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Abstract

In this paper, we present a novel wavelet-based compression algorithm for multiview images. The

method uses a layer-based representation, where the three-dimensional (3D) scene is approximated by

a set of depth planes with associated constant disparities. The layers are extracted from a collection of

images captured at multiple viewpoints and transformed using the 3D discrete wavelet transform (DWT).

The DWT consists of the one-dimensional (1D) disparity compensated DWT across the viewpoints and

two-dimensional (2D) shape-adaptive DWT across the spatial dimensions. Finally, the wavelet coefficients

are quantized and entropy coded along with the layer contours. To improve the rate-distortion (RD)

performance of the entire coding method, we develop a bit allocation strategy for distribution of the

available bit budget between encoding the layer contours and the wavelet coefficients. The achieved

performance of our proposed scheme outperforms the state-of-the-art codecs for several data sets of

varying complexity.

Index Terms

Multiview image coding, compression, wavelet transforms, bit rate allocation.

I. INTRODUCTION

Rendering visual data is an important component of most entertainment and information services,

ranging from e-commerce to computer gaming. A recent trend in the state-of-the-art has been to combine
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image primitives with the traditional geometry-driven algorithms to achieve improved photo-realistic

results. These are also known as image-based rendering (IBR) algorithms. Examples of intensively

researched applications are 3DTV and free viewpoint TV (FTV) [1]. In FTV, the audience can choose

the viewing angle, whereas 3DTV adds a perception of depth to enhance the viewer’s experience.

One of the main challenges in IBR is data compression and transmission [2]. In a typical setup, such as

a Light Field [3], hundreds of cameras may be used to capture the scene. Therefore, to store or transmit

this data, an efficient compression algorithm is essential.

Many compression algorithms with variations in complexity, efficiency, scalability and random access

have been proposed. For instance, when encoding a 2D array of images, a popular approach [4], [5],

[6] has been to use the predictive block-based transform coding extended to the additional viewing

dimensions. Wavelet based codecs [7], [8] achieve high compression rates and naturally support scalable

bit streams at the expense of higher complexity. In addition, the lifting implementation [9] has been used

to ensure invertibility and reduce the complexity. A number of proposed approaches [10], [11], [12],

[13] exploit the geometrical structure in the scene by 3D modeling prior to encoding the data so that the

compression efficiency is improved. The bit rate allocation problem between texture and scene geometry

has, for example, been studied in [14] and [15], where the geometry is defined using a per pixel disparity

map. In our case, we model the scene using a set of constant depth planes and this requires a different

rate-distortion (RD) model to the one proposed in the literature.

We propose a novel compression algorithm for multiview images. For clarity, the problem is simplified

to the compression of a 1D array of images taken with a camera moving along a straight line. The viewing

direction of the camera is perpendicular to this line. Initially, the data is partitioned into layers, where each

layer is modeled by a constant depth plane. The redundancy of the data is reduced by using a 3D DWT

applied in a separable approach across the viewpoint and spatial dimensions, followed by quantization

and entropy coding. To achieve a high compression rate, the viewpoint transform is modified to include

disparity compensation, and is implemented using the lifting scheme. The contours of the layers are also

transmitted and can be encoded in a lossy or lossless modality.

To ensure an efficient RD performance, we also address the problem of rate allocation between the layer

contours and the transform coefficients. Given a target bit budget, the problem lies in finding the correct

ratio which will minimize the output distortion. It is shown that a closed-form solution can be obtained

when the contours are piecewise linear. In the more general case of non-piecewise linear contours, the

theoretical analysis is combined with an empirical approach to obtain the correct allocation. We also

consider an alternative strategy where a constant percentage of the total bit budget is allocated to the
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layer contours. We show that both methods lead to a compression performance which is significantly

better than the performance achieved by the H.264/AVC [16] and MVC [17] codecs.

The outline of this paper is as follows. In Section II we describe the structure and redundancy of

multiview images and introduce the layer-based representation. We give a high-level overview of the novel

compression algorithm in Section III. In Section IV we review a segmentation method used to obtain

the layer-based representation and present the compression method in Section V. The RD modeling is

outlined in Section VI. Finally, we show experimental results in Section VII and conclude the paper in

Section VIII.

