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ABSTRACT

The plenoptic function enables Image-based rendering (IBR) to be
viewed in terms of sampling and reconstruction. Thus the spa-
tial sampling rate can be determined through spectral analysis of
the plenoptic function. In this paper we present a method of non-
uniformly sampling a scene, with a smoothly varying surface, given
a finite number of samples. This method approximates such a scene
with a set of slanted planes subject to the constraint of finite number
of samples. We use the recent spectral analysis of a single slanted
plane to determine a piecewise constant spatial sampling rate for
the scene. Finally, we show that this sampling rate results in a non-
uniform sampling scheme that reconstructs the plenoptic function
beyond that of uniform sampling.

Index Terms— Plenoptic sampling, Image-Based Rendering,
spectral analysis, adaptive sampling

1. INTRODUCTION

Visual media is currently undergoing the most extensive change in
decades, the move from 2D to 3D scene representation. One such
example is free viewpoint TV (FTV), where the viewpoint and ori-
entation of the camera can be selected by the user. This type of 3D
scene representation can be achieved using Image-Based Rendering
(IBR), where an arbitrary new viewpoint of a scene is rendered from
a multi-view image set.

The principle behind IBR is that each image is considered as
capturing a set of light rays travelling from a scene to the camera [1].
The light rays in question are described using a 7D function, known
as theplenoptic function [2]. It specifies the intensity of the light ray
passing through the camera centre at a 3D spatial location for a given
viewing direction, wavelength and time. IBR can therefore be seen
as the problem of sampling and interpolating the plenoptic function.
That is, a finite set of images, with finite resolution, samples the
continuous plenoptic function and the rendering of a new viewpoint
is the reconstruction from the samples [1].

Chai et al. [3] performed the first spectral analysis for the
plenoptic function. Assuming a Lambertian surface with no occlu-
sion, they showed that the spectrum is approximately bounded by
lines relating to the maximum and minimum depths of the scene and
that finite camera resolution bandlimits the spectrum. This led to
a uniform sampling rate and optimal reconstruction filter. Using a
functional scene model, [4] re-examined the spectral support of the
continuous plenoptic function proving that, for a Lambertian scene,
the plenoptic spectrum is exactly bound by minimum and maximum
depths of the scene. However they went on to show the plenoptic
spectrum is band-unlimited unless the scene surface is flat.

In this paper, we present a method of non-uniformly sampling
a scene, with a smoothly varying surface and complex exponential
texture. The non-uniform sampling scheme is based on approximat-
ing the surface with a set of slanted planes. The slanted plane ap-

proximation is optimised using Lagrange multipliers and results in
a non-uniform sample allocation per plane. Consequently, using the
spectral analysis of a slanted plane, presented in [5], we determine a
piecewise constant spatial sample rate. This leads to a reconstruction
of the plenoptic function beyond that of normal uniform sampling for
that number of samples.

The outline of this paper is as follows. Section 2 covers the mod-
elling of the scene using the functional framework presented in [4].
In Section 3, we cover the spectral analysis of a slanted plane [5] and
define a maximum uniform spatial sampling period. In Section 4,
we present a method for non-uniform sampling of a smoothly vary-
ing scene surface based upon the previous spectral analysis. Lastly,
conclusions are given in Section 5.

2. PLENOPTIC FUNCTION AND SCENE MODEL

The plenoptic function can be parameterised in various ways [1]. For
this paper, we will consider a common parameterisation, the light
field [6] or lumigraph [7]. This is a two plane parameterisation of
the plenoptic function, in which the scene is bounded within a box
and each light ray is described using its intersection with two par-
allel planes, the image plane,(v, y), and camera plane,(t, u). The
distance between the two planes is the focal length,f . Therefore
p(t, u, v, y) is the intensity of the light ray(t, u, v, y) at camera lo-
cation(t, u) and pixel location(v, y) [4].

A further simplification, used in [3, 4], is to fixu andy, corre-
sponding to the situation where the camera positions are constrained
to a 1D camera line and only one scan-line is considered in each
image, see Figure 1. In this case the light field is reduced to two
dimensions,p(t, v). Plotting this plenoptic representation in the
(t, v)-space leads to the Epipolar Plane Image (EPI). Using this pa-
rameterisation, the plenoptic spectrum is defined asP (ωt, ωv) =
Ft,v {p(t, v)}, whereF is the Fourier transform operator.

