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ABSTRACT proximation is optimised using Lagrange multipliers and results in
) ) ) a non-uniform sample allocation per plane. Consequently, using the
The plenoptic function enables Image-based rendering (IBR) to bgpectral analysis of a slanted plane, presented in [5], we determine a
viewed in terms of sampling and reconstruction. Thus the spapiecewise constant spatial sample rate. This leads to a reconstruction
tial sampling rate can be determined through spectral analysis @ the plenoptic function beyond that of normal uniform sampling for
the plenoptic function. In this paper we present a method of nongat number of samples.
uniformly sampling & scene, with a smoothly varying surface, given  The outline of this paper is as follows. Section 2 covers the mod-
a finite number of samples. This method approximates such a scegging of the scene using the functional framework presented in [4].
with a set of slanted planes subject to the constraint of finite numbep, section 3, we cover the spectral analysis of a slanted plane [5] and
of samples. We use the recent spectral analysis of a single slantgdfine a maximum uniform spatial sampling period. In Section 4,
plane to determine a piecewise constant spatial sampling rate fQye present a method for non-uniform sampling of a smoothly vary-

the scene. Finally, we show that this sampling rate results in a nofpg scene surface based upon the previous spectral analysis. Lastly,
uniform sampling scheme that reconstructs the plenoptic functiopgnclusions are given in Section 5.

beyond that of uniform sampling.

Index Terms— Plenoptic sampling, Image-Based Rendering, 2 PLENOPTIC EUNCTION AND SCENE MODEL
spectral analysis, adaptive sampling '

The plenoptic function can be parameterised in various ways [1]. For
1. INTRODUCTION this paper, we will consider a common parameterisation, the light

field [6] or lumigraph [7]. This is a two plane parameterisation of
Visual media is currently undergoing the most extensive change ithe plenoptic function, in which the scene is bounded within a box
decades, the move from 2D to 3D scene representation. One suahd each light ray is described using its intersection with two par-
example is free viewpoint TV (FTV), where the viewpoint and ori- allel planes, the image plangy, y), and camera planét, u). The
entation of the camera can be selected by the user. This type of 3@istance between the two planes is the focal length,Therefore
scene representation can be achieved using Image-Based Renderijrg, u, v, y) is the intensity of the light rayt, u, v, y) at camera lo-
(IBR), where an arbitrary new viewpoint of a scene is rendered frontation(t, «) and pixel location(v, y) [4].
a multi-view image set. A further simplification, used in [3, 4], is to fix andy, corre-

The principle behind IBR is that each image is considered asponding to the situation where the camera positions are constrained
capturing a set of light rays travelling from a scene to the camera [1}o a 1D camera line and only one scan-line is considered in each
The light rays in question are described using a 7D function, knowiimage, see Figure 1. In this case the light field is reduced to two
as theplenoptic function [2]. It specifies the intensity of the lightray dimensions,p(¢,v). Plotting this plenoptic representation in the
passing through the camera centre at a 3D spatial location for a give, v)-space leads to the Epipolar Plane Image (EPI). Using this pa-
viewing direction, wavelength and time. IBR can therefore be seemameterisation, the plenoptic spectrum is definedPés:, w,) =
as the problem of sampling and interpolating the plenoptic functionF; ., {p(¢,v)}, whereF is the Fourier transform operator.

That is, a finite set of images, with finite resolution, samples the  We will now define the scene model for a slanted plane using the
continuous plenoptic function and the rendering of a new viewpoinframework presented in [4]. The scene model consists of three func
is the reconstruction from the samples [1]. tions that are collectively known as the scene geometry equations,

Chai et al. [3] performed the first spectral analysis for thegG,. The first functionz(z), models the scene surface, heags the
plenoptic function. Assuming a Lambertian surface with no occlu-depth of the surface at a coordinate paintNote thatz is the pro-
sion, they showed that the spectrum is approximately bounded bjgction of the surface point onto the camera line. The next function,
lines relating to the maximum and minimum depths of the scene ang(s), describes the relationship betweeand the surface curvilin-
that finite camera resolution bandlimits the spectrum. This led tear coordinates. Lastly, g(s), models the texture signal pasted to
a uniform sampling rate and optimal reconstruction filter. Using ahe scene surface, which is bandlimited to a frequengy As a
functional scene model, [4] re-examined the spectral support of theesult, the scene geometry equations for a finite slanted plane with
continuous plenoptic function proving that, for a Lambertian scenecomplex exponential texture are as follows
the plenoptic spectrum is exactly bound by minimum and maximum

depths of the scene. However they went on to show the plenoptic z(x) = ssin(@) + Zmin
spectrum is band-unlimited unless the scene surface is flat. Gs = ¢ (s) = scos(d) + z1 1)
In this paper, we present a method of non-uniformly sampling g(s) = e7%s?