II. MULTIVIEW IMAGE DATA STRUCTURE

Capturing the light rays of the entire 3D scene is a complex task due to a high amount of information

required to be recorded. The general concept of plenoptic functions [18] results in a 7D function, where

three coordinates determine the location of the viewpoint (camera in the scene), two are used to describe

the inclining angle of the light rays and one coordinate each for the time and spectral component

(color). Due to the complexity of the problem, many simplifications have been proposed to reduce the

dimensionality of this function [19].

In this work, we drop the temporal and color dimensions, thus, processing only multiple view still

monochromatic images. Further, we constrain the camera locations to a 1D array or a 2D plane1. These

concepts are known as epipolar-plane image (EPI) array and light field [3], respectively. We demonstrate

in Section VII the analysis and results for both concepts.

In the remaining part of this section, we review the EPI and light field data structures, highlight the

data redundancy and introduce the layer-based representation.

A. Epipolar-Plane Image Array and Light Field

Consider the setup in Fig. 1(a), where the scene is sampled using a pinhole camera along the viewpoint

Vx. In this case, the multiview data can be parameterized using a 3D function, known as the EPI volume:

I = P3 (x, y, Vx) , (1)

where (x, y) are the spatial coordinates of the camera located at position Vx and I is the monochromatic

intensity of the light ray passing through the focal plane and the camera center.

1The directions of the camera are perpendicular to the 2D camera plane.
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(a) (b)

Fig. 1. (a) Camera setup. The sampling camera moves along a straight line; the direction of the camera is perpendicular to

the camera location line. (b) Each point in space maps to a line in the EPI volume. Observe that the blue object is closer to

the focal plane and therefore occludes the red object. It can be shown using (2) and (3) that a data sample (x, y, Vx) can be

mapped onto a different viewpoint V ′
x with spatial coordinates x′ = x− f(V ′

x−Vx)
Z

and y′ = y.

Understanding the structure of the EPI volume is important to achieve high compression. Consider a

point in space with coordinates (X, Y, Z). This point is projected to each image along the Vx dimension

such that the intersection of the light ray and the focal plane is given by:

x =
fX

Z
− fVx

Z
, (2)

y =
fY

Z
, (3)

where f is the focal length. Observe that the spatial coordinate x is linear with respect to the camera

position and the gradient, which is also called the disparity ∆p = f
Z , is inversely proportional to the

depth. We define the set of coordinates in (2) and (3) for each point in space (X, Y, Z) as an EPI line.

Furthermore, assuming that the scene is Lambertian2, there are no occlusions and the intensity of the light

ray does not change along its path, the intensity of the EPI line is constant. This property is illustrated

in Fig. 1(b), where a point in space maps onto a line in the EPI domain.

In addition to the constant intensity along the EPI lines, observe that the occlusion ordering can also

be predicted. Recall that the disparity ∆p of an EPI line is inversely proportional to the depth. Therefore,

as shown in Fig. 1(b), when two lines intersect, the line corresponding to the larger disparity will occlude

the other.

2Light ray intensity is constant when an object is observed from a different angle.
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Fig. 2. Animal Farm [20] layer-based representation. The original dataset can be divided into a set of layers, where each layer

is related to a constant depth in scene. The dashed line corresponds to one particular EPI line. Observe that the contours of

each layer remain constant, unless there is an intersection with another layer which is modeled by a smaller depth.

The same analysis can also be applied to a light field where the scene is sampled along both the Vx

and Vy dimensions. In this case, the point of intersection of the light ray and the focal plane is given by:

x =
fX

Z
− fVx

Z
, (4)

y =
fY

Z
− fVy

Z
. (5)

Observe that in comparison to an EPI line, (4) and (5) form a 2D set of points, along which, the intensity

of the light field is constant. For clarity, in the rest of this paper we only consider the EPI volume to

present our compression method.

B. Layer-based representation

The layer-based representation is an extension of the EPI line concept. The representation partitions

the multiview data into homogenous layers, where each layer is a collection of EPI lines modeled by a

constant depth plane. Recall that the constant depth assumption implies that the EPI lines have the same

gradient and are redundant in the direction of the disparity. An example of a representation with four

layers is shown in Fig. 2.

