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ABSTRACT

In this work, we present extensions of the framework of sampling
and reconstructing signals with a finite rate of innovation (FRI) to
the graph domain, by tackling the problem of K-sparse graph sig-
nal reconstruction on perturbed circulant graphs, simulating network
clusters within a large network. Given a dimensionality-reduced ap-
proximation of the GFT of the original graph signal, we develop a
reconstruction approach, whereby, we operate on each subgraph in-
dividually using a set of approximation and denoising schemes. In
particular, we employ a variation of Prony’s method with Cadzow’s
algorithm, and further iterative denoising, which can lead to perfect
reconstruction. In addition, we extend the application of recently
developed circulant graph-wavelet filterbanks to images featuring
patterns, in a novel model inspired by image segmentation, which
involves a localized operation of the graph wavelet transform on
individual segments of homogeneous intensity content, employing
the nearest circulant matrix approximation scheme. The proposed
method outperforms traditional methods in the classical domain in
nonlinear approximation performance. We give preliminary results
and discuss generalizations to arbitrary graphs.

Index Terms— finite rate of innovation, graph wavelet filter-
bank, circulant graph, image approximation

1. INTRODUCTION

Graphs, as high-dimensional (and often sparse) dependency struc-
tures, have become an increasingly favorable tool for the representa-
tion and processing of large data sets, primarily due to their potential
to capture complexity beyond the classical domain. This has inspired
the development of the field of Graph Signal Processing, as a coun-
terpiece to traditional signal processing, with the aim of establishing
comparable properties, operations and concepts in the graph domain.
These range from basic operations such as modulation of a graph sig-
nal ([1],[2]), a variety of graph-dependent downsampling strategies
([1],[2], [3]) up to more sophisticated constructions of graph wavelets
([4], [5]) and associated filterbanks ([6], [7], [8]), satisfying a set of
properties equivalent to the classical domain, with applications ([9],
[10]), and further theoretical investigations [11]. A major appeal of
this emerging field is the ability to capture and incorporate additional
information about the graph signal into the graph (such as similarity
between sample values), yet also represents one of its challenges of
finding adequate equivalencies to the classical domain without ne-
glecting the newly arising data dependencies [1].
This work seeks to explore the concept of sparsity (and compress-
ibility) on graphs, which includes sparsity in the vertex domain as

well as in the graph wavelet domain. Hereby, we devote our atten-
tion to the class of circulant graphs, due to their particularly con-
venient properties, which facilitate e.g. downsampling and shifting
operations ([2], [8], [12]). We first present extensions of the frame-
work of reconstructing signals with a finite rate of innovation [13]
to the graph domain in a novel model for the K-sparse graph sig-
nal recovery on network clusters. In the context of high-dimensional
networks, we propose to model clusters as (un-)weighted and undi-
rected circulant subgraphs, which are linked via inter-connecting
edges on a main graph G = (V,E), and are subject to perturba-
tions in form of the addition and/or removal of randomly chosen
edges. The graph spectral representation, or Graph Fourier Trans-
form (GFT), on undirected, circulant graphs, is, up to a permutation,
given by the DFT-matrix. In light of this, we present a variation of
Prony’s method [13] in a novel model of blockwise reconstruction
operations with dimensionality reduction. We give preliminary re-
sults and further discuss the generalization to arbitrary graphs based
on the nearest circulant approximation scheme ([14], [15]).
In addition, we extend the recently developed circulant spline-like
graph wavelet filterbanks ([2], [8], [12]) to applications in image pro-
cessing, particularly for images featuring sharp edges in patterns, in
a novel framework based on image segmentation. Hereby, we ini-
tially apply a graph cut [16] on a given image to separate homoge-
neous regions from a pattern, and subsequently compute the near-
est circulant graph approximations to the resulting subgraphs, using
the aforementioned scheme, in order to construct circulant graph-
wavelet filterbanks localized to the image segments. We give pre-
liminary results based on both artificial and realistic image patches,
and discuss further extensions.
This paper is organized as follows: beginning with a brief summary
of the background theory in Section 2, we present our novel frame-
work for the reconstruction of sparse graph signals on (perturbed)
circulant graphs in Section 3, followed by Section 4, which discusses
the application of the aforementioned circulant graph wavelet filter-
banks to images within our novel framework inspired by image seg-
mentation. Section 5 contains preliminary experimental results for
the methods developed in the previous sections, and in Section 6 we
make concluding remarks.

