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Abstract—The plenoptic function is a powerful tool to analyze
the properties of multi-view image datasets. In particular, the
understanding of the spectral properties of the plenoptic function
is essential in many computer vision applications including
image-based rendering. In this paper, we derive for the first time
an exact closed-form expression of the plenoptic spectrum of a
slanted plane with finite width and use this expression as the
elementary building block to derive the plenoptic spectrum of
more sophisticated scenes. This is achieved by approximating
the geometry of the scene with a set of slanted planes and
evaluating the closed-form expression for each plane in the
set. We then use this closed-form expression to revisit uniform
plenoptic sampling. In this context, we derive a new Nyquist
rate for the plenoptic sampling of a slanted plane and a new
reconstruction filter. Through numerical simulations, on both real
and synthetic scenes, we show that the new filter outperforms
alternative existing filters.

Index Terms—Spectral Analysis, Plenoptic Function, Image-
Based Rendering, Plenoptic Sampling.

I. INTRODUCTION

IMAGE-Based Rendering (IBR) is an effective technique

for rendering novel views of a scene from a set of multi-

view images. The novel views are rendered by interpolating

nearby images. The advantage of such a method is that, since it

combines real images, it can produce convincing photorealistic

results without requiring a detailed 3D model of the scene. For

this reason, IBR finds application in immersive communication

systems [1], 3DTV [2] and free viewpoint TV (FTV) [3].

For surveys on the topic we refer the reader to [4], [5]. A

drawback of IBR, however, is that a very large number of

images are needed to compensate for the lack of geometric

information [4]. Therefore, an important goal is to reduce the

required number of multi-view images whilst still achieving

good quality rendering.

The principle underlying IBR is that a scene can be rep-

resented as a collection of light rays emanating from its

surface. The multi-view image set, therefore, samples this

representation of the scene with each image recording the

intensity of a set of light rays travelling from the scene to the

camera [4]. The light rays in question may be parametrized
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Fig. 1. Diagram showing the 7D plenoptic function, where (x, y, z) is
the viewing position and (v, w) is the viewing direction in terms of pixel
coordinates. The final two parameters define the wavelength, λ, and the time,
τ .

using the 7D plenoptic function [6], illustrated in Fig. 1.

This describes the intensity of a light ray passing through the

camera center at a 3D spatial location, (x, y, z), in a certain

2D viewing direction, (v, w), with a certain wavelength, λ, and

at a certain time, τ . IBR can thus be regarded as a sampling

and interpolation problem: a finite set of images, with finite

resolution, sample the continuous plenoptic function and the

rendering of a new viewpoint entails the reconstruction of the

function from the samples [4]. If the function is incorrectly

sampled then blurring or ghosting artefacts appear in the

rendered views [7]. Accordingly, by studying the sampling

of the plenoptic function, termed plenoptic sampling, we

can determine the minimum number of images required for

artefact-free rendering.

The first spectral analysis of plenoptic function was per-

formed by Chai et al. [7]. Assuming uniform camera place-

ment, they analyzed the spectral support of the plenoptic

function to find the Nyquist sampling rate for a Lambertian

surface1 with no occlusions. This spectral analysis was ex-

tended to non-Lambertian scenes in [8], [9] and scenes with

occlusions in [8]. In particular, the authors of [9] showed that,

unless the scene surface was flat, the continuous plenoptic

spectrum was band-unlimited. More recently the focus of

plenoptic sampling has been on the acquisition set-up. For

instance, cameras with arbitrary position and orientation are

considered in [10], and Bagnato et al. [11] examined plenop-

tic sampling when the cameras are placed on a sphere (as

opposed to a plane in [7], [8], [9], [10]). A detailed review of

plenoptic sampling, including non-uniform camera placement,

was presented by Zhang and Chen in [12].

In this paper, we examine the spectral properties of the

plenoptic function for a specific scene: a 1D planar facet,

which we term a slanted plane. To perform this spectral

analysis, we use the framework presented in [9] combined with

1A Lambertian surface has the property that the intensity of a light ray
leaving a point on the surface is independent of the viewing angle.
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two realistic constraints: finite scene width (FSW) and finite

camera field-of-view (FFV). The novelty of our approach is

that the constraints are incorporated directly when performing

the spectral analysis. Under this new set-up, we are able

to obtain an exact closed-form expression for the plenoptic

spectrum of a slanted plane. Although this scene may seem

simple, our interest comes from its ability to be used as

an elementary element from which to derive the plenoptic

spectrum of more complicated geometries. In particular, we

show that the plenoptic spectrum for a smoothly varying scene

can be obtained by first approximating its geometry using a

sequence of slanted planes and then evaluating our closed-form

expression for each plane in the sequence.

We also examine the essential bandwidth of the plenoptic

spectrum of a slanted plane and derive sampling results. In

particular, we obtain a new reconstruction filter for uniform

plenoptic sampling and a new expression for the Nyquist

sampling rate. Using synthetic and real scenes, we demonstrate

the improvement of this new filter over existing ones when

reconstructing the plenoptic function. A preliminary study of

the plenoptic spectrum of a slanted plane was presented in

[13]. Our paper builds upon this preliminary work to provide

a thorough analysis of the spectrum, in particular its spectral

support and how this can be used in sampling.

In the context of IBR, it is worth noting that algorithms

presented in [14], [15], [16], [17] partition the scene into a set

of layers parallel to the cameras. This type of partition is equiv-

alent to a piecewise constant approximation of scene depth.

Such an approximation neglects the effect of depth variation

on the plenoptic spectrum, which was recently highlighted in

[9]. In view of this, our plenoptic results for slanted planes

form a theoretical basis from which to incorporate planar scene

models in practical IBR algorithms.

The paper is organized as follows: in the next section we

outline the parametrization of the plenoptic function that will

be used throughout this paper. Next, in Section III, we cover

the current state-of-the-art in uniform plenoptic sampling, in

particular the framework presented in [9]. We examine the

spectrum of the plenoptic function under FSW and FFV in

Section IV and derive its exact expression for a slanted plane.

In Section V, we determine the essential bandwidth for this

plenoptic spectrum and use it to determine the minimum sam-

pling density for a slanted plane. These results are evaluated

in Section VI using both synthetic and real scenes. Lastly,

conclusions are given in Section VII.

II. PARAMETRIZATION OF THE PLENOPTIC FUNCTION

The high dimensionality of the plenoptic function makes

its theoretical analysis a challenging problem. A common

simplification is to reduce the dimensionality by restricting

certain aspects of the scene and sensing set-up [4]. With these

restrictions, the 7D plenoptic function can be re-parametrized

into more tractable representations, such as McMillan and

Bishop’s 5D plenoptic model [18] and the 3D concentric

mosaic [19]. In this paper, we focus on two popular 4D

representations: the light field [20] (similar to the lumigraph

[21] or ray-space [22] representations) and the surface light

(a) (b)

Fig. 2. Diagram (a) illustrates the 4D light field, p(t, u, v, w), in which a light
ray is defined by its location on the camera plane, (t, u), and its pixel location
on the image plane, (v, w) = (v′ − t, w′ − u). The distance between the
two planes is the focal length f . Diagram (b) illustrates the surface plenoptic
function, l(s, r, θs, θr), which is the intensity of a light ray emitted from a
point (s, r) on the scene surface S at a viewing direction (θs, θr).

field [23], [24]. Both parametrizations assume that the scene

is static, that the radiance of a light ray is constant along

its path and that the image is monochromatic2. They differ,

however, in the way in which they characterize a light ray.

