The
forward model of the deep dictionary model can be expressed
as:

y =DSλL−1

(
ΩL−1SλL−2

(· · ·Ω2Sλ1 (Ω1x) · · · )
)
, (1)

where x is the input LR patch in vectorized form, y is the

estimated HR patch vector, and Sλ (·) is the soft-thresholding
operator.

Let us denote with X 0 ∈ Rd0×N and Y ∈ RdL×N the
matrices which contain the training LR patches and the cor-
responding HR patches, respectively. The ith column of X 0

and Y is a pair of training LR and HR patch vector (xi,yi).
At layer i, the thresholded training data is denoted as X i =
Sλi

(ΩiX i−1) for 1 ≤ i < L.

2.2. IPAD Learning
In deep dictionary model [9], the analysis dictionary learning
algorithm is an extension of the geometric analysis operator
learning method [17]. The obtained analysis dictionary is able
to sparsify the input data and has unit norm row atoms. For
a detailed description of learning objective function and the
optimization method we refer to [9, 17].

The ith layer Information Preserving Analysis Dictionary
(IPAD) ΩIP,i is obtained by applying the dictionary learning
method in [9] with the training data X i−1. With the learned
analysis dictionary, the distribution of inner product between
a row atom and the input data can be well characterized by an
i.i.d. zero-mean Laplacian distribution. The threshold in the
soft-thresholding operator is set to be proportional to the in-
verse of the standard deviation σ of the Laplacian distribution.
The soft-threshold for ΩIP,i is then defined as:

λIP,i = ρ

[
1

σ1
,
1

σ2
, · · · , 1

σm

]T
,

where the standard deviation σi of the ith coefficient can be
estimated using the obtained IPAD ΩIP,i and its input data.

There is only one free parameter ρ to be determined. It
can be obtained by solving a 1-dimensional search problem.
The optimization task for ρ is therefore formulated as:

ρ̂ = argmin
ρ
‖Y −GSρλ (ΩIP,iX i−1)‖2F , (2)

where λ = [1/σ1, 1/σ2, · · · , 1/σm]
T , G = Y ZT (ZZT )−1

with Z = Sρλ(ΩIP,iX i−1), and ρ belongs to a discrete set
of values.

The obtained IPAD and its threshold pair (ΩIP,i,λIP,i)
should be able to preserve the important information within
the input signal and give no worse performance when com-
pared to a linear model without any non-linearity. The soft-
thresholding applied to the IPAD can be interpreted as a “de-
noising” operation.

2.3. CAD Learning
In this paper, we propose to couple IPAD with a Clustering
Analysis Dictionary (CAD) ΩC and its associated vector λC
of soft-thresholds. The expectation is that (ΩC ,λC) can par-
tition the input parameter space into pieces where the pre-
diction can be easily performed.

A Gaussian Mixture Model (GMM) [18] will be learned
using the input training data of the current layer. Within the
learned GMM, the data belonging to some Gaussian mo-
dels are with very low prediction error. Let us denote these



Gaussian models as low error Gaussian models (LEGM).
Similarly, we denote the other Gaussian models as high error
Gaussian models (HEGM). Each model will lead to one atom
and ΩC contains K atoms in total. The CAD and threshold
pair (ΩC ,λC) will be used to differentiate the data belonging
to the HEGM from that belonging to the LEGMs. They assign
non-zero coefficients to those in HEGM and zero coefficients
to those of LEGMs. The intuition is that HEGM might be
better at discovering latent features and so only patches that
contain these features will have a large inner product with the
atom related to the appropriate HEGM and will be preserved.

With the training data pair (X i,Y), a linear model can be
fitted using least squares R = YX T

i (X iX T
i )
−1. The pre-

diction error of a training data pair
(
xj ,yj

)
is defined as

ej =
∥∥yj −Rxj∥∥22 .

GMM models the data as a mixture of Gaussians. Each
model is a multivariate GaussianN (·|µk,Σk) with mean µk
and covariance matrix Σk and is characterized by a model
weight πk:

p (xi|θ) =
K∑
k=1

πkN (xi|µk,Σk) , (3)

whereK is the number of Gaussian models in GMM, and θ =
{θk}Kk=1 with θk = {πk,µk,Σk} is the model parameters of
the GMM with πk ∈ R+ and

∑K
k=1 πk = 1.

