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Abstract—The spread of information on graphs has been
extensively studied in engineering, biology, and economics. Re-
cently, however, several authors have started to address the
more challenging inverse problem, of localizing the origin of an
epidemic, given observed traces of infection. In this paper, we
introduce a novel technique to estimate the location of a source
of multiple epidemics on a general graph, assuming knowledge
of the start times of rumours, and using observations from a
small number of monitors.

Index Terms—Rumour source detection, diffusion of informa-
tion, SI epidemic model, social networks.

I. INTRODUCTION

In the past few years, the inverse problem of detecting
the source of an epidemic has started to receive considerable
attention. Some real-world applications range from finding the
origin of rumours in social networks, to finding faults in power
networks, or the source of computer viruses. A lot of research
has concentrated on finding origins in tree-like networks,
assuming the susceptible-infected (SI) spreading model [1]–
[4]. Some other methods are designed for generic network
topologies, such as the techniques in [5]–[10]. Typical methods
designed for complete observations of a network are the
rumour center and eigenvector center based techniques [11]–
[15]. For example, the approach introduced in [12] defines
the rumour centrality as the number of distinct infection paths
starting at the source, for a tree-like network. This work was
extended to identify multiple sources in [2] and to source
detection in a general graph in [8]. Methods with snapshot
include the Jordan center [16]–[19], dynamic message passing
[20], and effective distance based methods [21]. Furthermore,
techniques based on sensor observations in the network were
developed in [7] and [22]–[24].

Most of these current methods are very computationally ex-
pensive. Moreover, most tree-based approaches cannot easily
be extended to generic networks, and those methods which
are designed for general graphs are typically sensitive to the
network topology. Furthermore, only some methods consider
realistic temporal diffusion dynamics [7], [11], [22], [25], [26].

In this paper, we present a novel technique to efficiently
solve the diffusion source inference problem in a general net-
work of known topology, assuming knowledge of the rumour
start time, and using multiple snapshots from a sparse set
of monitors, in a fixed time window. We find the theoretic
probability of infection at a node, as a function of its distance
to the source of the rumour. Then, by fitting a monitor’s
measurements to the analytical model of infection, we are able
to estimate the shortest distance between this monitor and the

information source. Here, we leverage the assumption that the
source emits multiple rumours, and this makes the fitting more
reliable. Triangulation is then used to find potential sources,
by considering the estimated locations of all the monitor nodes
relative to the rumour origin. We finally introduce a method
to find the most likely information source.

This paper is organized as follows. In Section II we define
the rumour source detection problem. In Section III we formal-
ize the mathematical models of information propagation within
a network. Then, in Section IV we show how the probabilistic
models of infection can be used to achieve inference of a single
rumour source. In Section V, we discuss the performance of
the detection algorithm in experiments on synthetic and real
data. Lastly, we conclude in Section VI.

II. PROBLEM FORMULATION

In this section we formally define the problem of estimating
the rumour source location.

A. Network Topology

A social network will be modelled by a graph in which
nodes are individuals and edges denote the relationships be-
tween them. The (i, j) entry in the graph’s adjancency matrix
will be 1 if nodes i and j are connected, and 0 otherwise.

B. Epidemic Model

We consider a discrete-time version of the susceptible-
infected model, which means that at any time step a node is
either infected or susceptible. We mathematically model this
process by assigning a node a value of 1 when infected, and
0 otherwise. We assume that the rumour source is initially
chosen uniformly at random at time t0 = 0 and that we
observe the diffusion for a time length T . Then, at each
discrete time t ∈ {0, 1, ...T}, any infected node will remain
infected for the subsequent time t+ 1, and a susceptible node
becomes infected if it receives the information from at least
one of its infected neighbours. We assume all infections are
independent and the likelihoods of transmission in one discrete
time step are constant within the graph.

C. Source Localization

Suppose a source emits multiple rumours and that we have
knowledge of their propagation start times. Without loss of
generality, we assume that the start time for all rumours is
t0 = 0. Moreover, we can observe the states of a set SM
of M monitors for the duration of the observation window,
at discrete times t ∈ {0, 1, ...T}. At each time t we know



the number of rumours Ri(t) that have reached a sensor i,
out of the total R rumours initiated by the source . Then, the
probability of infection of a monitor i at time t is given by:

F̃i(t) =
Ri(t)

R
. (1)

We aim to localize the source of rumours, by leveraging
knowledge of the monitors’ observed infection probabilities,
F̃i(t), for t ∈ {0, 1, ...T} and i ∈ SM .