Assuming a pin-hole camera model, the light field

parametrization defines each light ray by its intersection

with two parallel planes, the camera plane, (t, u), and the

image plane, (v, w), whose separation is equal to the focal

length, f . As a result the light field, p(t, u, v, w), defines

the intensity of the light ray at a camera location (t, u) and

pixel location (v, w) [9]. An illustration of the light field

is shown in Fig. 2(a). Notice that in this framework the

light ray is defined with respect to the receiving camera

position. In contrast, the light ray in the surface light field

is defined relative to its point of origin on the scene surface,

S . This surface is parametrized using two curvilinear surface

coordinates, (s, r), therefore a point on the surface is defined

as S(s, r) = [x(s, r), y(s, r), z(s, r)]T , where [x, y, z]T are

the point’s Cartesian coordinates [25]. The direction the light

ray leaves the surface is defined by the viewing angle (θs, θr),
where θs and θr are measured relative to the z-axis. Therefore

l(s, r, θs, θr) is the intensity of the light ray emitted from a

point (s, r) on the scene surface at a viewing direction (θs, θr).
Fig. 2(b) shows a diagram of the surface light field.

A further simplification, used in [8], [7], [9], is to consider

only a horizontal slice of the scene. In the case of the light

field, u and w are fixed; this corresponds to the situation where

the camera positions are constrained to a line parallel to the

x-axis and only one scan-line is considered in each image.

The resulting 2D light field, p(t, v), is the intensity of the

light ray at camera location t and pixel location v. For the

surface light field, r and θr are fixed and a one dimensional

surface, S(s), is assumed. Therefore the 2D surface light field,

l(s, θs), is the intensity of the light ray emitted from a surface

point [x(s), z(s)]T , at a viewing direction θs [9]. Diagrams

of the 2D light field and 2D surface light field are shown in

Fig. 3. For the remainder of the paper we shall use the 2D

parametrizations when analysing the light field and surface

light field. Accordingly, in the 2D surface light field, we drop

2Alternatively, the R, G, and B channels can be treated independently.
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(a) (b)

Fig. 3. Diagram (a) illustrates the 2D light field, p(t, v), in which a light
ray is defined by its intersection with the camera line at a location t and the
corresponding pixel location, v, on the image line. Diagram (b) illustrates the
2D surface plenoptic function, l(s, θs), in which a light ray is defined by its
point of origin, s, on the object surface, S, at a viewing angle θs.

Fig. 4. Diagram of a slanted plane showing the intersection of a light ray
(t, v) with the scene surface at (x, z(x)), where z(x) ∈ [zmin, zmax] is the
depth of the surface. Note that f is the focal length of the cameras, θ is the
viewing angle and φ is the angle of slant.

the s subscript from the viewing angle, referring to it only as

θ.

A visual representation of the 2D light field can be con-

structed if we plot its intensity at all possible (t, v) coordinates.

This visual representation is known as the Epipolar Plane

Image (EPI) [26]. In the EPI, a point in the scene is mapped to

a line with a gradient, dv/dt, that is inversely proportional to

the depth of the point, z. This structure leads to the following

important observation: lines with steeper gradients will always

occlude lines with shallower gradients, in other words a point

close to the camera will occlude any points that are more

distant.

III. UNIFORM PLENOPTIC SAMPLING IN A FOURIER

FRAMEWORK

When cameras are uniformly spaced, at a spacing ∆t, it is

natural to analyse plenoptic sampling within a classical Fourier

framework. In such a framework, uniform sampling leads to

spectral replication in frequency and the minimum sampling

requirement, the Nyquist rate, is such that the replicas do

not overlap. For this reason, many authors, such as [7], [8],

[9], have studied the properties of the plenoptic spectrum, the

Fourier transform of the plenoptic function. In particular, they

have examined the spectral support of the plenoptic function

since knowledge of this property can be used to determine the

minimum number of cameras required to avoid aliasing.

A. Spectral Analysis of the Plenoptic Function

Chai et al [7] were the first to analyse the spectral support

of the plenoptic function by using the inherent structure of the

EPI. Assuming a Lambertian surface with no-occlusions, they

showed that if the scene depth is limited by z ∈ [zmin, zmax]
then the plenoptic spectrum is approximately bounded by

lines relating to the minimum and maximum depths, zmin and

zmax, respectively. More recently, in [8], [9], plenoptic spectral

properties were revisited for a broader range of scenes, which

included scenes with depth varying and/or non-Lambertian

surfaces. Their analysis is based on exploiting the equivalence

between the 2D light field and the 2D surface light field in

order to derive properties of the plenoptic spectrum. This

equivalence is formalised by modelling the scene with a

functional surface. In this framework the depth of the scene

surface, relative to the x coordinate, is defined by the function

z(x) and its texture is modelled as a bandlimited signal, g(s),
where s is the curvilinear coordinate on the surface. Now,

assuming the camera line t coincides with the x coordinate

system, the authors link a light ray arriving at (t, v) to its

point of origin on the surface at (x, z(x)) using the following

geometric relationship

t = x− z(x) tan(θ) = x− z(x)
v

f
, (1)

where θ is the viewing angle. An illustration of this relation-

ship is shown in Fig. 4. Provided this geometric relationship is

a one-to-one mapping, the spatial position (x, z(x)) specifies

a single curvilinear position s on the surface, which allows the

plenoptic function to be mapped to the surface light field and

vice versa. The provision of a one-to-one mapping is enforced

in [9] by excluding scenes with occlusions. Therefore z(x) is

constrained such that

|z′(x)| <
f

vm
, (2)

where z′(x) is the derivative of z with respect to x, and vm is

the maximum value of v for a camera with a FFV, hence v ∈
[−vm, vm]. Although this constraint is not directly enforced

in [8], a one-to-one relationship is achieved by selecting the

closest point to the scene that satisfies (1).

Equation (1) allows the mapping of the plenoptic function,

p(t, v), to lx(x, v̄) the intensity of a light ray emitted from

the spatial position (x, z(x)) at a viewing direction defined by

v̄ = tan(θ) = v/f , i.e.

lx (x, v̄) = p (x− z(x)v̄, f v̄) . (3)

The surface light field, l(s, θ), is then obtained by mapping

the curvilinear coordinate, s, to the spatial position, x, and the

viewing angle, θ, to the viewing direction, v̄, giving

l(s, θ) = lx (x(s), v̄(θ)) . (4)

The importance of this mapping is that spectral properties of

the plenoptic function can be derived by assuming properties

of the surface light field without explicitly defining the scene’s

geometry.

For instance Do et al [9] derived the plenoptic spectrum

in terms of lx(x, v̄) and determined properties based on
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(a) (b) (c)

Fig. 5. Diagrams of the plenoptic spectrum: (a) the plenoptic spectrum bounded between ωv = ωtzmin/f and ωv = ωtzmax/f . (b) the ‘Bow-tie’ shaped
plenoptic spectrum caused by the pixel resolution, ∆v, inducing lowpass filtering in ωv . (c) the optimal packing for the sampled plenoptic spectrum, where
∆t is the camera spacing. Note that Ψ(ωt, ωv) is the reconstruction filter required for perfect reconstruction.

the behaviour of lx(x, v̄). Their expression for the plenoptic

spectrum is obtained as follows: starting from its definition,

P (ωt, ωv) =

∫

∞

−∞

∫

∞

−∞

p(t, v) e−j(ωtt+ωvv) dtdv, (5)

the integration variables are changed using (1) and v̄ = v/f ,

which results in a Jacobian of (1 − z′(x)v̄)f . Consequently

the following is obtained

P (ωt, ωv) =

∫

∞

−∞

∫

∞

−∞

lx(x, v̄) e
−j(ωt(x−z(x)v̄)+ωvfv̄)

· (1− z′(x)v̄)f dxdv̄. (6)

Now, by defining h(x, v̄) = lx(x, v̄)(1 − z′(x)v̄) and

Lx(x, ωv) = Fv̄ {lx(x, v̄)}, where Fv̄ is the Fourier transform

operator in v̄, the following can be defined

H(x, ωv) =

∫

∞

−∞

h(x, v̄) e−jωv v̄ dv̄

= Lx(x, ωv)− jz′(x)
∂Lx(x, ωv)

∂ωv
. (7)

Finally, by applying the above to (6), the following general

equation for the plenoptic spectrum, independent of the scene’s

geometry, is obtained:

P (ωt, ωv) = f

∫

∞

−∞

H (x, ωvf − z(x)ωt) e
−jωtx dx. (8)

Now, by using the fact that lx(x, v̄) = lx(x) for a Lam-

bertian scene, [9] showed that in the frequency domain the

following is true

Lx(x, ωv) = 0, if ωv 6= 0, (9)

which leads to

P (ωt, ωv) = 0, except when ωvf = z(x)ωt. (10)

Therefore, as z(x) ∈ [zmin, zmax], they showed that the plenop-

tic spectrum is precisely bounded by lines relating to the

minimum and maximum depths of the scene, see Fig. 5(a).