In the proposed algorithm, the layer segmentation must also be transmitted in order to reconstruct

the data correctly. Note that given no prior knowledge of the scene geometry, the layer contours would

have to be encoded at each image viewpoint. This information would require a large number of bits and

be costly in terms of compression. However, using the fixed depth model, an unoccluded layer can be

defined by a 2D boundary on one image projected to the remaining viewpoints. To infer occlusions, just

as in the case of EPI lines, a layer will be occluded when it intersects with a layer which is modeled by
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(a) (b)

Fig. 3. Layer from the Animal Farm dataset. (a) The unoccluded layer can be defined using the contour on one viewpoint

projected to the remaining frames. The 2D contour is denoted by the red curve on the first image. (b) Occlusions can be inferred

by removing the regions where there are intersections with layers which are modeled by a smaller depth.

a smaller depth. Therefore, to fully define the segmentation as illustrated in Fig. 3(b), we simply require

the layer contour on one viewpoint, its disparity and the preceding layers corresponding to a smaller

depth.

Analogous to standard video coding, the layer-based representation defines the motion vectors used in

predictive coding. In a conventional coding scheme, motion vectors are evaluated using a block-based

approach and are encoded for each predictive frame, which has a higher encoding rate than the layer-

based representation. In addition, a block-based approach does not effectively model real data. In practice

a block often overlaps with two objects experiencing different motion. This will in turn create a large

residual error and therefore cause edges to appear blurred. The layer-based representation on the other

hand models the boundary as a smooth curve and is therefore more realistic. Finally, occluded regions

often create a large residual error and have to be intra-coded. In our case, the location of occluded regions

is explicitly known and we modify the inter-view transform to deal with these regions.

The layer-based representation is an important concept of the proposed compression algorithm and we

present an overview of the method next.

III. HIGH-LEVEL COMPRESSION ALGORITHM OVERVIEW

The high-level layout of the novel compression algorithm is shown Fig. 4. The input data is initially

segmented to obtain the layer-based representation. Each layer is assigned a global disparity, which

is losslessly encoded and transmitted. The layers are then passed to the coding stage where a disparity

compensated 3D DWT is applied to remove the redundancy. This is followed by quantization and entropy

coding of the transform coefficients. In order to reconstruct the texture at the decoder, the layer contours

May 20, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING 7

are also encoded in a lossy or lossless modality and transmitted.

Observe that for a given total bit budget, there exists a trade-off between the number of bits allocated

to encode the layer contours and the texture. This problem is solved in the RD control stage, which prior

to encoding, correctly distributes the bits between the texture and the layer contours to maximize the

output fidelity of the images. The encoding method is outlined in Algorithm 1.

Algorithm 1 Compression algorithm overview
STEP 1: Segment the multiview images to obtain the layer-based representation.

STEP 2: For a given bit budget Rt, find the correct rate allocation to encode the layer contours Rs

and texture Rx such that Rx + Rs = Rt.

STEP 3: Given the rate constraint Rs, encode the layer-contours in a lossy or lossless modality.

STEP 4: If the layer contours are encoded in a lossy modality, update the layer-based representation

such that they correspond to the encoded version.

STEP 5: Given the target bit rate Rx encode the texture in each layer.

In the following sections, we describe each of the points in more detail. First we review the segmentation

process used to obtain the layer-based representation. Then we describe the texture and contour encoding

stages. Finally, we present the RD method which correctly distributes the bit budget between the layer

contours and the texture.

Fig. 4. High-level algorithm layout. Layers are extracted in the layer-based segmentation block, and each layer is transformed

using a 3D DWT in the texture coding stage. The layer contours are encoded in a lossy or lossless modality and transmitted to

the decoder. The method includes a RD control stage, which correctly distributes the bit budget between the layer contours and

the texture to maximize the output fidelity.
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Fig. 5. An m-dimensional dataset D is partitioned into H and H. The boundary is a closed curve defined by Γ [23].

IV. LAYER-BASED SEGMENTATION

Data segmentation is the first stage of the proposed compression algorithm and is used to obtain the

layer-based representation. Here we review the segmentation algorithm proposed in [20], [21], which

achieves accurate results by taking into account the structure of multiview data. We review the method

by first describing a general segmentation problem and then show how the solution can be modified to

extract layers from an EPI volume. For more details about the method and region-based segmentation

we refer to [20], [21], [22], [23].