2. BACKGROUND

In the following, we provide a brief overview of basic results in clas-
sical and graph signal processing as well as general matrix theory,
which we will draw on in the main body of this work.



2.1. Graph Signal Processing and Circulant Graphs

In the course of this paper, we consider the example of an undi-
rected, (un-)weighted connected graph G = (V,E), without self-
loops, defined by a vertex set V , |V | = N , and an edge set E.
The connectedness of G is given by its adjacency matrix A, with
entries Ai,j > 0 if there is an edge between nodes i and j, and
Ai,j = 0 otherwise, and its degree matrix D, which is diagonal
with entries Di,i =

∑
j Ai,j . The non-normalized graph Laplacian

matrix L = D −A of G, which we will focus on in this work, has
a complete set of orthonormal eigenvectors {ul}N−1

l=0 , with corre-
sponding ordered, nonnegative eigenvalues {λl}N−1

l=0 .
A graph signal x is a real-valued scalar function defined on the
vertices of a graph G, with sample value x(i) at node i [1]. Anal-
ogously to the classical domain, one can define the Graph Fourier
Transform (GFT) XG of a graph signal x, as the projection onto the
graph Laplacian eigenbasis U = [u0| · · · |uN−1]: XG = UHx,
where H denotes the Hermitian transpose [1].
The class of circulant graphs has been noted for its set of properties,
which facilitate a number of analogous traditional signal processing
notions, including linear shifting, convolution, and most importantly,
downsampling strategies.
A graph G is circulant with respect to a generating set S =
{s1, . . . , sM}, with 0 < sk ≤ N − 1 if there exists an edge
between nodes (i, (i+ sk)N ), for every sk ∈ S [2]. Downsampling
on a circulant graph G can be performed with respect to any ele-
ment in its generating set S; for instance, to downsample a graph
signal x by two with respect to s = 1 is equivalent to keeping
every other node [2]. In [8], a set of filters defined on circulant
graphs were introduced, making up the so-called spline-like graph
wavelet filterbank, which incorporates critical-sampling, and perfect
reconstruction properties. The low-and highpass filters, which take
(weighted) averages of neighboring nodes at 1-hop distances, are
defined as:

HLP =
1
2

(
IN +A

1
d

)
(1)

HHP =
1
2

(
IN −A

1
d

)
(2)

where d represents the degree per node. For the filterbank to be in-
vertible it is required that at least one node retains the LP component,
while the complementary set of nodes are in the HP branch; this re-
sult applies to both weighted and unweighted undirected graphs and
the proof can be found in [12]. Multiscale analysis can be conducted
by iterating the designed filters on the respective downsampled LP
branches, whereby proposed reconnection strategies for downsam-
pled graphs include the Kron-reduction [12].

2.2. FRI signals and Prony’s method

In classical sampling theory, it has been established that a certain
class of non-bandlimited signals with a finite rate of innovation,
known as FRI-signals, can be sampled and perfectly reconstructed
using kernels of compact support, which satisfy certain Strang-Fix
conditions, and a local reconstruction algorithm (Prony’s method)
[13]. In the discrete time domain, let a signal x ∈ RN be K-sparse,
and define the measurement vector y in the Fourier domain, such
that y = Fx, where F ∈ CN×N is the DFT-matrix, and x ∈ RN ,
||x||0 = K. Then the signal samples yn are given by

yn =
1√
N

K−1∑

k=0

xcke
−i2πckn/N =

K−1∑

k=0

αku
n
k (3)

where xck is the weight of x at index ck, and αk = xck/
√
N and

uk = e−i2πckn/N represent the amplitudes and locations respec-
tively. The vector x can then be perfectly reconstructed based on
M = 2K consecutive sample values of y using Prony’s method.
If there is noise present in the signal, such as in form of additive
Gaussian noise n, giving ŷ = y + n, we require a larger number
of samples M ≥ 2K as well as need to apply denoising schemes
to achieve perfect reconstruction; hereby, Cadzow’s algorithm has
been favorably employed [17].