B. Uniform Sampling and Reconstruction

Assuming a Lambertian scene, the plenoptic spectrum

shown in Fig. 5(a) is bandlimited if lowpass filtering is

applied in ωv . Such lowpass filtering occurs due to the finite

pixel resolution, ∆v, of the cameras. Therefore the plenoptic

spectrum is bandlimited in ωv at π/∆v, which results in

the ‘bow-tie’ shaped spectrum shown in Fig. 5(b). Based on

this shape, Chai et al [7] proposed that the replicated spectra

should be packed as shown in Fig. 5(c) at critical sampling.

To achieve this packing, without overlap occurring, they derive

the following maximum camera spacing3

∆tC =
2πzmaxzmin

Ωvf (zmax − zmin)
, (11)

where Ωv is the maximum frequency in ωv (in the worse case

it is equal to π/∆v). The replicated spectra are removed using

a skewed reconstruction filter, Ψ(ωt, ωv), shown in Fig. 5(c)

with a dashed line. The frequency support, Rψ , of this skewed

filter is
{

ωt, ωv : ωv ∈ [−Ωv,Ωv] , ωt ∈

[

ωv
η

−
π

∆t
,
ωv
η

+
π

∆t

]}

,

(12)

where η defines its skew. In [7] the skew is chosen as

ηC = 2
zmaxzmin

(zmax + zmin)f
. (13)

IV. PLENOPTIC SPECTRAL ANALYSIS USING FINITE-VIEW

CAMERAS

In Section III-A, we covered the derivation of the plenoptic

spectrum presented in [9]. This derivation required the scene

surface to be restricted by a no-occlusion constraint. This

constraint is given by (2) and depends on the camera’s field

of view; if the field of view is finite then the scene depth can

vary provided its gradient obeys the constraint. However, if the

camera’s field of view is not restricted then the scene surface

must be flat and perpendicular to the camera’s optical axis.

This observation implies that the spectrum in (8) is only valid

for scenes without depth variation as the spectral analysis does

not limit the camera’s field of view.

3Note that the subscript C, short for Chai, is used to indicate that the result
was presented in [7].
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(a) (b)

Fig. 6. Diagram (a) shows the magnitude plenoptic spectrum for a slanted plane with a texture signal g(s) = cos(ωss). The same spectrum is shown in (b)
but with the main characteristics of the spectrum superimposed. These characteristics comprise two quadrilateral regions bounded by six lines.

In view of this observation, we now examine the spectrum

of the plenoptic function when the following two constraints

are imposed: (i) cameras with finite field of view (FFV) and (ii)

finite scene width (FSW). Starting from the plenoptic spectrum

in (6), we assume a Lambertian scene, hence lx(x, v̄) = lx(x),
and impose our two constraints to obtain

P (ωt, ωv) =

∫ x= x2

x= x1

lx(x) e
−jωtx

∫ v̄= v̄m

v̄=−v̄m

(1− z′(x)v̄)

· f e−j(ωvf−z(x)ωt)v̄ dv̄dx, (14)

where v̄ ∈ [−v̄m, v̄m] is the FFV constraint, with v̄m = vm/f ,

and x ∈ [x1, x2] is the FSW constraint. Solving the integral

in v̄ the plenoptic spectrum becomes

P (ωt, ωv) = 2vm

∫ x=x2

x=x1

lx(x) sinc(ωI) e
−jωtx dx

− 2jvmv̄m

∫ x=x2

x=x1

lx(x) z
′(x) sinc′(ωI) e

−jωtx dx, (15)

where sinc′ (ωI) is the first derivative of the sinc function4,

and ωI depends on x as follows

ωI = ωvvm − z(x)ωtv̄m.

This expression indicates that the two constraints cause spec-

tral spreading in the plenoptic spectrum. In the following

discussion, we shall analyse this spectral spreading for the

specific case of the plenoptic spectrum for a slanted plane

with bandlimited texture.

A. Plenoptic Spectrum for a Slanted Plane

Using the framework presented in [8], [9], the geometry of

a slanted plane is described as follows

Gs =

{

z(x) = (x− x1) tan(φ) + z1 for x ∈ [x1, x2]

x(s) = s cos(φ) + x1 for s ∈ [0, T ]
(16)

4We define sinc(α) = sin(α)/α for α ∈ R, thus sinc′(α) = cos(α)/α−
sin(α)/α2.

where φ is the angle between the plane and the x-axis,

T is the length of the plane and z(x2) = z2. Therefore,

the curvilinear coordinate, s, begins at (x1, z1) and ends at

(x2, z2). A diagram of this geometric description is shown in

Fig. 4. Without loss of generality, we shall assume φ ≥ 0
in this paper thus zmax = z2 is the maximum depth of the

plane and zmin = z1 is the minimum depth of the plane. We

also impose the constraint (2) in order to avoid self-occlusion.

Therefore, from (2) and (16), we have the following bound

0 ≤ φ < tan−1

(

f

vm

)

. (17)

Given the geometric description, we now define the ban-

dlimited texture pasted to its surface. Similar to [8], [9], we

assume this texture is real-valued with a discrete spectrum.

Accordingly, we define the texture signal as a finite sum of

complex exponentials and their conjugates:

g(s) =
K
∑

k=−K

βke
jωks, (18)

where βk = β∗

−k is the coefficient for the kth exponential,

ωk = −ω−k is the frequency of kth exponential and K ∈ N.

Lastly, we define ωs = max
k

{ωk} as the maximum frequency

of the texture signal.

Given this complete description of the scene, we determine

its plenoptic spectrum as follows. Using (16) and (18), we

change the variable of integration in (15) from x to the

curvilinear coordinate s, and switch to the texture signal, i.e.

l(s) = g(s), to give

PS(ωt, ωv) = M1

∫ T

0

g(s) sinc(ω̂I) e
−jωt cos(φ)s cos(φ) ds

− jM1v̄m tan(φ)

∫ T

0

g(s) sinc′(ω̂I) e
−jωt cos(φ)s cos(φ) ds

(19)

where ω̂I = ωvvm − (s sin(φ) + zmin) v̄mωt,

z′(x) = tan(φ), and M1 = 2vm e−jωtx1 .
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(d) Slice of the Plenoptic Spectra at ωv = 1×103rad/m

Fig. 7. Comparison of the plenoptic spectrum for a smoothly varying surface, Pa(ωt, ωv), and the spectrum generated by approximating the surface with
slanted planes, Pp(ωt, ωv). Graph (a) illustrates the smooth surface and its planar approximation using 8 planes uniformly spaced along the x-axis. Both
scenes have a texture g(s) = cos(ωss). Graph (b) shows the magnitude spectrum of Pa(ωt, ωv) and graph (c) shows the equivalent for Pp(ωt, ωv). Graph
(d) compares a 1D slice of both plenoptic spectra at a fixed ωv = 1× 103 rad/m.

