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ABSTRACT

We propose a line-edge extraction algorithm using E-spline
functions as a sampling kernel. Our method is capable of
extracting line-edge parameters, including amplitude, orien-
tation, and offset, not only at sub-pixel level but also exactly
provided noiseless pixel values. Even in noisy scenario, sim-
ulation results show that the proposed method outperforms
a similar one based around B-spline functions with gains in
standard deviation of 1.86dB for the orientation and 9.64dB
for the offset when SNR is 10dB. We also show by simula-
tions that our method performs more precise than the Hough
transform with faster computations.

Index Terms— Edge detection, edge extraction, E-spline
functions, finite rate of innovation singals

1. INTRODUCTION

Line edge extraction is one of the most fundamental tasks in
image processing and is used in many applications like object
segmentation, registration, and super-resolution. The stan-
dard technique is that, first a method like Canny edge detector
is applied at the pixel level [1, 2], and then line edges may be
extracted by, for example, the Hough transform. This method
is, however, neither precise nor computationally efficient.

To overcome this problem, Baboulaz et al. proposed a
method which can exactly extract line-edges using B-spline
functions as a sampling kernel, and they applied the extracted
results to super-resolution [3]. Mathematical techniques used
there are based on the sampling theory for signals with fi-
nite rate of innovations [4]. Since the method uses B-spline
functions, however, it may suffer the following problem: B-
spline is able to reproduce polynomials, and coefficients in
the reproduction formulas grow in approximately polynomial
orders. Since the coefficients play an important role in the
method, the growth makes the method sensitive to noise.

Hence, in this paper, we propose a line-edge extraction
algorithm based around E-spline functions [5]. An E-spline
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of order P can reproduce exponential functions eαpt, p =
0, . . . , P , by linear combinations of its shifted versions. Gen-
erally, coefficients used in the linear combinations grow in
exponential orders. If the numbers αp are purely imaginary,
however, then their absolute values are constant, which is de-
sirable for noise robustness. Such E-splines are especially
called trigonometric E-spline functions. By using this func-
tion as sampling kernel, we propose a method which can ex-
tract line-edge parameters precisely and stably even in the
presence of noise.

This paper is organized as follows. Section 2 provides
mathematical preliminaries about the E-spline functions. Sec-
tion 3 proposes the line-edge extraction method. We first
describe a continuous line-edge image using amplitude, ori-
entation, and offset parameters. This implies that the image
is a signal with a finite rate of innovation. Then, the con-
tinuous image is sampled by E-spline functions. We derive
formulas to obtain the three parameters from these samples.
Further, by combining with Canny edge detector, we propose
a line-edge extraction algorithm which uses only local area
of an input image. Section 4 shows noise robustness of the
proposed method compared to the counterpart which uses B-
spline sampling. Section 5 concludes the paper.

2. E-SPLINE FUNCTIONS

Let α⃗ = (α0, α1, . . . , αP ) be a (P +1)-dimensional complex
vector, and βαp(t) be a function defined by

βαp(t) =
{

eαpt (−0.5 ≤ t < 0.5),
0 (t < −0.5, t ≥ 0.5). (1)

Then, an E-spline function βα⃗(t) of order P is defined by the
convolution of the P + 1 functions βαp(t) as

βα⃗(t) = (βα0 ∗ βα1 ∗ . . . ∗ βαP )(t). (2)

Note that here we have used a centered one for the sake of
image processing applications. If causality is necessary, one-
sided E-spline should be considered [5].
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Fig. 1. Description parameters for a step line-edge. The xy
coordinates are local ones whose origin is the center of the
pixel detected as an edge. The grid shows sampled pixels.

The crucial characteristic of βα⃗(t) is the ability to repro-
duce exponential functions by its integer-shifted versions as

∞∑
n=−∞

c(p)
n βα⃗(x − n) = eαpt. (3)

The coefficients c
(p)
n are easily computed by

c(p)
n = enαp/


P ′∑

k=−P ′

ekαpβα⃗(k)

 , (4)

where P ′ is the maximum integer not exceeding (P + 1)/2.
Eq. (4) implies that c

(p)
n increases in an exponential order in

general.
To overcome this problem one can choose the exponents

αp to be purely imaginary and equally spaced around the ori-
gin: α⃗ = (. . . ,−2iω0,−iω0, iω0, 2ω0, . . .). This leads to
the trigonometric E-spline. In this case, Eq. (4) implies that
the absolute value of c

(p)
n is |c(p)

0 | irrespective of n. This is
a desirable characteristic of the trigonometric E-spline from
the viewpoints of stable computation and noise robustness.
For example, the first order trigonometric E-spline with α⃗ =
(iω0,−iω0) is given by

βα⃗(t) =

 sinω0(t + 1)/ω0 (−1 ≤ t < 0),
− sinω0(t − 1)/ω0 (0 ≤ t < 1),

0 (t ≤ −1, t > 1).