a scene, with a smoothly varying surface and complex exponential
texture. The non-uniform sampling scheme is based on approximawherez € [z1,22], 2 € [Zmin, Zmaz] @and¢ is the angle between
ing the surface with a set of slanted planes. The slanted plane atie plane and the line = z,,:,. The finite width of the plane is
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Fig. 1. Scene model of a slanted plane, whers the curvilinear
coordinatef is the focal lengthd is the viewing angleg is the angle
of slant,z,,;», andzy,q, are the minimum and maximum depth.
o Tro — 1 _ Zmax — Zmin
© cos(p) sin(¢) 7 Fig. 2. Parameterisation of the essential bandwidth for a slanted
_ ) o plane superimposed on its plenoptic spectrum. Note that the texture
hences € [0,T]. A diagram of the scene is shown in Figure 1. signal isg(s) = e7“=* + ¢79“=* in this example.
Having defined the scene geometry, a light ray arriving at)
can be related to its point of origin on the scene surface using thend
(z, z(x)) coordinates as follows, Q = Zmaz$ + (5)
v f U )
t=2— 2(z)tan(0) = x — z(x)~, (2)  respectively. Using these fixed points, the other two parameters are
f defined as
. ) B . L. . . Zmax + Zmin
where 6 is the viewing angle and, assuming finite field-of-view Bopt = — 5 (6)
(FFoV),v € [—vm,vm]. This relationship is shown in Figure 1.
To enforce the no-occlusion condition and make (2) a one to one T |sin(e)| o f
ing, [4] pl he followi i A= + : @)
mapping, [4] places the following constraint o) Zopt ZoptUm
¥ , As a result the maximum spatial sampling perias, for a
P |2/ (x)| = [tan(¢)|, (3)  slanted plane with complex exponential texture is given by
herez(z) is the first derivative of with t tar. Note that At=2T = 2MZopt Um ®)
wherez’(x) is the first derivative ot with respect tor. Note thai A T o QT [sin(d)| + 27 f

[8] uses a similar framework but permits occlusions.
and the support of the reconstruction filt&, is defined in the

3. PLENOPTIC SAMPLING OF A SLANTED PLANE (we, wy)-domain as follows

Using the framework defined previously, [5] derived an exactdose R =< wy, € [—l, l} wt € wnf _ l, o f + = , (9)
. : . Av’ Av Zopt At zopt At

form expression for the plenoptic spectrum of a slanted plane, with

bandlimited texture. In this derivation, the plane is constrained to avhere Aw is the finite resolution of the cameras. However, in gen-

finite width and the field of view of the cameras is finite, resulting eral, the scene surface is more complex than a slanted plane. The

in a spectrum that is band-unlimited in bati andw,. The band-  next section will examine sampling a scene with a smoothly varying

unlimited property of the spectrum means that perfect reconstructiogurface.

of the EPI for a slanted plane, assuming complex exponential texture

in this paper, cannot be achieved. However, if we define the essential

bandwidth as the region that contains 90% of the signal’s energy and 4. SAMPLING COMPLEX SCENES

assume the plenoptic function is bandlimited to this region, we cafk o approximate the smoothly varying surfacéz), with a set
reconstruct the EPI up to a certain aliasing error. _ _ of slanted planes, we can sample and reconstruct each plane using
In this paper we parameterise the essential bandwidth using @e theory from the previous section. This approach results in non-

four parameter model, as presented in [5]. The essential bandwid{hyiform sampling of the scene. The approximation of the surface
model is shown in Figure 2 superimposed over the actual plenoptig,nction with . slanted planes is defined as

spectrum. The region covered by the model is defined as
2(x) = (x — x;) tan(¢s) + z(xs), for i=1,...L+1, (10)

Zopt A Zopt A
wi €=, ], wo € f we =5 ) f we + ) ) wherez € [z;, z;+1] and the angle of slant for thh plane is