Now, as we show in Appendix A, if g(s) = ejωss then the

plenoptic spectrum has a closed-form expression. Therefore,

using the linearity of the Fourier transform, we can obtain an

exact expression when using (18) as texture. Before presenting

this expression, we define, for convenience, the following three

quantities
a = ωvvm − ωtzmaxv̄m,

b = ωvvm − ωtzminv̄m,

ck =
ωk − ωt cos(φ)

sin(φ)ωtv̄m
.

(20)

The spectrum when ωt 6= 0 is

PS(ωt, ωv) =
K
∑

k=−K

βk

(

j2vm
ωt

[

sinc(a) e−jT (ωt cos(φ)−ωk)

−sinc(b)
]

+
j ωkf

sin(φ)ω2
t

[

ζ {jb(ck − 1)} − ζ {ja(ck − 1)}

−ζ {jb(ck + 1)}+ ζ {ja(ck + 1)}
]

ejbck
)

e−jωtx1 , (21)

where ζ is

ζ {jα} =











E1(jα) + ln |α|+ j π2 + γ if α > 0,

E∗

1(j |α|) + ln |α| − j π2 + γ if α < 0,

0 if α = 0,

(22)

α ∈ R, γ is Euler’s constant, E1(jα) is the exponential integral

(see [27]) and E∗

1(jα) is its complex conjugate. For the special

case when ωt = 0, the plenoptic spectrum is

PS(0, ωv) =
K
∑

k=−K

2βkvmT sinc

(

ωkT

2

)

[

cos(φ)sinc (ωvvm)

−j
sin(φ)vm

f
sinc′ (ωvvm)

]

ejωk
T
2 .

Using the expression in (21), Fig. 6(a) shows the magnitude of

the plenoptic spectrum corresponding to a slanted plane with

a texture signal g(s) = cos(ωss).

B. Behaviour of the Plenoptic Spectrum for a Slanted Plane

Using the closed-form expression in (21), we can model

the essential structure of the plenoptic spectrum for a slanted

plane with real-valued texture. This model is illustrated in Fig.

6(b) for a texture signal g(s) = cos(ωss). It comprises two

quadrilateral regions, TR1 and TR2, which contain most of the

spectral energy and are defined by six lines. The first two lines

are diagonal and relate to the maximum and minimum depths

of the slanted plane, i.e.

ωv = ωt
zmax

f
and ωv = ωt

zmin

f
.
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These lines correspond respectively to the conditions a = 0
and b = 0 in (20). The other four lines are vertical and relate

to the modulation of the texture signal when projected into the

image plane. Using the rotational symmetry of the plenoptic

spectrum, these four lines form two pairs ωt = ±Ωmax and

ωt = ±Ωmin. The quantity Ωmax represents the maximum

frequency of the modulated texture signal and Ωmin represents

its minimum5; they are defined as follows

Ωmax =
ωs

cos(φ)− |sin(φ)| v̄m

and Ωmin =
min
k

{ωk}

cos(φ) + |sin(φ)| v̄m
,

and correspond to ck+1 = 0, when ωk = ωs, and ck−1 = 0,

when ωk = min
k

{ωk}, in (20), respectively.

Using this model, we are now able to examine the behaviour

of the plenoptic spectrum when aspects of the scene vary.

Specifically, the slant of the plane, φ, determines the gradient

difference between the two diagonal lines in Fig. 6(b) since

zmax − zmin = T |sin(φ)|. Moreover, the overall size of the

quadrilateral regions, TR1 and TR2, changes with φ. For

example an increase in φ expands the two regions since Ωmax

increases and Ωmin decreases. On the other hand, for the

special case of φ = 0, these regions disappear entirely as

Ωmax = Ωmin and zmax = zmin. The quadrilateral regions also

expand when the maximum frequency of the texture signal

increases because Ωmax is proportional to ωs.

C. Determining the Plenoptic Spectrum of a Smoothly Varying

Surface

The linearity of the Fourier transform allows the result in

(21) to be extended to scenes comprising multiple slanted

planes provided that the no-occlusion condition is met. There-

fore, given a scene that has a smoothly varying surface with

no-occlusions and bandlimited texture, we can approximate the

scene with a set of slanted planes and use (21), evaluated for

each plane, to determine its plenoptic spectrum. The accuracy

of this plenoptic spectrum will depend on the number of planes

used to approximate the surface.

To demonstrate using (21) as a proxy, we compare, in Fig.

7, the plenoptic spectrum for a smooth surface to the spectrum

obtained using slanted planes. The smooth surface, shown in

Fig. 7(a) with a solid blue line, is generated using Legendre

polynomials up to degree 5 and has a texture g(s) = cos(ωss).
Its magnitude plenoptic spectrum, |Pa(ωt, ωv)|, is calculated

numerically and illustrated in Fig. 7(b). We now approximate

this surface with 8 slanted planes, as shown in Fig. 7(a)

with a dashed red line. Note that the planes are uniformly

spaced along the x-axis. Using this approximation, we obtain

analytically the planar plenoptic spectrum, |Pp(ωt, ωv)|, shown

in Fig. 7(c)6. This planar plenoptic spectrum has a PSNR

= 27dB when compared to Pa(ωt, ωv) thus it represents a

good proxy for the original. Notice that a comparison of

5In [9] this modulation of the texture signal is shown to be equivalent to
time-warping the signal with a scene dependent warping function.

6Note that all the spectra in Fig. 7 are normalized with respect to
|Pa(ωt, ωv)|.
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Fig. 8. Graph examining the reconstruction of the EPI generated by the
smooth surface in Fig. 7(a). The EPI is reconstructed from uniform samples
using the actual scene geometry; a 16 plane approximation; a 8 plane
approximation; and a 4 plane approximation.

the 1D slice of the two plenoptic spectra, obtained by fixing

ωv = 1× 103 rad/m, is shown in Fig. 7(d).

To further gauge the effect of this planar approximation, we

examine the reconstruction of the EPI relating to the scene in

Fig. 7(a). Given uniform samples of this EPI, we reconstruct it

using three planar approximations that vary in coarseness from

4 planes to 8 planes, shown in Fig 7(a), and finally 16 planes.

The results of these differing reconstructions, along with the

reconstruction achieved using the actual surface, are shown

in Fig. 8. The figure shows that the reconstruction improves

as the accuracy of the approximation increase and that the

results achieved using 16 planes are almost equivalent to those

obtained using the actual surface.

V. PLENOPTIC SAMPLING USING THE ESSENTIAL

BANDWIDTH

From (21), we observed that the plenoptic spectrum for a

slanted plane is band-unlimited. We therefore propose utilising

the concept of the essential bandwidth [28] when sampling

its plenoptic function. The essential bandwidth is a region in

frequency that contains a large fraction of the signal’s energy.

In [28], it was observed that the main lobe of a 1D sinc

function contains 90% of its energy. If we extend this to a 2D

frequency domain then the main lobe of a 2D sinc function

will contain at least 81% of its energy. Therefore, we define the

essential bandwidth to be a compact region in the frequency

domain that is symmetrical around the origin and that contains

at least 81% of the plenoptic spectrum’s energy. We will then

assume the plenoptic spectrum is approximately bandlimited

to its essential bandwidth and determine the Nyquist sampling

rate accordingly.