A. General region-based data segmentation

Consider a general segmentation problem shown in Fig. 5. The aim is to partition an m-dimensional

dataset D ⊂ Rm into subsets H and H, where the boundary which delimits the two regions is defined

by Γ (σ), with σ ε Rm−1. This type of problem can be solved using an optimization framework, where

the boundary is obtained by minimizing an objective function J :

Γ = arg min{J (Γ)}. (6)

The cost function in (6) can be defined using either a boundary or region-based approach. The boundary

methods evaluate the cost only on Γ and, hence, they are influenced by local data properties and easily

affected by noise. In turn, the region-based methods evaluate the cost function over a complete region

and they are, therefore, more robust. A typical region-based cost function [22] can be defined as:

J (Γ) =
∫
H

d (x,H) dx +
∫
H

d
(

x,H
)

dx +
∫
Γ

ηdσ, (7)

where the descriptor d (·) measures the homogeneity of each region and x ε Rm. Note that (7) has an

additional regularization term η, which acts to minimize the length of the boundary.
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The optimization problem defined in (6) cannot be solved directly for Γ. An iterative solution can,

however, be obtained by making the boundary a function of an evolution parameter τ . Consider modeling

the boundary using a partial differential equation (PDE), also known as an active contour [24]:

∂Γ (σ, τ)
∂τ

= v (σ, τ) = F (σ, τ) n (σ, τ) , (8)

where v is a velocity vector, which can be expressed in terms of a scalar force F acting in the outward

normal direction to the boundary n. The velocity vector v can be evaluated in terms of the descriptor

d (·) by differentiating (7) with respect to τ . Applying the Eulerian framework [22], the derivative can

be expressed in terms of boundary integrals:

∂J (Γ (τ))
∂τ

=
∫
Γ(τ)

[
d (x,H)− d

(
x,H

)
+ ηκ (x)

]
(v · n) dσ, (9)

where κ is the curvature of the boundary Γ and · denotes the dot product. The velocity vector, which

evolves Γ in the steepest descent direction can be deduced using the Cauchy-Schwarz inequality as:

v =
[
d
(

x,H
)
− d (x,H)− ηκ (x)

]
n. (10)

The above framework is also known as ‘competition-based’ segmentation. This is clear from (10), where

a point on the boundary will experience a positive force if it belongs to the region and vice versa, hence

evolving the contour in the correct direction. In conclusion, the general segmentation problem can be

solved by modeling the boundary Γ as a PDE and evolving the contour in the direction of the velocity

vector v.

B. Multiview Image Segmentation

In the segmentation problem for our multiview image compression method, the goal is to extract N

layers, where each layer is modeled by a constant depth Zi or the associated disparity ∆pi. Therefore,

the objective function3 can be defined as:

J =
N∑

i=1

∫
Hi

d (x,∆pi) dx, (11)

where x = [x, y, Vx].

Recall that in the ideal case the intensity along the EPI lines is constant. We can therefore define the

descriptor d (x,∆pi) to minimize the squared error along the EPI lines:

d (x,∆pi) = [I (x)− µ (x,∆pi)]
2 , (12)

3We have not included the regularization terms for the sake of clarity.

May 20, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING 10

where µ (x,∆pi) is the mean of the EPI line which passes through a point x and has a disparity ∆pi.

The aim is then to obtain the layer boundaries Γi and the disparity values ∆pi for i = 1, . . . , N by

minimizing (11). Observe that this problem contains a large number of variables and is challenging to

solve. We use the iterative solution proposed in [21] and outlined in Algorithm 2. First, the boundary of

each layer Γi and the number of layers N is initialized using a stereo matching algorithm [25]. Then the

disparity of each layer is evaluated by minimizing the squared error along the EPI lines. The problem

is subsequently solved in an iterative approach by evolving each boundary separately assuming all the

remaining layers are constant. This allows the cost function (11) to be expressed in the same format as

the general segmentation problem in (7). For example, consider optimizing the l-th layer. In this case,

the objective function can be expressed as:

J =
∫
Hl

d (x,∆pl) dx +
∫
Hl

dout (x) dx, (13)

where dout (x) = d (x,∆pi) when x ε Hi for all i 6= l. Here, the second integral is the union of the

remaining competition regions.

Using the same principles as in the general segmentation problem, the velocity vector corresponding

to the l-th layer can be expressed in terms of the descriptor functions:

vl =
[
dout (x)− d (x,∆pl)

]
nl. (14)

Note that in the above equation, the boundary is a 3D vector. Using the fact that each layer is modeled

by a constant depth plane, the velocity vector can be simplified to a 2D vector as proposed in [20]:

vl =
[
Dout (s)−D (s,∆pl)

]
nl, (15)

where nl is a 2D outward normal vector and s parameterizes the new 2D layer contour Γl. The descriptors

D (·) and Dout (·) are obtained as the sum of the old descriptors d (·) and dout (·) over the viewpoint

dimension Vx, respectively.