As we can see from this example, trigonometric E-spline is a
real valued function, whilst c

(p)
n is a complex number.

3. LINE EDGE EXTRACTION

By using amplitude λ, orientation θ, and offset γ, which are
defined as in Fig. 1, a step line-edge can be expressed as

f(x, y) = λH(−x sin θ + y cos θ + γ sin θ), (5)

where H(t) is the unit step function whose value is 1 if t ≥ 0
and 0 if t < 0. This continuous image is sampled by the
integer-shifted version of ψ(x)ψ(y) as

g[m,n] = 〈f(x, y), ψ(x − m)ψ(y − n)〉,

where ψ(x) is a trigonometric E-spline function βα⃗(t) with
P ≥ 1. Our task is to retrieve the three parameters λ, θ, and
γ from the set of samples g[m,n].

To this end, we track the techniques used in [3]. First,
we compute a differentiated sample d[m,n] which is given
by g[m + 1, n] − g[m,n]. We then compute product-sum of
d[m,n] and coefficients C

(p)
m :

τ (p)
n =

∞∑
m=−∞

C(p)
m d[m,n]. (6)

The coefficients C
(p)
m are determined so that they satisfy

∞∑
m=−∞

C(p)
m (βP+1∗ψ)(t−m) = eαpt (p = 0, 1, . . . , P +1),

where βP+1(t) is defined by Eq. (1) with αP+1 = 0. The
sampling kernel ψ(t) = βα⃗(t) can originally produce eαpt

with p = 0 up to P . The function, which is further convolved
with βP+1(t), can produce eαpt up to p = P + 1. It should
be noted that C

(p)
m is different from c

(p)
n in Eq. (3).

Let Ψ(p, θ) be

Ψ(p, θ) =
∫ ∞

−∞
ψ(t)eαpt/ tan θdt.

Since αP+1 = 0, Ψ(P + 1, θ) does not depend on θ. Hence,
we denote it by Ψ(P + 1) =

∫ ∞
−∞ ψ(t)dt.

By using τ
(p)
n and Ψ(p, θ), we can obtain λ, θ, and γ as

follows:

λ =
|τ (P+1)

n |
Ψ(P + 1)

, tan θ =
ω0

̸ (τ (0)
n+1/τ

(0)
n )

,

γ =
1
ω0

̸

(
τ

(0)
n sgn(τ (P+1)

n )
λΨ(0, θ)

)
− n

tan θ
+

1
2
, (7)

where ̸ (z) is the phase angle of complex number z and sgn(t)
is the function whose value is 1 if t > 0, 0 if t = 0, and −1 if
t < 0.
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Fig. 2. Edge extraction results by the proposed algorithm:
(a) original image, (b) downsampled image, (c) Canny edge
detection results, (d) results by the proposed method on the
downsampled image, (e) results by the proposed method on
the original image, (f) results by the Hough transform.

Proof. It is shown in [6] that the differentiated samples d[m,n]
can be expressed as

d[m,n] =
〈

∂f(x, y)
∂x

, (βP+1 ∗ ψ)(x − m − 0.5)ψ(y − n)
〉

.

This implies that d[m,n] are the samples of the derivative of
f(x, y) along x with the modified kernel (βP+1 ∗ ψ)(x −
0.5)ψ(y) . Eq. (5) implies that

∂f(x, y)
∂x

= −λδ(−x sin θ + y cos θ + γ sin θ) sin θ,

where δ(t) is Dirac’s delta function. Substituting these rela-
tions into Eq. (6) yields

τ (p)
n =

 −λeαp(γ+n/ tan θ−0.5)Ψ(p, θ) (sin θ > 0),
0 (sin θ = 0),
λeαp(γ+n/ tan θ−0.5)Ψ(p, θ) (sin θ < 0).

Since sgn(sin θ) = −sgn(τ (P+1)
n ), these relations are com-

bined into

τ (p)
n = sgn(τ (P+1)

n )λeαp(γ+n/ tan θ−0.5)Ψ(p, θ). (8)

By setting p = P + 1 in Eq. (8), we have the first equation
of Eq. (7) because αP+1 = 0 and τ

(P+1)
n /sgn(τ (P+1)

n ) =
|τ (P+1)

n |. Since α0 = iω0, Eq. (8) implies that dividing τ
(0)
n+1

by τ
(0)
n yields τ

(0)
n+1/τ

(0)
n = eiω0/ tan θ, which results in the

second equation in Eq. (7). Finally, solving Eq. (8) to γ yields
the third equation in Eq. (7).