The essential bandwidth for the plenoptic function has also

been studied in [9]. In their analysis, one of the dimensions

of the plenoptic function is fixed, either t or v, and the

resulting essential bandwidth is determined for an uncon-

strained plenoptic function. In contrast, we are interested in

determining a non-separable 2D essential bandwidth in the

(ωt, ωv)-domain that takes into account both FSW and FFV.
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A. Determining the Essential Bandwidth

From the structural model of the plenoptic spectrum pre-

sented in Section IV-B, we observe that the spectral energy

is concentrated in the two quadrilateral regions, TR1 and TR2,

shown in Fig. 6(b). Thus it is natural to design a bandwidth

that contains these regions. Accordingly, we propose a paral-

lelogram shape for the essential bandwidth, BS , of the slanted

plane as illustrated in Fig. 9(a). The figure shows that the

parallelogram is defined by four parameters: Ωv , the maximum

value in ωv; Ωt, the maximum value in ωt; A, the width

of the region in ωt; and zG/f , a parameter that controls the

skew of the parallelogram relative to the ωv-axis. We obtain

these parameters by analyzing the bandwidth of the plenoptic

spectrum as follows.

We start by extending our plenoptic spectral analysis to

include a general texture signal, g(s), that is bandlimited to

ωs. To achieve this, we return to the expression in (19) and

combine the FSW condition with the texture signal, g(s), to

give the following function

h(s) = g(s) if s ∈ [0, T ] and h(s) = 0 otherwise. (23)

We then define H(Ω) as the Fourier transform of h(s) and

Ω as its frequency variable. Now, by expressing h(s) as

an inverse Fourier transform of H(Ω), we can obtain the

following expression from (19)

PS(ωt, ωv) =M2

∫

∞

−∞

H(Ω)
fΩ

sin(φ)ω2
t

rect

(

Ω− ωt cos(φ)

2 sin(φ)v̄mωt

)

· e
−jΩ

(

zmin
sin(φ)

−
ωvf

sin(φ)ωt

)

dΩ (24)

where

M2 = e−jωt(x1−
zmin

tan(φ) )e−jωv( f

tan(φ) ). (25)

The derivation of this expression is shown in Appendix B.

Given (24), we now examine its bandwidth to obtain the

parameters of BS .

We first consider the line defined by ωv = ωtzmax/f that

corresponds to the upper boundary of region TR1 in Fig. 6(b).

The 1D plenoptic spectrum along this line, P1(ωt, ωtzmax/f),
is illustrated in Fig. 9(b). The essential bandwidth for this 1D

plenoptic spectrum, indicated with dashed lines in Fig. 9(b),

is found in Appendix C to be

Bt =

{

ωt : |ωt| ≤
1

cos(φ)− v̄m |sin(φ)|

(

ωs +
2π

T

)}

.

(26)

Using this bandwidth, we set the maximum value of ωt equal

to the maximum frequency in Bt and obtain

Ωt =
1

cos(φ)− v̄m |sin(φ)|

(

ωs +
2π

T

)

. (27)

Using (27), we now determine the equivalent parameter in

ωv . We start by setting ωt = Ωt in (24) to obtain a vertical slice

of the plenoptic spectrum shown in Fig. 9(c). The essential

bandwidth of this vertical slice, indicated with dashed lines in

Fig. 9(c), is shown in Appendix D to be

Bv =

{

ωv : ωv ∈

[

Ωt
zmin

f
− n(φ, v̄)

π

vm
,

Ωt
zmax

f
+ n(φ, v̄)

π

vm

]}

, (28)

where

n(φ, v̄m) =
3 cos2(φ) + 3.5 (v̄m sin(φ))

2

3 cos2(φ) + (v̄m sin(φ))
2 . (29)

Accordingly, similar to Ωt, we set the maximum value of ωv
equal to the maximum frequency in Bv and obtain

Ωv = Ωt
zmax

f
+ n(φ, v̄m)

π

vm
. (30)

Finally, we now determine the last two parameters. First,

we note that for real-valued texture the essential bandwidth

of the slanted plane has rotational symmetric around the

origin. Therefore, using the shape of the parallelogram, we

can formulate the following relationship when ωt = Ωt and

ωv = Ωv:

Ωv = Ωt
zmax

f
+ n(φ, v̄m)

π

vm
=

zG

f

(

Ωt +
A

2

)

. (31)

Next, we use the minimum frequency from Bv and formulate

a second relationship, which is

Ωt
zmax

f
− n(φ, v̄m)

π

vm
=

zG

f

(

Ωt −
A

2

)

. (32)

Therefore, by solving (31) and (32), we can obtain

zG =
zmax + zmin

2
(33)

and

A =
∆z

zG

Ωt + n(φ, v̄m)
2πf

vmzG

, (34)

where ∆z = zmax − zmin = T |sin(φ)| is the depth variation of

the plane.

B. Analysis of the Essential Bandwidth

Having determined the essential bandwidth BS , we now

analyze the amount of energy the chosen region contains.

The analysis is performed using a synthetic scene comprising

a single slanted plane with bandlimited texture. From the

behaviour of the plenoptic spectrum highlighted in Section

IV-B, we observe that ωs and φ have the greatest effect on the

structure of the spectrum. As a result, we analyze the energy

in BS as both ωs and φ vary. The other scene parameters are

fixed as follows: zmin = 1.5m, T = 3.5m, and the cameras

are defined with a focal length equal to 32 mm and a field of

view (FV) = 40◦. Using this geometry, we vary the angle φ
from 0 to just below the limit imposed by (17), and ωs from

0 to 600 rad/m.

The results of the analysis are shown in Fig. 10. The figure

presents a 2D plot of the percentage of energy inside BS as

a function of ωs and φ. The results show that for all values

of ωs and φ our essential bandwidth BS always contains at

least 89% of the energy of the plenoptic function. The figure

also illustrates that our derivation of the essential bandwidth

is conservative for larger values of ωs and φ.
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(a) |P1(ωt, ωv)| (b) |P1(ωt, ωtzmax/f)| (c) |P1(Ωt, ωv)|

Fig. 9. Diagram (a) illustrates the parametric essential bandwidth, BS , superimposed on the plenoptic spectrum of a slanted plane with bandlimited texture,
P1(ωt, ωv). Diagram (b) shows the 1D slice of P1(ωt, ωv) when ωv = ωtzmax/f . The region Bt represents its essential bandwidth and Ωt represents
the maximum frequency of Bt. Diagram (c) shows the 1D slice of P1(ωt, ωv) when ωt = Ωt. The region Bv represents its essential bandwidth and Ωv

represents the maximum frequency of Bv .
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Fig. 10. Graph showing the percentage of the plenoptic spectrum’s energy
inside BS as a function of ωs and φ. The plenoptic spectrum corresponds to
a slanted plane with bandlimited texture.

C. Sampling and Reconstruction

Given the essential bandwidth BS , we now examine the

sampling and reconstruction of the plenoptic function. From

Section III-B, the Nyquist rate in uniform plenoptic sampling

occurs when the replicated spectra are packed according to

Fig. 5(c). Assuming the plenoptic function in question is

bandlimited to BS , this packing is achieved when

2π

∆t
= A. (35)

Therefore, using (34), we obtain the following expression for

the maximum camera spacing for a slanted plane

∆tG =
2π

A
=

2π zGvm
vmΩt∆z + 2π n(φ, v̄m)f

. (36)

As we shall see in the next section, this new expression leads

to a different Nyquist rate when compared to ∆tC from (11).

In terms of reconstruction, we still require the skewed filter

defined in (12) to remove the unwanted replicated spectra.

However, instead of the skew defined by (13), we use the

skew of the essential bandwidth, thus we obtain the following

expression for the filter skew

ηG =
zG

f
=

zmax + zmin

2f
. (37)

The new reconstruction filter created by setting η = ηG in (12)

is equivalent to rendering new images with a constant depth

zG. Thus, in the case of a slanted plane, we propose rendering

using the average depth of the scene rather than the inverse of

the average disparity of the scene, ηCf , presented in [7].

To conclude, by determining the essential bandwidth of a

slanted plane, we are able to determine a new expression for

the maximum camera spacing and a new reconstruction filter.

D. High Dimensional Plenoptic Functions

In this section, we briefly highlight how, under certain

conditions, our analysis can be extended to higher dimensional

plenoptic functions. The scene, in this case, is a 2D planar

facet with a 2D texture signal, g(s, r), pasted to its surface.