We will now define the scene model for a slanted plane using the
framework presented in [4]. The scene model consists of three func-
tions that are collectively known as the scene geometry equations,
Gs. The first function,z(x), models the scene surface, hencez is the
depth of the surface at a coordinate pointx. Note thatx is the pro-
jection of the surface point onto the camera line. The next function,
x(s), describes the relationship betweenx and the surface curvilin-
ear coordinate,s. Lastly, g(s), models the texture signal pasted to
the scene surface, which is bandlimited to a frequencyωs. As a
result, the scene geometry equations for a finite slanted plane with
complex exponential texture are as follows

Gs =

8<: z(x) = s sin(φ) + zmin

x(s) = s cos(φ) + x1

g(s) = ejωss
(1)

wherex ∈ [x1, x2], z ∈ [zmin, zmax] andφ is the angle between
the plane and the linez = zmin. The finite width of the plane is



Fig. 1. Scene model of a slanted plane, wheres is the curvilinear
coordinate,f is the focal length,θ is the viewing angle,φ is the angle
of slant,zmin andzmax are the minimum and maximum depth.

T =
x2 − x1

cos(φ)
=

zmax − zmin

sin(φ)
,

hences ∈ [0, T ]. A diagram of the scene is shown in Figure 1.
Having defined the scene geometry, a light ray arriving at(t, v)

can be related to its point of origin on the scene surface using the
(x, z(x)) coordinates as follows,

t = x − z(x) tan(θ) = x − z(x)
v

f
, (2)

where θ is the viewing angle and, assuming finite field-of-view
(FFoV), v ∈ [−vm, vm]. This relationship is shown in Figure 1.
To enforce the no-occlusion condition and make (2) a one to one
mapping, [4] places the following constraint onz(x)

f

vm
>
��z′(x)

�� = |tan(φ)| , (3)

wherez′(x) is the first derivative ofz with respect tox. Note that
[8] uses a similar framework but permits occlusions.

3. PLENOPTIC SAMPLING OF A SLANTED PLANE

Using the framework defined previously, [5] derived an exact closed-
form expression for the plenoptic spectrum of a slanted plane, with
bandlimited texture. In this derivation, the plane is constrained to a
finite width and the field of view of the cameras is finite, resulting
in a spectrum that is band-unlimited in bothωt andωv. The band-
unlimited property of the spectrum means that perfect reconstruction
of the EPI for a slanted plane, assuming complex exponential texture
in this paper, cannot be achieved. However, if we define the essential
bandwidth as the region that contains 90% of the signal’s energy and
assume the plenoptic function is bandlimited to this region, we can
reconstruct the EPI up to a certain aliasing error.

In this paper we parameterise the essential bandwidth using a
four parameter model, as presented in [5]. The essential bandwidth
model is shown in Figure 2 superimposed over the actual plenoptic
spectrum. The region covered by the model is defined as�
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wherezopt/f is the slant of the region,A is the width in theωt

direction,Ωt is maximum value inωt andΩv is the maximum value
in ωv. For a slanted planeΩt andΩv are defined as

Ωt =
ωsf

f cos(φ) − vm |sin(φ)| +
2π

T
, (4)

Fig. 2. Parameterisation of the essential bandwidth for a slanted
plane superimposed on its plenoptic spectrum. Note that the texture
signal isg(s) = ejωss + e−jωss in this example.

and

Ωv =
zmaxΩt

f
+

π

vm
, (5)

respectively. Using these fixed points, the other two parameters are
defined as

zopt =
zmax + zmin

2
, (6)

and

A =
T |sin(φ)|Ωt

zopt
+

2πf

zoptvm
. (7)

As a result the maximum spatial sampling period,∆t, for a
slanted plane with complex exponential texture is given by

∆t =
2π

A
=

2πzoptvm

vmΩtT |sin(φ)| + 2πf
(8)

and the support of the reconstruction filter,R, is defined in the
(ωt, ωv)-domain as follows

R =

�
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,
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where∆v is the finite resolution of the cameras. However, in gen-
eral, the scene surface is more complex than a slanted plane. The
next section will examine sampling a scene with a smoothly varying
surface.