There are two main advantages in simplifying the evolution from a 3D to a 2D contour. First, the

approach ensures that the layer boundary remains consistent across the views. Secondly, the complexity

is reduced from evolving a 3D object to a 2D contour.

In conclusion, (15) defines a 2D velocity vector, which evolves the layer boundary towards the correct

segmentation for each layer. An example of the extracted layers using the method outlined in Algorithm

2 is shown in Fig. 2. In addition, in Fig. 6 we show a comparison between an initialized layer-boundary

using the stereo matching algorithm and the final layer contour. The obtained layers are used in the

texture coding block to efficiently reduce the redundancy of the data and achieve high compression.
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Algorithm 2 Layer extraction algorithm
STEP 1: Initialize the 2D boundary of each layer Γ1,Γ2, . . . ,ΓN using a stereo matching algorithm

(Algorithm [25] in our implementation).

STEP 2: Estimate the disparity of each layer ∆p1,∆p2, . . . ,∆pN by minimizing the squared error

along the EPI lines.

STEP 3: Iteratively evolve each layer boundary assuming the remaining layers are constant:

for l = 1 to N do

Evaluate the velocity vector vl of the l-th layer.

Evolve the boundary Γl according to the velocity vector.

end for

STEP 4: Return to STEP 2 or exit algorithm if the change in the cost (11) is below a predefined

threshold.

(a) (b) (c)

Fig. 6. The layer extraction algorithm improves the accuracy of the layer-based representation and therefore the compression

efficiency. (a) Tsukuba dataset [26]. (b) Initialized layer contour using a stereo matching algorithm [25]. (c) Layer contour after

running Algorithm 2.

V. TEXTURE AND CONTOUR ENCODING

In this section, we describe the contour and texture encoding blocks from Fig. 4. We denote with

Rs and Rx the bits allocated for encoding the contours and texture, respectively. First, the extracted

layer contours are encoded using a lossy or lossless modality to meet the given target bit budget Rs.

Then, the resulting layer segmentation is used to partition the texture from the multiview images into

the layers. The texture layers are transformed to remove redundancy in the signal using a 3D DWT

composed of two consecutive steps: the 1D disparity compensated DWT across the views and the 2D

shape-adaptive (SA) DWT across the space. To improve the efficiency of the second spatial DWT, the

inter-view wavelet subbands from each layer are recombined so that they are processed jointly. Finally,
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(a) (b)

Fig. 7. (a) Original layer contour from Tsukuba dataset [26]. (b) Quadtree prune-join piecewise linear approximation obtained

using the algorithm proposed in [27].

the wavelet coefficients are quantized and entropy coded in order to meet the allocated target bit budget

Rx. Each of these steps is explained next.

A. Encoding of the contours

The contour encoding block transmits the segmentation needed to correctly decode each layer. Recall,

from the properties of multiview data outlined in Section II, that the segmentation of a 3D layer can be

defined by a contour on one of the image viewpoints and the layer’s disparity. The input to the layer

contour encoding algorithm is therefore an array of binary images (one for each layer) and a target bit

budget Rs. A typical binary layer is illustrated in Fig. 7(a).

The 2D contours can be encoded in a lossless or lossy modality. The lossless method is used for Rs

larger than the required lossless bit budget. The problem of lossless contour encoding has been extensively

studied with the majority of the work based on Freeman chain codes [28]. Here, we use the algorithm

proposed in [29], where the boundary is differentially encoded using Huffman entropy coding.

In the case when the given Rs is below the lossless encoding rate, a piecewise linear approximation

of the layer contours is used. We use a 2D quadtree model to capture and quantize these linear segments,

where each block of the quadtree is approximated by a {0, 1} or intermediate tile. The intermediate

tile is a binary image with an edge modeled by a linear function. These quadtree coefficients are also

quantized and entropy coded. The type of tile for an arbitrary block is chosen by minimizing the cost

D (Rp)+λsRp, where D (Rp) and Rp are the distortion associated to the p-th tile and the corresponding

encoding rate, respectively.
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To encode the segmentation, we use a bottom-up approach where the quadtree is pruned whenever

the sum of the cost of the leaves is higher than the cost of their parent. The merging process iteratively

continues as long as the Lagrangian cost decreases or the complete image is represented by a single tile.