The 3D EPI-volume is an extension of the EPI in which the

cameras are still restricted to a camera line however they

now capture 2D images (v, w). In this situation, our spectral

analysis and sampling results are still valid provided the depth

of the planar facet in the y direction is constant (i.e. the

scene depth only varies with x) and the texture signal is

separable such that g(s, r) = g(s)g(r). The extension to the

more general case however is not straightforward, in particular

the 4D lightfield allows an extra degree of freedom when

positioning the cameras.

VI. SIMULATION RESULTS

In this section we evaluate our proposed sampling results for

the plenoptic function of a slanted plane. Specifically, we want

to evaluate the filter skew ηG, defined in (37), and the camera

spacing ∆tG, defined in (36). We perform this evaluation by

sampling and reconstructing a plenoptic function generated

by a synthetic scene in Section VI-A and a real scene in

Section VI-B. In both cases the sampling is uniform (i.e.

uniform camera placement) and reconstruction achieved using

a skewed linear filter. Note that the purpose of this type of
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Fig. 11. Graphs examining the reconstruction of a synthetic EPI. In (a) the
skew of the reconstruction filter varies from ηmin = zmin/f to ηmax = zmax/f .
The intensity in the image represents the difference in PSNR relative to the
reconstruction achieved using ηG. The lines ηL and ηH represent the lower and
upper range of the filter skew defined in (38). In (b) the graph compares the
absolute PSNR when the filter skew is ηG and ηC. The quantities NG and NC

are the number of cameras required to achieve ∆tG and ∆tC, respectively.

reconstruction is to evaluate our filter skew ηG rather than as

a method for view synthesis in IBR. This is not to say that the

proposed theory has no place in competitive IBR algorithms;

for example, layer-based IBR algorithms, such as [16], [17],

currently use the theory from [7] to inform the number of the

layers in the scene.

In the following analysis, the PSNR is measured over the

entire plenoptic function and the Nyquist number of cameras

predicted by (36) and (11) are marked as NG and NC,

respectively7.

A. Synthetic Scenes

To evaluate our results, we analyze the reconstruction of a

synthetic EPI as the filter skew, η, varies from ηmin = zmin/f
to ηmax = zmax/f . The synthetic EPI correspond to a single

slanted plane with bandlimited texture. The plane has the

following parameters φ = 45◦, ωs = 125 rad/m, zmin = 2.1m

and T = 3.5m. The cameras are defined with a focal length

equal to 32mm and a FV = 40◦. The results of the analysis

7To calculate NC, we substitute the definition of Ωv from (30) into the
camera spacing defined in (11).

(a)

15 20 25 30 35 40 45 50 55 60 65 70
18

20

22

24

26

28

30

Number of Cameras, N

P
S

N
R

 (
d
B

)

 

 

N
G

→ ← N
C

I−MOMS with η
G

I−MOMS with η
C

Linear with η
G

Sinc with η
G

Sinc with η
C

(b)

Fig. 12. Reconstructing the EPI-volume for a real scene: Diagram (a)
illustrates the planar scene and the data acquisition set-up. The EPI-volume
consists of 133 images spaced 1cm apart and each image has 3008 by 1888
pixels. The cameras have a focal length of 70 mm, which corresponds to a FV
= 20◦. Diagram (b) compares the reconstruction of the EPI-volume achieved
using five different filters; a 3rd order I-MOMS with filter skew ηG; a 3rd order
I-MOMS with filter skew ηC; a linear filter with skew ηG; a sinc function
with filter skew ηG; and a sinc function with filter skew ηC. The Nyquist
number of samples required for ∆tG and ∆tC are indicated with NG and
NC, respectively.

are shown in Fig. 11. The first plot, Fig. 11(a), examines

the reconstruction of the synthetic EPI as a function of the

filter skew, η, and the number of cameras, N . The intensity

in the plot represents the difference in PSNR when that

reconstruction is compared to the reconstruction achieved

using η = ηG. In the second plot, Fig. 11(b), the absolute

PSNR curves when using ηG and ηC are compared.

Fig. 11(a) shows that a skew of ηG gives the best recon-

struction when the number of cameras is equal to or less than

250. However, when more cameras are available, the gain in

performance is reduced until there is little distinction between

the different filter skews. The reason for this behaviour can

be seen by considering Fig. 9(a) and the support of the recon-

struction filter defined in (12). If η = ηG, the reconstruction

filter comprises a band centered on the diagonal dashed line

of slope ηG shown in Fig. 9(a) and the width of the band

is proportional to the camera density. At the critical camera

density, the width of this band equals that of the essential

bandwidth parallelogram in the figure. When too few cameras

are available (i.e. undersampling), the filter support is narrower

than the essential bandwidth and the spectral energy captured

by the filter depends strongly on the filter skew. When many

cameras are available (i.e. oversampling), the filter support is

wider and will include the entire essential bandwidth for filter

skews in the range

η ∈

[

(Ωt +A/2)ηG

(Ωt + π/∆t)
,
(Ωt −A/2)ηG

(Ωt − π/∆t)

]

. (38)

The upper and lower limits of this range are marked re-

spectively ηH and ηL in Fig. 11(a). Therefore, a skew of

ηG represents the best choice when sampling at or below

the Nyquist rate predicted by (36) but oversampling will

compensate a poor choice of filter skew. Finally, the figures

also highlight that the prediction of the Nyquist number of

cameras, NG, is less conservative than that predicted in [7],

NC. This relationship is reversed however when φ tends to
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(a) Original (b) Linear Filter with ηG, PSNR = 23.9 dB

(c) Sinc Function with ηC, PSNR = 22.4 dB (d) Sinc Function with ηG, PSNR = 23.6 dB

(e) I-MOMS with ηG, PSNR = 23.2 dB (f) I-MOMS with ηG, PSNR = 24.2 dB

Fig. 13. An example of a rendered image from the EPI-volume. The original is shown in (a), it’s rendering using a linear filter with ηG in (b), using a sinc
function with a skew ηC in (c), using a sinc function with a skew ηG in (d), using a 3rd order I-MOMS with ηC in (e) and using a 3rd order I-MOMS with
a skew ηG in (f). Each image is rendered using 34 of the original images.

zero; the camera number NC is equal to zero when φ = 0
whereas NG tends to a constant that depends on the FFV of

the cameras.

B. Real Scene

We now analyze the reconstruction of a 3D EPI-volume

generated from a real scene comprising a single slanted plane,

shown in Fig. 12(a). The EPI-volume is a simple extension of

the EPI, in which the cameras are still restricted to a camera

line, t, however they now capture 2D images (v, w). For this

analysis, the EPI-volume consists of 133 images, each 3008

by 1888 pixels in size, spaced 1 cm apart along the camera

line. The process of acquiring the data is illustrated in Fig.

12(a). The images are acquired using a camera with a 70mm

focal length, which corresponds to a FV = 20◦. Notice that

the real scene is constrained such that the depth only varies

with x, hence the EPI-volume can be treated as a set of 2D

EPIs stacked together.

Given the EPI-volume defined above, we analyze its recon-

struction using five different filters. The first two filters have

a frequency support equivalent to (12) but with different filter

skews, ηG and ηC. This means that each filter has an impulse

response in the EPI-domain that is equivalent to a 2D skewed

sinc function. Since the sinc function has infinite support and

slow decay, its use is appropriate when reconstructing globally

smooth signals. However, when dealing with piecewise smooth

signals, like images, the sinc is less appropriate. For this

reason, the remaining filters considered have compact support.