2.3. Circulant Matrix Theory

In a realistic setting, the graph at hand might not be circulant, which
requires a means to detect the nearest circulant structure as deter-
mined by a given error norm. Therefore, we resort to the so-called
Chan circulant matrix ([14], [15]), which gives the nearest circulant
matrix C ∈ RN×N to a given adjacency matrix A ∈ RN×N in
Frobenius norm ||A − C||F , by averaging over its diagonals. Let
Π be a circulant matrix with first row π = [0 1 0 . . . 0]. Then, the
nearest circulant matrix C, with first row c = [c0 c1 . . . cN−1], to
a given A is determined by the following Frobenius inner product:

ck :=
1
N

〈A,Πk〉F = tr(ATΠk), k = 0, . . . , N − 1 (4)

For undirected, weighted graphs, we require the weights to satisfy
symmetry and circularity, i.e. when N is even, the first row of the
adjacency matrix W needs to be of the form
w = [0 c1 . . . cN/2−1 cN/2 cN/2−1 . . . c1].
The GFT on circulant graphs, is, up to a permutation, given by the
DFT-matrix due to the circulant structure of the graph Laplacian
[12]. However, with eigenvalue multiplicities occurring, the eigen-
basis is not unique. To the best of our knowledge, there does not
exist a systematic way to detect the eigenvalue multiplicity distribu-
tion of a circulant graph G with an arbitrary generating set S, except
by the exhaustive search approach; one can merely infer basic re-
sults on the occurrence of odd and even multiplicities of eigenvalues
of circulant matrices, as stated in [18].

3. SPARSE SIGNAL RECONSTRUCTION ON CIRCULANT
GRAPHS

In the context of high-dimensional networks, we wish to consider
network-clusters, representing groups of strongly connected entities
within a large network (e.g. friends in a social network). Hereby, we
propose to model the clusters as undirected and (un-)weighted circu-
lant subgraphs, which are linked via few inter-connecting edges on
a main graph G = (V,E), and are subject to perturbations in form
of the addition and/or removal of randomly chosen edges, to simu-
late the randomness and complexity occuring in real-world network
clusters. In the following, we present a novel model for the K-sparse
graph signal reconstruction on perturbed circulant subgraphs of such
networks as an extension of the framework of sampling and recon-
structing FRI-signals in the classical domain.
As the underlying graph structure, and therefore its associated GFT,
is fixed, one can sample a set of distinct signals {xi}mi=1, of the
same dimension N and sparsity K, on G, which gives rise to a
novel framework of sparse signal sampling and reconstruction on
graphs: Given a partial GFT-matrix U of the underlying graph and
the dimensionality-reduced measurement vector(s) of the form y =
CUHx, where C represents an appropriate coefficient matrix, we
can reconstruct the (set of) sparse signal(s), which are represented on



G. While it is possible to operate on the entire graph at once, using a
blockwise matrix operation scheme, which we omit here for brevity,
we choose to operate on each subgraph individually by performing
normalized graph cuts [16] on inter-connecting edges between per-
turbed circulant subgraphs, and subsequently apply our scheme on
each.
We begin the extension to the graph domain by introducing a co-
efficient matrix C, in order to impose a permutation, and, if the
graph at hand is not circulant, approximate the DFT-matrix by the
given GFT-basis of the graph G. In particular, given a subset of P
eigenvectors UP of the GFT-basis U = [u0| · · · |uN−1], as defined
for a clustered subgraph G, and the dimensionality-reduced mea-
surement vector y = CUH

P x, y ∈ CM , where C ∈ CM×P and
M < P < N , we can perfectly reconstruct a K-sparse graph signal
x ∈ RN , ||x||0 = K, for suitably chosen parameters M and P .
Hereby, the coefficient matrix C is constructed to approximate the
first M rows of the DFT-matrix FM ≈ CUH