III. MATHEMATICAL MODELS OF DIFFUSION

In this section we formalize the mathematical models of
information diffusion in a network. First, we give an approx-
imate formulation for the probability of infection, for a given
network topology. Then, we derive the probability of infection
at a node, as a function of its shortest distance to the source.
These mathematical models of infection will be used for an
efficient source detection algorithm, in Section IV.

A. Infection Likelihood

We aim to find the probability of infection at node i, at
time t. Let A be the event of at least one of node i’s infected
neighbours passing the rumour to i in one discrete time step,
between t− 1 and t, with probability P (A). Moreover, let B
denote the event of node i being in a susceptible state at time
t−1, and P (B) the corresponding event likelihood. Then, we
define the probability of first infection at node i as:

fi(t) = P (A ∩B) = P (A|B)× P (B), (2)

where we apply Bayes’ rule to get the last identity.
Being in a susceptible state at time t−1 implies not getting

the infection at any point before t − 1. Given the mutually
disjoint events of a node not getting the initial infection at
different times, the probability of being susceptible at t−1 is:

P (B) =

t−1∏
τ=1

(1− fi(τ)). (3)

Given the constant pairwise transmission rate µ, the prob-
ability that a node j transmits the infection to its neighbour i
between t− 1 and t is:

Pj→i(t) = µ× F (xj(t− 1) = 1). (4)

where:
xj(t) = state of node j at time t,
F (xj(t) = 1) = probability of infection of node j at time t.

Therefore, a node j does not infect a neighbour i between
t− 1 and t, with probability:

Pj9i(t) = 1− µ× F (xj(t− 1) = 1). (5)

Since we assume that the information propagates indepen-
dently across different edges, the probability that no neighbour
transmits the rumour to node i between time instances t − 1
and t is the product of the individual probabilities:

P (Ā) =
∏
j∈Ni

Pj9i(t) =
∏
j∈Ni

[1−µ×F (xj(t−1) = 1)], (6)

where Ni is the set of neighbours of node i.

As a result, i gets infected at t with probability:

P (A) = 1−P (Ā) = 1−
∏
j∈Ni

[1−µ×F (xj(t−1) = 1)]. (7)

Then, the conditional probability that at least one neighbour
transmits the rumour to node i, given that this node was
previously in a susceptible state, is given by:

P (A|B) = 1−
∏
j∈Ni

[1−µF (xj(t−1) = 1|xi(t−1) = 0)]. (8)

The infection process at a node j is determined by complex
dynamics in the network, and is not notably influenced by
the state of a single neighbour i. Hence, we approximate the
conditional probability as follows:

F (xj(t− 1) = 1)|xi(t− 1) = 0) ≈ F (xj(t− 1) = 1)), (9)

which implies that:

P (A|B) ≈ 1−
∏
j∈Ni

[1− µF (xj(t− 1) = 1)]. (10)

As a result of Eq. (2), Eq. (3), and Eq. (10), the probability
of first infection at node i can be approximated as:

fi(t) ≈[1−
∏
j∈Ni

(1− µF (xj(t− 1) = 1))]

×
t−1∏
τ=1

(1− f(xi(τ) = 1)).

(11)

Finally, a node i is infected at time t if it initially received
the rumour at any step before. Since the events of a node
getting the initial infection at different times are mutually
disjoint, the probability of infection is given by the sum of
the likelihoods of first infection at different discrete times:

Fi(t) = F (xi(t) = 1) =

t∑
τ=1

fi(τ). (12)

Fig. 1 plots the actual and theoretic cumulative infection
distributions in a small-world network of 200 nodes, with
average node degree 6, and re-wiring probability β = 0.5,
generated using the Watts-Strogatz model [27]. The actual
distribution is computed using Eq. (1), where measurements
are generated through a spreading of 1000 rumours from a
randomly selected source, with transmission rate µ = 0.5. The
theoretic distribution is computed with Eq. (11) and Eq. (12),
and using the fact that if s is the source of the rumours,
then fs(t) = 1 if t = 0, and fs(t) = 0 otherwise. As
expected, the theoretic likelihood upper bounds the observed
probability, given the approximation in Eq. (9) and the fact
that F (xj(t − 1) = 1)|xi(t − 1) = 0) < F (xj(t − 1) = 1)).
This holds since a node j is less likely to be infected, given
knowledge that its neighbour i is in a susceptible state.

B. Distance-Dependent Infection Likelihood

In this section we derive a mathematical formulation for the
probability of a node i, located at shortest distance d from the
source, to get the infection at discrete time t.