Specifically, we use the 3rd order Interpolating Maximal-

Order-Minimal-Support (I-MOMS) proposed in [29] for the

third and fourth filters. This function has the minimum com-

pact support for a given accuracy or approximation order when
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interpolating. Similar to the sinc functions, the two I-MOMS

filters have different skews, ηG and ηC. Lastly, for comparison,

we use a linear filter that interpolates along the EPI lines,

assuming a constant gradient of 1/ηG, to reconstruct the EPI-

volume.8

The results of this comparison are shown in Fig. 12(b).

The figure shows that, for both the sinc functions and the

I-MOMS filters, using a skew ηG gives a small but consistent

improvement in PSNR over a skew of ηC. As expected, the

reconstruction of the EPI-volume is improved by using filters

of compact support (i.e the linear filter or the I-MOMS filter).

The best results are achieved using the 3rd order I-MOMS

filter; the gain in performance over the sinc functions is

approximately 1 dB for all camera densities and approximately

0.8 dB when compared to the linear filter. To illustrate these

results, Fig. 13 shows a section of an image rendered using

each filter; the original is shown in Fig. 13(a); the rendering

using the linear filter with ηG in Fig. 13(b); the rendering using

the sinc function with ηC in Fig. 13(c); the rendering using the

sinc function with ηG in Fig. 13(d); the rendering using the

IMOMS with ηC in Fig. 13(e); and the rendering using the

I-MOMS with ηG in Fig. 13(f). The PSNR of each rendered

image is respectively 23.9 dB, 22.4 dB, 23.6 dB, 23.2 dB and

24.2 dB.

VII. CONCLUSION

In this paper, we have studied the spectrum of the plenoptic

function using a slanted plane as a building block for more

sophisticated scenes. We performed the spectral analysis as-

suming the scene has a finite width and that the cameras have a

finite field of view. Under these assumptions, we have derived

an exact closed-form expression for the plenoptic spectrum of

a slanted plane and then demonstrated that this expression can

be used to obtain the plenoptic spectrum of a smoothly varying

scene. This is achieved by approximating the surface of the

scene with slanted planes. The closed-form expression is then

used to determine uniform plenoptic sampling results for a

slanted plane. In particular, we derived a new reconstruction

filter and a new expression for maximum camera spacing.

Using synthetic and real scenes, we showed that the proposed

reconstruction filter outperforms previously proposed filters

when reconstructing the plenoptic function. Taken as a whole,

the analysis of the plenoptic function presented in this paper

offer a theoretical basis from which new IBR algorithms can

be designed.

APPENDIX A

In this appendix, we derive the plenoptic spectrum for a

slanted plane with complex exponential texture. Starting from

(19), we assume a complex exponential texture signal, g(s) =
ejωss, and obtain

PS(ωt, ωv) =M1

∫ T

0

[

sinc(ω̂I)− jv̄m tan(φ)sinc′(ω̂I)
]

· e−j(ωt cos(φ)−ωs)s cos(φ) ds. (39)

8Interpolating along the EPI lines assuming a constant gradient of 1/ηG is
equivalent to rendering assuming a depth of zG.

From here we change the variable of integration from s to ω̂I ,

thus

s =
ωvf − zminωt
sin(φ)ωt

− ω̂I
1

sin(φ)ωtv̄m
, ds = dω̂I

−1

sin(φ)ωtv̄m
,

and the limits of integration become ω̂I = ωvvm−ωtzminv̄m =
b when s = 0 and ω̂I = ωvvm − ωtzmaxv̄m = a when s = T .

Note that the change of variable is only valid for ωt 6= 0; the

case when ωt = 0 is addressed below. To aid in the following

manipulations, we define a new quantity

c =
−ωt cos(φ) + ωs

sin(φ)ωtv̄m
.

As a result, (39) becomes

PS(ωt, ωv) =
jM1

ωt
ejbc

∫ a

b

sinc′(ω̂I) e
−jcω̂I dω̂I

−
fM1e

jbc

tan(φ)ωtvm

∫ a

b

sinc(ω̂I) e
−jcω̂I dω̂I

(i)
=

jM1e
jbc

ωt

[

sinc(a) e−jac − sinc(b) e−jbc
]

−

(

M1ωsf

vm sin(φ)ω2
t

)

ejbc
∫ a

b

sinc(ω̂I) e
−jcω̂I dω̂I , (40)

where (i) follows from integration by parts. The final step

of the derivation is to rearrange the integral in (40) into four

separate integrals as follows
∫ a

b

sinc(ω̂I) e
−jcω̂I dω̂I

=
1

2j

(
∫ a

b

1− e−j(c+1)ω̂I

ω̂I
dω̂I −

∫ a

b

1− e−j(c−1)ω̂I

ω̂I
dω̂I

)

=
1

2j

(

∫ ja(c+1)

0

1− e−ω̂I

ω̂I
dω̂I −

∫ jb(c+1)

0

1− e−ω̂I

ω̂I
dω̂I

−

∫ ja(c−1)

0

1− e−ω̂I

ω̂I
dω̂I +

∫ jb(c−1)

0

1− e−ω̂I

ω̂I
dω̂I

)

=
1

2j

(

ζ {ja(c+ 1)} − ζ {jb(c+ 1)}

−ζ {ja(c− 1)}+ ζ {jb(c− 1)}
)

. (41)

Substituting (41) into (40), the expression for the plenoptic

spectrum of a slanted plane with complex exponential texture,

assuming ωt 6= 0, is

PS(ωt, ωv) =

(

j2vm
ωt

[

sinc(a) e−jT (ωt cos(φ)−ωs) − sinc(b)
]

+
j ωsf

sin(φ)ω2
t

[

ζ {jb(c− 1)} − ζ {ja(c− 1)} − ζ {jb(c+ 1)}

+ ζ {ja(c+ 1)}
]

ejbc

)

e−jωtx1 . (42)

If ωt = 0, the integral in (39) may be evaluated directly to

obtain

PS(0, ωv) = 2vmT sinc

(

ωsT

2

)

[

cos(φ)sinc (ωvvm)

−j
sin(φ)vm

f
sinc′ (ωvvm)

]

ejωs
T
2 .
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The function ζ is defined in (22).

APPENDIX B

In this appendix we derive the plenoptic spectrum for a

slanted plane with bandlimited texture. Starting from the equa-

tion for the plenoptic spectrum defined in (19), we represent

both the texture signal, g(s), and the finite limits of the integral

with the function

h(s) = rect

(

s

T
−

1

2

)

g(s) =

{

g(s), if 0 ≤ s ≤ T

0, else.
(43)

Therefore we obtain the following equation for the plenoptic

spectrum

PS(ωt, ωv) = M1 cos(φ)

(

∫

∞

−∞

h(s) sinc(ω̂I) e
−jωt cos(φ)s ds

−jv̄m tan(φ)

∫

∞

−∞

h(s) sinc′(ω̂I)e
−jωt cos(φ)s ds

)

, (44)

remembering that ω̂I = ωvvm − (s sin(φ) + zmin) v̄mωt. At

this point, we define H(Ω) as the Fourier transform of h(s)
and Ω as its the frequency variable. Consequently the inverse

Fourier transform is

h(s) = F−1
Ω

{

H(Ω)
}

=
1

2π

∫

∞

−∞

H(Ω) ejΩs dΩ. (45)

If we now substitute this inverse transform into (44) and

change the order of integration, the plenoptic spectrum be-

comes

PS(ωt, ωv) =
M1

2π
cos(φ)

(

∫

∞

−∞

H(Ω)Q1(ωt, ωv,Ω) dΩ

−jv̄m tan(φ)

∫

∞

−∞

H(Ω)Q2(ωt, ωv,Ω) dΩ

)

, (46)

where

Q1(ωt, ωv,Ω) =

∫

∞

−∞

sinc (ω̂I) e
−jωt cos(φ)sejΩs ds (47)

and

Q2(ωt, ωv,Ω) =

∫

∞

−∞

sinc′ (ω̂I) e
−jωt cos(φ)sejΩs ds. (48)

The integrals Q1(ωt, ωv,Ω) and Q2(ωt, ωv,Ω) are solved by

rearranging them into Fourier transforms in which Ω is the

frequency variable.