P . We require C to be
fat with the dimensionality offset P = 2M − 1 in the case of least
possible graph Laplacian eigenvalue multiplicities; thus, in an ideal
scenario of a circulant graph G with the maximum multiplicity of
mi = 2 per eigenvalue (except for λ0 = 0, and λN−1 if N is even,
where the location of the latter in the spectrum may vary), we can
perfectly reconstruct a sparse signal x defined on the vertices of G,
requiring only P = 2 ∗ 2K − 1 = 4K − 1 sample values. This is
satisfied by the simple cycle, for instance.
In our proposed scheme, we initially apply Cadzow’s denoising al-
gorithm [17] on the given vector y, followed by Prony’s method, so
as to recover a first estimate x̂ of the desired K-sparse vector. Sub-
sequently, we proceed with an iterative denoising scheme, which uti-
lizes the error matrix E = CUH

P − FM to effectively remove the
perturbation noise based on the current estimate of x from the mea-
surement vector at iteration i: yi+1 = y − Ex̂i. Hereby, we

Algorithm 1 Sparse Graph Signal Reconstruction
1: Input: Adjacency matrix A of graph G, and graph signal x,

with ||x||0 = K
2: Decompose G into T disconnected subgraphs {Gl}Tl=1. Project

the graph signal values onto the associated nodes, resulting in T
signals {xl}Tl=1 with new sparsity {Kl}Tl=1. Apply the follow-
ing scheme(s) on each subgraph individually

3: Option 1: Compute the nearest circulant Ãl to Al, via (4).
Sample xl on the vertices of G̃l, and, if required, impose a
permutation σΛ̃j

on the GFT basis Ũ of G̃l, according to the
eigenvalue sequence Λ̃j obtained by taking the DFT of the
first row of the graph Laplacian of G̃l, and arranging eigen-
values of the same subspace j together. Compute C via LS:
CT = (ŨH

P )T \FT
M . We only require P = 4Kl − 1 consecu-

tive samples for perfect reconstruction, at best. Ensure that G̃l

has the required minimum of multiplicities (or adjust P accord-
ingly). Store vector ŷ = ŨH

P xl ∈ CP

4: Option 2: Model the graph as circulant with a perturbation, by
first computing the nearest circulant Ãl to the given Al, and
imposing the permutation σΛ̃j

on U of Gl, if required. Compute
C, and create y = CUH

P xl for appropriate M , and P = f(M)
(depending on the multiplicities of G̃l). Apply the proposed
denoising scheme at P ≥ 4Kl − 1 ≥ f(M):

5: Apply Cadzow’s algorithm on y, followed by Prony’s method
to recover x̂l

6: Do further iterative denoising, yi+1 = y − Ex̂i
l , as required,

and repeat 5. Store vector ŷ = UH
P xl ∈ CP .

reduce the error caused by initial estimates x̂ in a setting of highly
irregular and/or localized noise. It has been established that for a suf-
ficiently large number of given samples M , and an iteration number
i ≥ 5, we can achieve perfect reconstruction. Overall, we propose
the approaches summarized in Algorithm 1 for sparse signal recon-
struction with dimensionality reduction. We further note that Option
2 applies only to a subset of graphs with certain circulant generating
sets, including e.g. the simple cycle with S = {1}. For the com-
plementary set, we observe a pattern of highly localized noise under
perturbation, caused by the permutation/approximation steps, which
can lead to destructive performance in the reconstruction process. In
addition, when the perturbation is more invasive relative to the graph
at hand, further permutation schemes may need to be applied due to
subspace swap phenomena, which we omit here for brevity.

4. CIRCULANT GRAPH WAVELETS FOR NON-LINEAR
IMAGE APPROXIMATION

Having previously explored sparse graph signals, we now proceed
to investigate the concept of sparsity in the graph wavelet domain,
as arising from smooth graph signals with discontinuities relative to
the graph at hand. There exist graph-specific interpretations of the
classical concept of compressibility of signals, as discussed in [19],
including a measure for the smoothness of a graph signal.
We wish to consider the realm of 2D images that incorporate irregu-
larly shaped, sharp discontinuities between homogeneous regions, or
more precisely, featuring distinct alternating patterns, such as stripes.
By exploiting the flexibility of graph-based constructions, which fa-
cilitate operations across irregularly shaped image segments, as op-
posed to the rather ‘stiff’ operations across rows and columns of
2D transforms in the classical domain, we formulate a novel frame-
work of localized graph wavelet transformations inspired by image
segmentation, which allows the construction of graph wavelet fil-
terbanks on individual image segments. Hereby, we refer to the
circulant spline-like graph wavelet filterbank introduced in [8]. As
outlined in Algorithm 2, we initially perform a graph cut [16] on
the given image, in order to obtain homogeneous image regions,