) . ) . o (2(@ig) = 2(m)
where zo,:/ f is the slant of the regiond is the width in thew; ¢; = tan e I
. . . . . . . Ti+1 — T4
direction,2; is maximum value inv; and(?, is the maximum value
in w,. For a slanted plan@; and(2,, are defined as The plenoptic function of the surface defined in (10) is
wsf 2m . pi(t,v), fort,v e S;, i=1,...L+1
Q = - 4 t — I ’ ’ I ] 11
“= Fool@) — vm (@] T T @ aew={ G a



wherep; (¢, v) is the plenoptic function for théth plane andS; isits ~ whereA; is defined by (7) for theth plane,IV; is the width of the
region of support in thét, v)-domain. region int that theith plane is visible to the cameras, ahd is
However, we are constrained with a finite number of samplescalculated by setting\¢ to satisfy (8) and equating the total energy
Nr. Therefore, we need to determine the optimum slanted planeutsideR; to 10% of the overall energy. Thus the constant is
approximation of the surface, give¥iy samples, and use it to non-
uniformly samples the scene. The rest of the section focuses on dif- K —
ferent aspects of this approach. ' 5

v T; cos(¢;) 8w 2A;Av g \ ! (16)
A; Av T A; Av ’

Consequently, the distortion due to tit plane is given by
D;i(N;) = i + ai(N;). Therefore if the approximation of the sur-
The sample allocation problem can be defined in terms of minimisface is exact the distortion is only due to undersampling. However

4.1. The Sample Allocation Problem

ing a distortion function givedN;y samples, i.e. if we are in an oversampling situation the distortion is due to the
. . geometric error of the approximation.
mm{; ( )} T ; (12) 4.3. Determining V;

whereD; is the distortion in the plenoptic domain due tieplane, ~ The sample allocation per pland;, is determined by solving the
andN; is the number of samples allocated to ftreplane. minimisation in (12) using a Lagrange multiplier, Hence the La-
grangian cost function is

4.2. The Distortion Function L
> (Di(Ni) + AN;) . a7)

The distortion function is a measure of the error in the plenoptic do- o

main. It is the addition of the geometric errer, and the aliasing
error,o.. The geometric error is due to approximating the scene surSolving this minimisation, the sample allocation for thle plane,
face,z(z), with a set of slanted planes. The geometric error due t@assumingV; > 1Vi, is given by

theith plane is calculated as follows

N; = \/WJr 1 (18)
%= / / Ip(t, v) — pi(t,v)[? dtdv, (13) SV A

~—~— The multiplier, A, is determined by substituting (18) into the finite
tUES; number of samples constraint in (12) to give
whereS; is the region of support fas; (¢, v) in the (¢, v)-domain. L
The second part of the distortion is the aliasing error due to un- Np =1+ Z N 8K Wi , (19)
dersampling the approximation of the scene surface. In other words, Pt AvA

a;(N;) is the error caused by undersampling planeth N; sam- ] )
ples. We assume the worst case scenario for the aliasing error, whi@hd then rearranging to obtain
is twice the total energy of the plenoptic spectrum that is outside the

2
support of the reconstruction filter in the frequency domain. Hence [Zle VSKin}
A= —— = 20
N 2 Av (Ng — L)? (20)
Ozz(Nl) = 2// Pi(wt,wv) Wiy, (14) . . FA
Note that this solution assumeégr > L. Therefore, substituting
Wi rwn @R (20) into (18) gives the sample allocation per plane.

whereR; is the support of the reconstruction filter in the;, w.)- .

domain for theith plane, defined in (9). 4.4. Merging Planes

~ However, due to the complexity of the expression for the plenopyye approach the problem of finding the optimum approximation of
tic spectrum of a slanted plane, we approximate the aliasing error e syrface from the bottom-up. Therefore, starting from an initial,
assuming the spectrum decays lik¢'w outside the support region fine-grain, approximation, the optimum solution, givsi samples,

R;. Bearing this in mind, the integrals in (14) simplify to two re- js reached by merging adjacent planes. Adjacent planes are merged

gions, the first region is defined as if the overall distortion of the approximatio®, which is given by
wy ¢ [_L7 L] 7 the Lagrange cost function, is reduced. If the pair of planes in ques-
Av’ Av tion are merged, then the process is repeated with the next adjacent
and the second region is plane. However, if the planes are not merged, we move to the next

plane and repeat the process.

T Y Y Y S

Av’ Av Zoptyi At zopti At
where z,,:,; is defined by the locaty,i» and zp,q.. for ith plane.
We assume that only the energy in the second region is dependeBiven the optimum approximation of the surface with a sample al-
upon the number of samples for tith plane,N;. Consequently the location per plane, then (8) gives the maximum spatial sampling pe-
approximation of the aliasing error is riod for each plane. However, the sample allocation does not take
into account the fact that multiple planes may be visible in a single
image. As a result, the sample rate at locatigs the maximum of
the sample rates for the planes visible in the camera’s field of view

4.5. Non-Uniform Sampling

(M) = \/ 167K | A4 A 8K W (15)

A Av 7r Av(N; — 1)’
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Fig. 3. Examples of approximating a smooth surface, given a fixe
number of samplesyr. The number of planed;, in each approxi-
mation are (al. =1, (b) L = 10, (c)L = 11, and (d)L = 14.