In addition, a joining scheme is used as proposed in [27], where the neighboring blocks that cannot be

pruned within the quadtree representation are joined to improve the compression performance. Fig. 7

shows a comparison between an original layer contour and its quadtree prune-join representation.

The output rate of the coding algorithm is controlled by the parameter λs, which defines the trade-off

between rate and distortion. To achieve the specified total target bit budget Rs, a bisection search [30]

for the correct λs is applied.

B. Inter-view 1D DWT

In this stage, the redundancy of the texture in each layer shown in Fig. 2 is reduced using a 1D disparity

compensated DWT along the viewpoint dimension. While any 1D DWT can be used, for simplicity we

implement the disparity compensated Haar transform. It is applied by modifying the standard lifting

equations [9] and including a warping operator W as follows:

Lo [n] =
Po [n]−W{Pe [n]}

2
,

Le [n] = Pe [n] +W{Lo [n]}, (16)

where, Po [n] and Pe [n] represent 2D images with spatial coordinates (x, y) located at odd (2n+1) and

even (2n) camera locations, respectively. Following (16), Le [n] contains the 2D low-pass subband and

Lo [n] the high-pass subband. We obtain a multi-resolution decomposition by iteration of the transform

applied to the low-pass component Le [n]. Assuming that W is invertible and the images are spatially

continuous, the above transform can be shown to be equivalent to the standard DWT applied along the

motion trajectories [8].

In both the prediction and update steps in (16), the warping operator W is chosen to maximize the

inter-image correlation. This is achieved by using a projective operation that maps one image onto the

same viewpoint as its odd/even complement in the lifting step. Using (2) and the fact that the layers are

modeled by a constant disparity, we define the warping operation from viewpoint n1 to n2 as:

Wn1→n2{P [n1]} (x, y) = P [n1] (x + ∆p (n2 − n1) , y) , (17)

where ∆p is the layer disparity.

Note that in the case of an occlusion, the DWT leads to filtering across an artificial boundary and,

thus, results in a reduced compression efficiency. To prevent this, we use the concept proposed in [31]

May 20, 2012 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING 14

(a) (b)

Fig. 8. (a) Tsukuba transform coefficients following the inter-view transform. Each transformed layer is composed of one low-

pass subband and three high frequency images. (b) Recombined layers. The view subbands from each layer are grouped into a

single image to increase the number of decompositions that can be applied by the spatial transform. Note that additional pixels

must be transmitted to correctly reconstruct the layers at the decoder. A shape-adaptive implementation is used to efficiently

deal with the irregular boundary of the occluded data.

to create a shape-adaptive transform in the view domain. The transform in (16) is modified whenever a

pixel at an even or odd location is occluded such that

Le [n] =

 Pe [n] , occlusion at 2n + 1

Ŵ{Po [n]}, occlusion at 2n
, (18)

and the high pass coefficient in Lo [n] is set to zero. In (18), the warping operator Ŵ is set to an integer

pixel precision to ensure invertibility and is set to be the ceiling of the disparity in (17). Note also that

the Haar transform in (16) is not orthonormal. To ensure correct bit allocation, we normalize the wavelet

coefficients so that the l2 norm is preserved.

C. Shape-adaptive 2D DWT

To improve the efficiency of the spatial transform, the subbands from each layer view are grouped

together into a single image and are further jointly processed. A comparison between the original and

recombined layers is illustrated in Fig. 8. Note that due to occlusions and the way in which the inter-view

transform is implemented, two or more layers may overlap in each subband. In this case, the overlapped

pixels must be separately transmitted to the decoder to achieve correct reconstruction. We emphasize,

however, that, since the segmentation is known prior to encoding, no additional overhead bits are required

for encoding the location and segmentation of these overlapping pixels.

The occluded pixels are commonly bounded by an irregular (non-rectangular) shape. For that reason,

the standard 2D DWT applied to the entire spatial domain is inefficient, because of the boundary effect.
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To improve the coding efficiency, we use the SA DWT [31] within arbitrarily shaped objects. The method

reduces the magnitude of the high pass coefficients by symmetrically extending the texture whenever the

wavelet filter is crossing the boundary. The 2D DWT is built as a separable transform with linear-phase

symmetric wavelet filters (9/7 or 5/3), which, together with the symmetric signal extensions, leads to

critically sampled transform subbands.