We assume that all Gaussian models are with zero mean,
i.e. µk = 0. The reason is that the data distribution of the
image patches is centered at the origin since we remove the
mean from each patch. Imposing zero mean forces the le-
arned Gaussian models to capture the symmetric distribution.
The GMM is learned using the online Expectation Maximiza-
tion (EM) algorithm which is able to access a larger number
of training data and generalizes better when compared to the
standard EM algorithm. At iteration t, a random batch of M
data pairs is drawn from the training data matrix X i and is
used to update the model parameters of GMM.

In the E-step, given the GMM parameter θ(t−1) of the
previous iteration, the membership probability rik can be up-
dated as:

rik =
π
(t−1)
k N (xi|0,Σ(t−1)

k )∑
j π

(t−1)
j N (xi|0,Σ(t−1)

j )
. (4)

In the M-Step, the mixture weights and the covariance
matrices are updated as a linear combination of the previous
model parameter and the current iteration estimation:

π
(t)
k = (1− η)π(t−1)

k + η 1
M

∑
i

rik,

Σ
(t)
k = (1− η)Σ(t−1)

k + η
∑

i rikxix
T
i∑

i
rik

,
(5)

where η ∈ (0, 1] is the step size for the online EM algorithm,
and M is the batch data size.

Let us denote with
(
X (k),Y(k)

)
the data pairs which be-

long to Gaussian model θk and Ek the average prediction

Fig. 2: The histogram of
∣∣ωTx∣∣ for the data from LEGMs

(blue) and from a HEGM (orange).

error for
(
X (k),Y(k)

)
. Based on the definition, a LEGM

is with a small Ek, while a HEGM is with a large Ek. A
threshold τ is set to differentiate the data belonging to HEGM
from those from LEGMs based on the average prediction er-
ror. Each HEGM (with Ek > τ ) will lead to a single dicti-
onary atom and a threshold. When the number of HEGM is
smaller than K, a new Gaussian model will be added into the
current GMM such that K pairs of clustering atom and thres-
hold can be obtained. The online EM algorithm stops when
the model parameters converge.

For the ith HEGM θk, a pair of clustering atom ωTC,i
and threshold λC,i will be learned and used to distinguish
X (k) from the data from all LEGMs denoted as X (s) with
s = {k|Ek ≤ τ}. Since the soft-thresholding operator is used
for separation, we formulate the clustering atom learning pro-
blem as follows:

ωT = argmax
ωT

∑
xi∈X (k)

|rikωTxi|
Rk

−
∑

xi∈X (s)

|rjsωTxj |
Rs

,

s.t. ωTω = 1, (6)

where rjs =
∑
k∈s rjk, Rk =

∑
i rik, Rs =

∑
j rjs and rik

are the membership probabilities.
The constrained form of Eqn. (6) can be transformed into

an unconstrained one by using Lagrangian multiplier. Alt-
hough Eqn. (6) does not have a closed-form solution, it can
be solved in an iterative manner by using a re-weighted for-
mulation. At each iteration, an updated atom ωT is obtained
by solving:

ωT = argmax
ωT

ωT
(
Σ̂k −Σs

)
ω − ζ

(
ωTω − 1

)
, (7)

where Σ̂k =
∑

xi∈X (k)

rikxix
T
i

Rk|ωT
0 xi| , Σs =

∑
xj∈X (s)

rjsxjx
T
j

Rs|ωT
0 xj| with

ωT0 being the previous iteration estimated ωT , and ζ is the
Lagrange multiplier.

The solution of Eqn. (7) is the eigenvector which corre-
sponds to the largest eigenvalue of

(
Σ̂k −Σs

)
. The algo-

rithm will converge in a few iterations. Figure 2 shows an
example of the histogram of

∣∣ωTx∣∣ using a learned cluste-
ring atom for data from LEGMs (blue) and from a HEGM
(orange).



(a) Ω1 (b) Ω2 (c) Ω2Ω1

Fig. 3: Learned analysis dictionaries. Each atom is displayed
as a 2D patch. The atoms within red box are clustering atoms.

A threshold value λC,i will be learned and used to set a
non-zero coefficient for a data that is from a HEGM and set
zeros for other data. We formulate the threshold learning pro-
blem as follows:

λ = argmax
λ

|Sk,λ|
|Ss,λ|+ ε

, (8)

where St,λ =
{
xj ∈ X (k) :

∣∣ωTC,ixj∣∣ > λ
}

with t = k or s,
|S| denotes the cardinally of a set S and ε is a small number.