Starting with Q1(ωt, ωv,Ω), we use the definition of ω̂I and

the following Fourier transform identities

Fs {sinc(α(s− β)} =
π

α
rect

(

Ω

2α

)

e−jΩβ ,

and Fs
{

ejαs
}

= δ (Ω− α), where α, β ∈ R and δ is the

delta Dirac, to obtain

Q1(ωt, ωv,Ω) =
π

sin(φ)v̄mωt
rect

(

Ω− ωt cos(φ)

2 sin(φ)v̄mωt

)

· e
−j

(

zmin
sin(φ)

−
ωvf

sin(φ)ωt

)
(

Ω−ωt cos(φ)
)

. (49)

Likewise, using the transform identities highlighted above and

differential property of the Fourier transform, Q2(ωt, ωv,Ω)
becomes

Q2(ωt, ωv,Ω) = jπ

(

1

sin(φ)v̄mωt

)2
(

Ω− ωt cos(φ)
)

· rect

(

Ω− ωt cos(φ)

2 sin(φ)v̄mωt

)

e
−j

(

zmin
sin(φ)

−
ωvf

sin(φ)ωt

)
(

Ω−ωt cos(φ)
)

.

(50)

Finally, if we substitute (49) and (50) into (46) and rear-

range, we obtain the plenoptic spectrum for a slanted plane

with bandlimited texture:

PS(ωt, ωv) =

∫

∞

−∞

H(Ω)
fΩ

sin(φ)ω2
t

rect

(

Ω− ωt cos(φ)

2 sin(φ)v̄mωt

)

· e
−jΩ

(

zmin
sin(φ)

−
ωvf

sin(φ)ωt

)

e−jωt(x1−
zmin

tan(φ) )e−jωv( f

tan(φ) ) dΩ.
(51)

APPENDIX C

We start by setting ωv = ωtzmax/f in (24), hence we obtain

the following 1D slice of the plenoptic spectrum

PS

(

ωt, ωt
zmax

f

)

= e−jωtx2

∫

∞

−∞

H(Ω)
fΩ

sin(φ)ω2
t

· rect

(

Ω− ωt cos(φ)

2 sin(φ)v̄mωt

)

e−jΩT dΩ. (52)

To determine the essential bandwidth of this spectrum we

examine the spectral behaviour of the integrand.

From (23), it follows that H(Ω) = G(Ω) ∗ W (Ω) where

G(Ω) is the Fourier transform of g(s), ∗ denotes convolution

and

W (Ω) = F

{

rect

(

s

T
−

1

2

)}

= T sinc

(

ΩT

2

)

e−j
Ω
2 T .

(53)

Consequently the essential bandwidth of H(Ω) is the sum of

the essential bandwidth of W (Ω) and the bandwidth of G(Ω).
Using [28], the essential bandwidth of W (Ω) is

BW =

{

Ω : |Ω| ≤
2π

T

}

, (54)

which means the essential bandwidth of H(Ω) is

BH =

{

Ω : |Ω| ≤ ωs +
2π

T

}

, (55)

since G(Ω) is bandlimited to ωs.
Next, from the definition of the rect function, the integrand

in (52) is non-zero when the following inequality is satisfied

−
1

2
≤

Ωf − ωt cos(φ)f

2 sin(φ)vmωt
≤

1

2
. (56)

Therefore, if we assume H(Ω) is approximately bandlimited

to (55), the above inequality can be rearranged to give a region

in ωt for which (52) is non-zero. Using this region, we obtain

the essential bandwidth of (52) as

Bt =

{

ωt : |ωt| ≤
1

cos(φ)− v̄m sin(φ)
(

ωs +
2π
T

)

}

. (57)
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APPENDIX D

Using (27), we set ωt = Ωt and substitute the definition

into (24) to obtain

PS (Ωt, ωv) =
f2

sin(φ)Ω2
t

∫

∞

−∞

H(Ω) rect

(

Ωf − fΩt cos(φ)

2vmΩt sin(φ)

)

· Ω e
jΩ

(

ωvf−zminΩt
Ωt sin(φ)

)

dΩ ej(
zmin

tan(φ)
−x1)Ωt−jωv

f

tan(φ) , (58)

Using Fourier transform theory, the integral in (58) can be

expressed as follows

F−1
Ω

{

H(Ω)
}

∗ F−1
Ω

{

Ω rect

(

Ωf − fΩt cos(φ)

2vmΩt sin(φ)

)}

, (59)

where ∗ denotes convolution. As a result, the overall essential

bandwidth, Bv, is the sum of the individual bandwidths

corresponding to each inverse Fourier transform in (59).

Starting with the first transform, from the identity in (43),

it follows that

F−1
Ω

{

H(Ω)
}

=2πg

(

ωvf − zminΩt
sin(φ)Ωt

)

· rect

(

ωvf − zminΩt
T sin(φ)Ωt

−
1

2

)

. (60)

Therefore, using the definition of the rect function, the above

expression is non-zero only when

zmin

f
Ωt ≤ ωv ≤

zmax

f
Ωt, (61)

thus we have the bandwidth for the first inverse Fourier

transform in (59).

Next, using the derivative identity of the Fourier transform,

we obtain the following expression for the second inverse

Fourier transform in (59):

F−1
Ω

{

Ω rect

(

Ωf − fΩt cos(φ)

2vmΩt sin(φ)

)}

= M2 e
j cot(φ)(ωvf−zminΩt)

·

[

f cos(φ)sinc

(

ωvvm − zmin

Ωtvm
f

)

−jvm sin(φ)sinc′
(

ωvvm − zmin

Ωtvm
f

)]

, (62)

where

M2 = 2vm sin(φ)

(

Ωt
f

)2

.

The essential bandwidth of this expression depends on the

spectral behaviour of the sinc function and its derivative. From

[28], we know that the essential bandwidth of the sinc function

in (62) is

B1 =

{

ωv : ωv ∈

[

Ωt
zmin

f
−

π

vm
,Ωt

zmin

f
+

π

vm

]}

, (63)

and, using the same method as [28], the essential bandwidth

of the derivative of a sinc function is

B2 =

{

ωv : ωv ∈

[

Ωt
zmin

f
−

3.5π

vm
,Ωt

zmin

f
+

3.5π

vm

]}

.

(64)

In view of this, we propose that the essential bandwidth for

(62) is the weighted combination of B1 and B2. The weights

are based on the proportion of energy contributed by that

function to the total energy of (62). Therefore, if Esinc and Edsinc

represent the energy for the sinc and its derivative, respectively,

then the essential bandwidth of (62) is
(

Esinc

Esinc + Edsinc

)

B1 +

(

Edsinc

Esinc + Edsinc

)

B2. (65)

The energies Esinc and Edsinc are defined as follows:

Esinc = M2
2 (f cos(φ))

2 π

vm

and

Edsinc = M2
2 (vm sin(φ))

2 π

3vm
.

Therefore, the complete essential bandwidth for (62) is

B3 =

{

ωv : ωv ∈

[

Ωt
zmin

f
− n(φ, v̄)

π

vm
,

Ωt
zmin

f
+ n(φ, v̄)

π

vm

]}

, (66)

where

n(φ, v̄m) =
3 cos2(φ) + 3.5 (v̄m sin(φ))

2

3 cos2(φ) + (v̄m sin(φ))
2 . (67)

As a result, using (61) and (66), the essential bandwidth for

(58) is

Bv =

{

ωv : ωv ∈

[

Ωt
zmin

f
− n(φ, v̄)

π

vm
,

Ωt
zmax

f
+ n(φ, v̄)

π

vm

]}

, (68)
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