Supposing h<d, let us define A as the event of transmitting
the infection from nodes at distance d − h from node i, to



Fig. 1: Approximate theoretic probabilities of infection and observed infection
likelihoods of three nodes in a small-world graph, with shortest distances to
the origin, d = 1, 2, and 3.

a sufficient number of nodes located d − h − 1 hops away
from node i. Spreading the rumour to a sufficient number of
nodes at each time step t ensures that at the next time step,
the rumour can propagate to nodes even closer to node i, i.e.
at shortest distance d− h− 2 to this node.

Then, in order for node i to get the infection for the first
time at t, event A must occur d times up to time t, whilst the
complementary event Ā must occur during the remaining t−d
discrete time steps. Moreover, there are multiple ways in which
the succession of events A and Ā can happen within the time
interval up to t. As we are interested to find the probability
of first infection at time t, we restrict the event from time t to
t − 1 to be of type A. Then, the number of combinations in
which node i can get the infection for the first time at t is the
number of successions of events A and Ā up to time t− 1:

C(t, d) =

(
t− 1

d− 1

)
=

(t− 1)!

(d− 1)!(t− d− 1)!
. (13)

Furthermore, let us denote the probability of occurrence of
event A by P (A). Then the probability of a succession of d
events of type A and t− d events of type Ā is:

p(t, d) = P (A)d × P (Ā)t−d. (14)

Moreover, different successions of events A and Ā up to
t−1 are mutually disjoint, since events A and Ā cannot occur
simultaneously during the same discrete time step. Hence, the
probability of any node i at shortest distance d from the source,
to get the infection at time t is the sum of the likelihoods of
the different successions of events A and Ā:

fd(t) = p(t, d)× C(t, d) = P (A)dP (Ā)t−d
(
t− 1

d− 1

)
. (15)

The epidemic model assumed ensures that an infected node
cannot later recover from this state. Moreover, if the node’s
shortest distance to the rumour source is d, then it cannot
become infected sooner than time τ = d. Therefore, a node
i has the infection at time t if it got infected at any time
instance τ ∈ {d, d + 1, ...t}. Since the events of getting the
initial infection at different times are mutually disjoint, the
probability of node i at distance d to have the infection at
time t is the sum of the likelihoods of infection at different

Fig. 2: Distance-dependent theoretic probabilities of infection and average
observed infection likelihoods for different shortest distances to the rumour
origin, d = 1, 2, and 3.

times:

Fd(t) =

t∑
τ=d

fd(τ) =

t∑
τ=d

P (A)dP (Ā)τ−d
(
τ − 1

d− 1

)
. (16)

We define the probability P (A) as follows. From the epi-
demic model defined in Section II, the pairwise transmission
likelihood µ is constant within the graph. The probability
of event A is proportional to the transmission rate µ, as
the bigger µ is, the larger the likelihood of transmitting the
infection from infected nodes d − h hops away from node
i to nodes closer to node i. Moreover, P (A) should capture
the topological properties of a network. If the graph is more
densely connected, a node d − h hops away from node i
will spread to more neighbours located d− h− 1 hops away
from i, for the same transmission rate µ, which increases
the likelihood of event A. Assuming P (A) is constant with
respect to h, we can approximately model this effect by mul-
tiplying the transmission rate by a distance-dependent factor
αd, which reflects the network characteristics. Therefore, we
define P (A) = αd × µ and Eq. (16) becomes:

Fd(t) =

t∑
τ=d

(αd × µ)d(1− αd × µ)τ−d
(
τ − 1

d− 1

)
. (17)

Finally, the network-dependent parameters αd are obtained
as follows. A spreading of rumours is artificially generated
from a random source in the graph according to the epidemic
model introduced in Section II, resulting in the observations
F̃i(t). Then, for each shortest distance d to the source s, the
optimal parameter αd minimizes the cumulative mean-squared
error between the observed and the theoretic likelihoods of all
nodes located at distance d from the origin:

αoptd = arg min
αd∈(0, 1µ )

[
∑
i∈Nd

T∑
t=0

∥∥∥Fd(t)− F̃i(t)∥∥∥2], (18)

where Nd is the set of nodes at shortest distance d from the
source, and the upper bound 1

µ ensures stability of Eq. (16).
Fig. 2 compares the theoretical probabilities Fd(t), and the

observed F̃i(t) for different distances d. These are obtained
using 1000 rumours in a small-world network of 200 nodes,
with rewiring probability β = 0.5 and average node degree 4.