Algorithm 2 Image Processing on Circulant Graphs
1: Input: Grayscale Image A
2: Construct an undirected, weighted graph G based on A, where

each node represents a pixel, using a similarity measure of the

form wi,j = e
−

|Ii−Ij |
2

σ2
I e

−
||pi−pj ||

2
2

σ2
P between nodes i and j,

where p denotes the Euclidean distance function, and I gives
the intensity value. Let the vectorized form x of the intensity
values of A denote the graph signal on G, with x(i) = I(i) at
node i

3: Perform a normalized graph cut on G, with weighted adjacency
matrix W, resulting in two subgraphs with respective adjacency
matrices W1 and W2, and sub-graph signals x1 and x2

4: Compute the nearest circulant approximations W̃1, W̃2 to the
weighted adjacency matrices of the subgraphs. If Wi is sparse,
apply the RCM-algorithm [20] to obtain a matrix with smaller
bandwidth under a different node ordering, beforehand.

5: Construct the circulant graph wavelet transform on both sub-
graphs, and apply it on the respective sub-graph signals. Iterate
accordingly on the LP-branches, for a multiscale representation.

6: Iterate further graph cuts as appropriate

which are not necessarily connected in the original image. We pro-
ceed to construct and apply circulant graph wavelets on the individ-



ual regions, with the aim to obtain a sparse representation, since the
graph-Laplacian-based construction of the filters leads to complete
annihilation of constant graph signals in the HP-branch. Hereby,
we downsample with respect to the element s = 1, and choose the
nearest circulant approximation as a reconnection scheme. For in-
stance, in case of a binary simple stripe pattern, we can achieve per-
fect reconstruction in non-linear approximation at a small number of
non-zero coefficients due to complete annihilation in the HP-branch.
By initially not imposing any sparsity constraints on the graphs in-
volved, the resulting circulant subgraphs are weighted and complete.
In order to obtain a more localized construction of the graph wavelet
with respect to the image segment, as opposed to the entire image,
one can explore further sparsification schemes of the resulting sub-
graphs, which we omit for brevity.

5. EXPERIMENTAL RESULTS

5.1. Sparse Graph Signal Reconstruction

We consider the example of a simple cycle subject to perturbations
in form of two additional, randomly distributed edges, and apply Op-
tion 2 in Algorithm 1. Figure 1 illustrates the reconstruction perfor-
mance per iteration in form of the average location error between the
estimated and true entry locations of the randomly generated sparse
vector x averaged over 100 trials, given the dimensionality reduced
measurement vector y ∈ CM , and P = 2M − 1 samples.
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Fig. 1. Reconstruction Performance on Perturbed Simple Cycle
(N = 256), for 100 randomly generated sparse signals xl (K = 4,
minimum entry separation of 3)

5.2. Image Approximation

We demonstrate the performance of our developed method of the
graph-cut based circulant graph-wavelet transform (GWT) by com-
paring it to the classical 2D Haar transform and the 2D biorthogonal
spline transform (with 2 vanishing moments), each with 5 levels of
decompositions. The initial graph G results in weighted, complete
subgraphs. Figures 2 and 3 compare the performance measured as
the relative Frobenius-norm error for an artificial and a real image
patch taken from ‘cameraman’, respectively. It becomes evident
that our proposed method can outperform traditional methods at a
small number of non-zero coefficients, especially when employing a
greater number of graph cuts.

6. CONCLUSIONS AND FUTURE WORK

Preliminary results arising from the novel framework of FRI-
sampling and reconstruction on graphs reveal interesting analogies
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Fig. 2. Non-linear Approximation Performance for a 32× 32 Artifi-
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Fig. 3. Non-linear Approximation Performance for a 64 × 64 Real
Image Patch

to the classical domain with promising potential of dimensionality
reduction. A deeper understanding of the specific circulant generat-
ing sets satisfying these properties, and the overall graph-theoretic
interpretation of our approximation scheme need to be explored
further. The combination of circulant graph wavelet filterbanks with
graph cuts proves as a promising new venture with clear structural
advantages over classical methods for image approximation. We
aim to continue to explore variations, which are more localized in
the graph domain as well as annihilate higher-order graph signals.

7. REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains”, SP Magazine, IEEE, vol. 30, no. 3, pp. 83-
98, 2013.

[2] Y. N. Ekambaram, G. Fanti, B. Ayazifar, and K. Ramchan-
dran,“Circulant structures and graph signal processing”, in Proc.
of the IEEE International Conference on Image Processing
(IC/P), pp. 834-838, 2013.

[3] S. Narang and A. Ortega, “Downsampling graphs using spec-
tral theory”, in Proc. Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), pp. 4208-4211, 2011.

[4] D. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on Graphs via Spectral Graph Theory”, Appl. Comput. Harm.
Anal., vol. 30, no. 2, pp. 129-150, March 2011.

[5] R. Coifman and M. Maggioni, “Diffusion Wavelets”, Applied
and Computational Harmonic Analysis, vol. 21, no. 1, pp. 53-
94, July 2006.



[6] S. Narang, and A. Ortega, “Perfect Reconstruction Two-Channel
Wavelet Filter Banks for Graph Structured Data”, IEEE Trans-
actions on Signal Processing, vol. 60, issue 6, pp. 2786-2799,
February 2012

[7] S. K. Narang and A. Ortega, “Multi-dimensional separable crit-
ically sampled wavelet filterbanks on arbitrary graphs”, Proc.
ICASSP, pp. 254 -262, March 2012

[8] V. N. Ekambaram, G. Fanti, B. Ayazifar, and K. Ramchandran,
“Critically-Sampled Perfect-Reconstruction Spline-Wavelet Fil-
terbanks for Graph Signals”, IEEE GlobalSIP, pp. 475-478,
2013.

[9] S. K. Narang , Y. H. Chao and A. Ortega, “Graph-wavelet filter-
banks for edge-aware image processing”, Proc. IEEE SSPWork-
shop, pp.141-144, August 2012.

[10] Y. Wang, A. Ortega, D. Tian, and A. Vetro, “A graph-
based joint bilateral approach for depth enhancement”, Interna-
tional Conference on Acoustics, Speech and Signal Processing,
(ICASSP), pp. 885-889, 2014

[11] M. Rabbat and V. Gripon, “Towards a Spectral Characteriza-
tion of Signals Supported on Small-World Networks”, in Proc.
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 4793-
4797, May 2014.

[12] V. Ekambaram, “Graph Structured Data Viewed Through a
Fourier Lens”, PhD Thesis, EECS Department, University of
California, Berkeley, December 2013.

[13] T. Blu, P.L. Dragotti, M. Vetterli, P. Marziliano and L. Coulot,
“Sparse Sampling of Signal Innovations: Theory, Algorithms
and Performance Bounds”, IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 31-40, March 2008.

[14] T. F. Chan, “An optimal circulant preconditioner for Toeplitz
systems”, SIAMJ. Sci. Stat. Comp., vol. 9, no. 4, pp. 766-771,
1988.

[15] M. T. Chu, and R. J. Plemmons, “Real-Valued, Low Rank, Cir-
culant Approximation”, SIAM J. Matrix Anal. Appl., vol. 24, no.
3, pp. 645-659, March 2002.

[16] J. Shi and J. Malik, “Normalized Cuts and Image Segmenta-
tion”, IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 22, no. 8, pp. 888-905, August 2000

[17] J. Cadzow, “Signal enhancement: A composite property map-
ping algorithm”, IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. 36, no. 1, pp. 49-62, January 1988.

[18] G. Tee, “Eigenvectors of block circulant and alternating circu-
lant matrices”, New Zealand Journal of Mathematics, vol. 36,
no. 8, pp. 195-211, January 2007.

[19] X. Zhu and M. Rabbat, “Approximating signals supported on
graphs”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
pp. 3921 -3924, 2012.

[20] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse
symmetric matrices”, Proceedings of the 1969 24th National
Conference, pp. 157-172, ACM, 1969.