4. SAMPLING COMPLEX SCENES

If we approximate the smoothly varying surface,z(x), with a set
of slanted planes, we can sample and reconstruct each plane using
the theory from the previous section. This approach results in non-
uniform sampling of the scene. The approximation of the surface
function withL slanted planes is defined as

ẑ(x) = (x − xi) tan(φi) + z(xi), for i = 1, . . . L + 1, (10)

wherex ∈ [xi, xi+1] and the angle of slant for theith plane is

φi = tan−1

�
z(xi+1) − z(xi)

xi+1 − xi

�
.

The plenoptic function of the surface defined in (10) is

p̂(t, v) =

�
p̂i(t, v), for t, v ∈ Si, i = 1, . . . L + 1
0, else

(11)



wherep̂i(t, v) is the plenoptic function for theith plane andSi is its
region of support in the(t, v)-domain.

However, we are constrained with a finite number of samples,
NT . Therefore, we need to determine the optimum slanted plane
approximation of the surface, givenNT samples, and use it to non-
uniformly samples the scene. The rest of the section focuses on dif-
ferent aspects of this approach.

4.1. The Sample Allocation Problem

The sample allocation problem can be defined in terms of minimis-
ing a distortion function givenNT samples, i.e.

min

(
LX

i=0

Di(Ni)

)
s.t.NT =

LX
i=0

Ni, (12)

whereDi is the distortion in the plenoptic domain due theith plane,
andNi is the number of samples allocated to theith plane.

4.2. The Distortion Function

The distortion function is a measure of the error in the plenoptic do-
main. It is the addition of the geometric error,γ, and the aliasing
error,α. The geometric error is due to approximating the scene sur-
face,z(x), with a set of slanted planes. The geometric error due to
theith plane is calculated as follows

γi =

vuuutZ Z| {z }
t,v∈Si

|p(t, v) − p̂i(t, v)|2 dtdv, (13)

whereSi is the region of support for̂pi(t, v) in the(t, v)-domain.
The second part of the distortion is the aliasing error due to un-

dersampling the approximation of the scene surface. In other words,
αi(Ni) is the error caused by undersampling planei with Ni sam-
ples. We assume the worst case scenario for the aliasing error, which
is twice the total energy of the plenoptic spectrum that is outside the
support of the reconstruction filter in the frequency domain. Hence

αi(Ni) =

vuuut2

Z Z| {z }
ωt,ωv /∈Ri

���P̂i(ωt, ωv)
���2 ωtωv, (14)

whereRi is the support of the reconstruction filter in the(ωt, ωv)-
domain for theith plane, defined in (9).

However, due to the complexity of the expression for the plenop-
tic spectrum of a slanted plane, we approximate the aliasing error by
assuming the spectrum decays likeK/ω outside the support region
Ri. Bearing this in mind, the integrals in (14) simplify to two re-
gions, the first region is defined as
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wherezopt,i is defined by the localzmin andzmax for ith plane.
We assume that only the energy in the second region is dependent
upon the number of samples for theith plane,Ni. Consequently the
approximation of the aliasing error is

αi(Ni) ≈
s

16πKi

Ai∆v
+

4AiKi∆v

π
+

8KiWi

∆v (Ni − 1)
, (15)

whereAi is defined by (7) for theith plane,Wi is the width of the
region in t that theith plane is visible to the cameras, andKi is
calculated by setting∆t to satisfy (8) and equating the total energy
outsideRi to 10% of the overall energy. Thus the constant is

Ki =
vmTi cos(φi)

5
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8π
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8π
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Consequently, the distortion due to theith plane is given by
Di(Ni) = γi + αi(Ni). Therefore if the approximation of the sur-
face is exact the distortion is only due to undersampling. However
if we are in an oversampling situation the distortion is due to the
geometric error of the approximation.

4.3. DeterminingNi

The sample allocation per plane,Ni, is determined by solving the
minimisation in (12) using a Lagrange multiplier,λ. Hence the La-
grangian cost function is

LX
i=1

(Di(Ni) + λNi) . (17)

Solving this minimisation, the sample allocation for theith plane,
assumingNi ≥ 1∀i, is given by

Ni =

r
8KiWi

∆vλ
+ 1. (18)

The multiplier,λ, is determined by substituting (18) into the finite
number of samples constraint in (12) to give

NT = L +
LX

i=1

r
8KiWi

∆vλ
, (19)

and then rearranging to obtain

λ =

hPL
i=1

√
8KiWi

i2
∆v (NT − L)2

. (20)

Note that this solution assumesNT > L. Therefore, substituting
(20) into (18) gives the sample allocation per plane.