IV. SINGLE DIFFUSION SOURCE DETECTION

A. Estimation of Monitor Location

The distance between a monitor i and the origin s is
estimated by fitting the measurements F̃i(t) to the theoretical
model of infection Fd(t), introduced in Section III-B. The op-
timal distance between i and s is determined by the minimum
mean-squared error between the analytical distribution Fd(t)
and the monitor measurement F̃i(t), computed as:

dopti,s = arg min
d

[

T∑
t=0

∥∥∥Fd(t)− F̃i(t)∥∥∥2]. (19)

B. Estimation of a Set of Candidate Sources

The method used is triangulation. Using the estimated
shortest distance of any monitor node to the rumour origin,
we keep as potential rumour origins, the nodes within a 1-
hop range of this distance. For example, if the estimated
shortest distance to a monitor i is d, then we consider all
nodes at d − 1, d, or d + 1 from i, as potential sources.
Finally, we discard any candidate source if a monitor located
at real shortest distance d from this potential origin has strictly
positive infection probability F̃i(t) > 0 at a time t < d.

C. Single Source Estimation

Given the set of potential sources constructed with tri-
angulation, we aim to find the most likely rumour origin.
The infection probability distributions of a monitor i may be
different for two different rumour sources s1 and s2, even if
the shortest distances from i to s1 and s2 are the same.

This dissimilarity between observations corresponding to
different potential sources could be used to find the most likely
rumour origin. The distance-dependent formula in Eq. (17)
fails to capture the dissimilarity of observations resulting from
different rumour origins. Nevertheless, the theoretic infection
probability Fi(t) defined in Eq. (12) is able to capture this
behaviour, as its computation depends on the location of the
rumour source. Therefore, we define the cost for a given
potential source s as:

C̃(s) =
∑
i∈SM

T∑
t=0

∥∥∥Fi(t)− F̃i(t)∥∥∥2 , (20)

where:
Fi(t) = theoretic infection probability of monitor i,
F̃i(t) = observed infection probability of monitor i.

Finally, the potential source s with the smallest cost C̃(s)
is the most likely rumour origin.

V. EXPERIMENTAL RESULTS

We evaluate the performance of the source detection algo-
rithm on: (i) syntethic small-world networks which mimic the
structure of social networks and (ii) real network topologies
extracted from the SNAP dataset [28]. Fig. 3 shows that
the algorithm discovers the real rumour source with 100%
accuracy in a small-world network when observing at least 5%
of the nodes. The accuracy is 95% in a real Facebook network,

when observing at least 10% of the network. In both cases,
the results are averaged over 100 different simulations, with
different source and set of monitors in each case. Moreover,
the number of rumours initiated by the source is realistically
small, R = 10. The accuracy of detection remains high when
the number of rumours decreases. For example, the probability
of correctly detecting the single source in the small-world
network using R = 2, is 0.75 when observing 5% of the
network, increasing to 1 when observing 20% of all nodes.

Finally, we compare our approach to related methods. In
[7] the authors propose a Monte Carlo method for single
source estimation, with unknown infection time. In a random
geometric graph, the probability of the origin to be within the
first 10% ranked nodes is around 0.5 when observing 5% of the
network, increasing to 0.9 when observing the full network.
Our method achieves higher accuracy of estimating a single
source in a real-world graph, however leveraging the additional
assumption of known rumour start time.

Fig. 3: Probability of correct detection of a single rumour source, in a small-
world network of 1000 nodes, and Facebook subgraph of 192 nodes.

VI. CONCLUSIONS

In this paper we introduced a novel technique to infer a
unique rumour source in a social network, given observations
of a subset of nodes at discrete times during an observation
window. The method relies on mathematical models which
accurately capture the diffusion process. We have shown how
we can use these theoretical models of infection to estimate
the shortest distances between the monitor nodes and the
source, and how triangulation can then be used to find a
set of candidate sources. Moreover, we have introduced a
technique to identify the unique rumour origin, from a set of
potential sources. Experimental results on synthetic and real
data show that high detection accuracy is achieved when a
small fraction of the network is observed. Finally, in terms
of computational cost, finding the free parameters αd in the
distance-dependent mathematical formula requires simulations
using a single arbitrary source. This has lower computational
cost compared to a Monte-Carlo analysis, which typically
involves simulations using a large number of potential sources.
Instead, the complexity is dominated by the computation of
shortest distances in the network, which can be efficiently
found using an appropriate algorithm [29].
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