A clustering analysis dictionary contains all the lear-
ned clustering atoms, i.e. ΩC = [ωC,1, · · · ,ωC,K ]

T .
Similarly, the clustering threshold is denoted as λC =
[λC,1, · · · , λC,K ]

T . After (ΩC ,λC) pair has been lear-
ned, the threshold values will be fine-tuned to minimize the
prediction error. The threshold updating is performed in an
iterative manner by fixing all the other threshold values and
optimizing one. A threshold value λC,i is updated to the
direction that can further minimize the prediction error. The
threshold updating procedure stops when the prediction error
can not be further reduced.

3. SIMULATION RESULTS
In this section, we report the simulation results of our pro-
posed method and the comparison methods. The standard 91
training images [10] are applied for training and Set 14 [11]
is used for evaluation. The up-scaling factor is set to 2. The
LR and HR patch size is 3 × 3 and 6 × 6, respectively. The
input LR feature is the raw pixel values with removed mean.

The deep dictionary model is set to have L = 4 layers.
The dictionary size for Ω1, ..., Ω3 and D is set to 16 × 9,
36×16, 144×36, and 36×144, respectively. The online EM
algorithm uses step size η = 0.1, and batch size M = 105.
The threshold τ is set to be the average prediction error of
all training data. The number of clustering atoms within the
analysis dictionary from layer 1 to 3 is set to be 8, 20, and 108,
respectively. Figure 3 shows the learned analysis dictionaries
Ω1 and Ω2, and the effective dictionary Ω2Ω1. In Ω1, some
atoms are directional and the others are localized. The atoms
in Ω2 are relatively sparse. There are novel patterns emerging
in the effective dictionary Ω2Ω1.

For comparison, DNNs with the same structure are lear-
ned using the same training data. The number of neurons

Image Bicubic DNN-R DNN-S DDM
baboon 24.86 25.46 25.48 25.42
barbara 27.88 28.41 28.41 28.43
bridge 26.62 27.37 27.45 27.40

costguard 29.26 30.17 30.21 30.17
comic 24.63 27.28 27.45 27.19
face 34.73 35.33 35.42 35.37

flowers 30.20 31.72 31.97 31.73
foreman 35.21 37.36 38.11 37.56

lenna 34.57 35.87 36.04 35.86
man 29.16 30.16 30.29 30.15

monarch 32.77 35.12 35.67 35.25
pepper 34.98 36.23 36.50 36.28
ppt3 24.66 28.31 28.47 28.12
zebra 28.03 32.61 32.84 32.59

Average 29.83 31.53 31.74 31.54

Table 1: PSNR (dB) by different methods evaluated on Set
14 [11].

in DNNs from layer 1 to 4 is 16, 36, 144, and 36, respecti-
vely. Let us denote DNN-R and DNN-S as the DNN with
ReLU non-linearity and soft-thresholding non-linearity, re-
spectively. The forward model of DNN-S is the same as our
DDM method. The implementation is based on Pytorch with
Adam optimizer, batch size 256, initial learning rate 0.01, le-
arning rate decay step 100, and decay rate 0.1. The total num-
ber of epoch for training is 500.

Table 1 reports the PSNR (dB) of Bicubic interpolation
method, DNN-R method, DNN-S method and the proposed
DDM method evaluated on Set 14 [11]. Our proposed DDM
method achieves the similar average PSNR when compared
to the DNN-R method. This validates the effectiveness of our
proposed deep dictionary model and shows that the simulta-
neous information preserving and clustering idea could be a
good interpretation of the workings of DNNs. The DNN-S
method achieves the highest average PSNR which is around
0.2 dB higher than that of the DDN-R method and our pro-
posed DDM method. This suggests that DNNs with soft-
thresholding as non-linearity is more effective for image en-
hancement applications. The result also indicates that our
DDM method can be further improved. In particular, an op-
timization strategy needs to be devised to determine the ratio
between the number of information preserving atoms and the
number of clustering atoms.

4. CONCLUSIONS
In this paper, we proposed a novel method to learn a pair
of analysis dictionary and soft-threshold which is used to
construct the deep dictionary model for single image super-
resolution. Each analysis dictionary contains two sub-
dictionaries: an information preserving analysis dictionary
and a clustering dictionary. The learned analysis dictiona-
ries and together with the corresponding soft-thresholds can
simultaneously preserve important information from the pre-
vious layer as well as facilitate discrimination of key features.
Simulation results show that our proposed deep dictionary
model achieves comparable performance with DNNs.
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