4.4. Merging Planes

We approach the problem of finding the optimum approximation of
the surface from the bottom-up. Therefore, starting from an initial,
fine-grain, approximation, the optimum solution, givenNT samples,
is reached by merging adjacent planes. Adjacent planes are merged
if the overall distortion of the approximation,D, which is given by
the Lagrange cost function, is reduced. If the pair of planes in ques-
tion are merged, then the process is repeated with the next adjacent
plane. However, if the planes are not merged, we move to the next
plane and repeat the process.

4.5. Non-Uniform Sampling

Given the optimum approximation of the surface with a sample al-
location per plane, then (8) gives the maximum spatial sampling pe-
riod for each plane. However, the sample allocation does not take
into account the fact that multiple planes may be visible in a single
image. As a result, the sample rate at locationt is the maximum of
the sample rates for the planes visible in the camera’s field of view



(a)NT = 21 (b) NT = 50

(c) NT = 100 (d) NT = 200

Fig. 3. Examples of approximating a smooth surface, given a fixed
number of samples,NT . The number of planes,L, in each approxi-
mation are (a)L = 1, (b)L = 10, (c)L = 11, and (d)L = 14.

at that location, e.g. if three planes are visible, with three different
sample rates, we take the maximum of these sample rates. In doing
this we generate a sample rate profile int, which can then be used to
generate the non-uniform samples.

In terms of reconstruction, the piecewise constant sample rate
sections are reconstructed in the Fourier domain using the appropri-
ate filter. A local interpolation is used around the transition region
from one rate to another in order to smooth any discontinuities.

4.6. Adaptive Sampling Algorithm

Summarising the above, the algorithm works as follows:

Step 1. Initially split the scene surface,z(x), intoL+1 equal region
at the pointsxi, i = 1, . . . L. Then generateL slanted planes
by joining the points(xi, z(xi)) to form the approximation.

Step 2. Find the solution to the minimisation problem expressed in
(12) using (20). This results is an initial overall distortion,
Dinit, for the surface.

Step 3. Starting at planei = 1 calculate the new overall distortion,
Dnew if it and its neighbour are merged to form a new plane
and compare to the previous overall distortion:

If Lower. Merge planes and repeat with the new neighbour.

If Higher. Move to the next plane,i = i + 1.

Step 4. Using the approximation of the surface, derive the maxi-
mum sample rate required for each plane as a function oft.
This sample rate then dictates the non-uniform sampling.

The end result of the algorithm is a set of non-uniform samples based
upon the slanted plane approximation of the surface. If merging has
occurred then the approximation is non-uniform inx.

No of Samples Non-Uniform PSNR Uniform PSNR
50 18.92dB 18.00dB
100 22.25dB 21.23dB
150 23.97dB 23.16dB
200 25.23dB 24.52dB

Table 1.

4.7. Simulations

Figure 3 shows an example of approximating a surface, consisting
of quadratic pieces, using different values ofNT . For this example
the initial, fine-grain, approximation consists of 20 slanted planes,
thus the minimum number of samples is 21. WhenNT = 21 the
optimum approximation is a single plane, Figure 3(a). The figure
illustrates how the number of planes in the approximation increases
with the number of samples.

Using the same quadratic surface, Table 1 shows that the recon-
struction of the plenoptic function, using the non-uniform samples,
surpasses that of normal uniform sampling for the same number of
samples.

5. CONCLUSION

We have presented a method of non-uniformly sampling a scene,
with a smoothly varying surface function and complex exponential
texture. This sampling scheme is based on approximating the sur-
face with a set of slanted planes. We optimise the slanted plane ap-
proximation subject to the constraint ofNT samples using Lagrange
multipliers. The optimisation allocates theNT samples between the
L planes that form the approximation. Consequently, using the sur-
face approximation and sample allocation, coupled with the spectral
analysis for a slanted plane, we derive a piecewise constant sample
rate. Finally, this sample rate profile results in a non-uniform sam-
pling scheme that outperforms uniform sampling.
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