N° of Samples| Non-Uniform PSNR| Uniform PSNR
50 18.92dB 18.00dB
100 22.25dB 21.23dB
150 23.97dB 23.16dB
200 25.23dB 24.52dB
Table 1.

4.7. Simulations

Figure 3 shows an example of approximating a surface, consisting
of quadratic pieces, using different valueséf. For this example

the initial, fine-grain, approximation consists of 20 slanted planes,
thus the minimum number of samples is 21. Whén = 21 the
optimum approximation is a single plane, Figure 3(a). The figure
illustrates how the number of planes in the approximation increases
with the number of samples.

Using the same quadratic surface, Table 1 shows that the recon-
struction of the plenoptic function, using the non-uniform samples,
surpasses that of normal uniform sampling for the same number of
samples.

5. CONCLUSION

We have presented a method of non-uniformly sampling a scene,
ith a smoothly varying surface function and complex exponential
exture. This sampling scheme is based on approximating the sur-
face with a set of slanted planes. We optimise the slanted plane ap-

proximation subject to the constraint 8fr samples using Lagrange
multipliers. The optimisation allocates thér samples between the
L planes that form the approximation. Consequently, using the sur-

at that location, e.g. if three planes are visible, with three dil"feren?ace approximation and sample allocation, coupled with the spectral

sample rates, we take the maximum of these sample rates. In doing,y\ysis for a slanted plane, we derive a piecewise constant sample
this we generate a sample rate profile,imhich can then be used 10 46 Finally, this sample rate profile results in a non-uniform sam-

generate the non-uniform samples.

pling scheme that outperforms uniform sampling.

In terms of reconstruction, the piecewise constant sample rate
sections are reconstructed in the Fourier domain using the appropri-
ate filter. A local interpolation is used around the transition region
from one rate to another in order to smooth any discontinuities. 1]

4.6. Adaptive Sampling Algorithm
(2]

Summarising the above, the algorithm works as follows:

Step 1. Initially split the scene surface(z), into L+1 equal region
at the pointse;, i = 1,... L. Then generaté slanted planes
by joining the pointgz;, z(z;)) to form the approximation.

Step 2. Find the solution to the minimisation problem expressed in[4]
(12) using (20). This results is an initial overall distortion,
Dinit, for the surface.

(3]

Step 3. Starting at plané = 1 calculate the new overall distortion, [5]
Drew if it and its neighbour are merged to form a new plane
and compare to the previous overall distortion:

If Lower. Merge planes and repeat with the new neighbour.

If Higher. Move to the next plane,= i + 1. [6]

Step 4. Using the approximation of the surface, derive the maxi-[7]
mum sample rate required for each plane as a functian of
This sample rate then dictates the non-uniform sampling.

The end result of the algorithm is a set of non-uniform samples based
upon the slanted plane approximation of the surface. If merging has
occurred then the approximation is non-uniformein

6. REFERENCES

C. Zhang and T. Chen, “A survey on image-based rendering -
representation, sampling and compressioBlJRASP Sgnal
Proc.: Image Commun., vol. 19, pp. 1-28, 2004.

E.H. Adelson and J.R. Bergen, “The plenoptic function and the
elments of early vision,” inComputational Models of Visual
Processing, pp. 3—20. MIT Press, Cambridge, MA, 1991.

J.X. Chai, S.C. Chan, H.Y. Shum, and X. Tong, “Plenoptic sam-
pling,” in Proc. SGGRAPH, 2000, pp. 307-318.

M.N. Do, D Marchand-Maillet, and M. Vetterli, “On the band-
width of the plenoptic function,”IEEE Trans. Image Process.,
2009, Preprint.

C. Gilliam, P.L. Dragotti, and M. Brookes, “A closed-form ex-
pression for the bandwidth of the plenoptic function under finite
field of view constraints,” iHEEE International Conference on
Image Processing, 2010, pp. 3965—-3968.

M. Levoy and P. Hanrahan, “Light field rendering,” Rroc.
SIGGRAPH, 1996, pp. 31-40.

S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The
lumigraph,” inProc. SGGRAPH, 1996, pp. 43-54.

] C. Zhang and T. Chen, “Spectral analysis for sampling image-

based rendering datalEEE Trans. on Circ. and Syst. for Video
Tech., vol. 13, no. 11, pp. 1038-1050, 2003.