Eq. (7) uses τ
(p)
n and τ

(p)
n+1, which are computed from pix-

els in lines of n and n + 1 in the sampled image, respectively.
If these values are exact, then so are the three parameters.
Since f(x, y) is a step edge, d[m,n] vanishes when pixels are
away from the edge because g[m,n] gets constant. Hence, it
is sufficient to compute τ

(p)
n with pixels which are affected by

the edge. For example, when the sampling kernel ψ(t) is of
order 1 and π/4 ≤ θ < π/2, only seven pixels around the
edge are affected. Since we need the two lines n and n + 1,
which may be one-pixel shifted each other because edge is
normally slanted, eight pixels are necessary for τ

(p)
n and τ

(p)
n+1

to be exact. When 0 < θ < π/4, the same argument can
be applied by using Eq. (7) vertically. Hence, an 8 × 8 area,
which is shown in Fig. 1, is suitable for exact extraction of
the parameters. After the horizontal and vertical computa-
tions, their appropriate average should be the final result of
the algorithm.

Based on the idea mentioned above, we arrive at the fol-
lowing algorithm: First, edge pixels are detected by a con-
ventional detector like Canny operator. Then, for each pixel
detected as an edge, the surrounding 8 × 8 pixel area is ex-
tracted, and Eq. (7) is applied to the area. To suppress extrac-
tion errors, similar edges are merged, while other edges are
discarded.

Fig. 2 shows simulation results. In these simulations, ω0 =
π/M , where M = 32 is the number of horizontal pixels. Fig-
ure (a) shows original image, and its downsamled image is
shown in (b). Figure (c) shows the Canny edge detection re-
sults. Figures (d) and (e) show the extracted edges by the pro-
posed method on the downsampled and original images, re-
spectively. Figure (f) shows the results obtained by the Hough
transform. We can see that the proposed method is more pre-
cise than the Hough transform. The computation of the pro-
posed method was much faster than the Hough transform.

Let us note that, since the phase angle is −π to π, Eq. (7)
shows that tan θ < −ω0/π or tan θ > ω/π and −π/ω0 −
n/ tan θ + 0.5 < γ < π/ω0 − n/ tan θ + 0.5. The first re-
striction can be got rid of by applying Eq. (7) horizontally and
vertically. The second restriction does not cause any problem
because γ should stay a small value between −0.5 to 0.5 as
shown in Fig. 1.
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Fig. 3. Standard deviations [dB] of estimated results for (a) tan θ and (b) γ in terms of signal-noise ratio from 5[dB] to 25[dB].

4. ERROR ROBUSTNESS EVALUATION

We evaluated robustness of the proposed line-edge extraction
method when pixel values g[m,n] are corrupted by noise as

y[m,n] = g[m,n] + ε[m,n],

where ε[m,n] is independently and identically distributed Gaus-
sian with standard deviation σ. We computed τ

(p)
n in Eq. (6)

with y[m,n] instead of g[m,n], and obtained λ, θ, and γ
by Eq. (7). The key advantage of the proposed method is
that the coefficient C

(p)
m is given by Eq. (4) with βα⃗(t) =

(βP+1 ∗ψ)(t), and therefore its absolute value stays constant.
On the other hand, the coefficient for the similar method based
around B-spline grows approximately linearly when p = 1.
This makes difference in the robustness against the noise.

We used the standard deviation σ such that a signal-noise
ratio (SNR) defined by 10 log10(λ/σ) was from 5dB to 25dB
with step size 1dB. The same computations were executed for
the method using B-spline functions. The results are shown
in Fig. 3, in which (a) and (b) indicate the standard devia-
tions of estimated values for tan θ and γ, respectively. They
are shown in dB in order to clearly show the difference for
the large SNR values. In each figure, the lines with asterisks
(red) and circles (blue) show the results obtained by the pro-
posed method and the B-spline one, respectively. We can see
that the proposed method outperformed the B-spline method
on tan θ except for SNR of 7[dB]. The gain was 0.92[dB] at
least and more than 1.51[dB] after 15[dB] of SNR. As for γ,
the proposed method outperformed the B-spline method ex-
cept for SNR of 5[dB]. The gain was 2.04[dB] at least and
more than 8.44[dB] after 15[dB] of SNR. These results show
the robustness of the proposed method based around E-spline
sampling.

5. CONCLUSION

We proposed a line-edge extraction algorithm using E-spline
functions as a sampling kernel, and showed that line edge
parameters are exactly extracted from noiseless pixel values.
Even in noisy scenario, we showed by computer simulations
that the proposed method is more robust than the similar method
using B-spline with gains in standard deviation of 1.86dB for
the orientation and 9.64dB for the offset when SNR is 10dB.
The proposed method also outperformed the Hough transform
with faster computations.
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