D. Quantization and Entropy Coding

The transform coefficients are then quantized and entropy coded. Our codec uses context adaptive

arithmetic coding to attain bit rates close to the entropy of the source.

For a given bit budget constraint Rx, the optimal bit allocation among the transform coefficients is

achieved using a method similar to EBCOT [32]. Initially, the coefficients are partitioned into blocks and

losslessly encoded by bit-plane to obtain the operational RD curves. Then, given a Lagrangian multiplier

λx, a bit allocation R∗ for each block is chosen such that the cost function J is minimized, where:

J = D (Ri) + λxRi, (19)

and (Ri, D (Ri)) is the operational rate-distortion pair associated to each block. To meet the allowed bit

budget
∑

l

R∗l = Rx a bisection search [30] for the correct multiplier λx is applied. We note that since

the operational RD curves are known, this process is not computationally expensive. Once the optimal

values R∗l are evaluated, the encoded bit streams are truncated and transmitted.

VI. RATE-DISTORTION MODELING AND OPTIMIZATION

We now study the correct distribution of the bit budget between encoding the layer contours and the

DWT coefficients so that the overall RD performance is improved. The problem is defined as follows:

given a target bit budget Rt, the goal is to find an allocation which will minimize the output distortion:

[Rs,Rx] = argmin {D (Rs,Rx)}

such that Rs + Rx ≤ Rt, (20)

where Rs and Rx are the number of bits allocated to the layer contours and texture, respectively and

the distortion is measured in terms of the sum of squared differences (SSD) between the input and the

output.

Note that the distortion D (Rs,Rx) is jointly dependent on the contour and texture encoding. A lossy

contour encoding modifies the layer segmentation, which, in turn, changes the disparity parameters used
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in the texture coding. Using the modified disparity parameter leads to an inefficient transform across the

viewpoints. To solve this optimization problem, firstly, the upper bound of the distortion due to the lossy

encoding of the layer contours is evaluated. Then, the total distortion is approximated as the sum of the

distortion due to encoding the texture and the upper bound of the distortion of the layer contours.

In the following, we derive the models of the RD relations for the layer contours and texture encoding.

Then, the constrained optimization problem is solved using Lagrangian multipliers. It is shown that a

closed-form solution can be obtained when the layer contours are piecewise linear. For that reason and

in order to obtain the rate allocation for arbitrary (non-piecewise linear) contours, the theoretical analysis

is combined with an empirical approach, as discussed in Section VI-D.

A. RD Texture Modeling

To model the texture, we assume the obtained transform coefficients are independent Gaussian variables

with the RD relation [33]:

D (R) = σ22−2R, (21)

where σ2 is the variance. Therefore, the total distortion due to encoding the texture is modeled by:

Dx (Rx) =
L∑

j=1

Kj∑
i=1

CjNijσ
2
ij2

−2Rij
x , (22)

where Rij
x is the rate allocated to each transform coefficient, σ2

ij is the variance of the coefficients and

Nij is the number of transform coefficients. The subscript ij corresponds to the parameter of the i-th

subband in the j-th layer. L denotes the total number of layers and Kj is the number of subbands in the

j-th layer. The scaling factor 0 ≤ Cj ≤ 1 is introduced in order to model occlusions. Recall that,

Rx =
L∑

j=1

Kj∑
i=1

NijR
ij
x , (23)

is the total bit budget allocated to the texture. Note also that the parameters Cj and σ2
ij can be estimated

using the original data and transform coefficients, respectively.

B. RD Layer Contour Modeling

The operational RD function of the layer contours is modeled by computing the upper bound of the

distortion for a given bit budget.

To obtain the RD bound, first, recall that the contour of a layer at each image viewpoint is constant

unless occluded. Using this property, we upper bound the distortion on a 2D image and scale it to evaluate

the distortion in a 3D layer.
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(a) (b)

Fig. 9. (a) 2D Slice of a layer with a piecewise constant segmentation. Here, x represents the original vertices and x̂ the

location of a quantized vertex. The shaded region denotes the error due to quantizing the vertex x1. (b) Shaded region outlines

the error in a 3D layer, which is obtained by propagating the error from the first viewpoint.

Consider a 2D slice of a layer L1 as shown in Fig. 9(a). Assume that the contour is piecewise linear

and has a fixed number of vertices (also known as a polygon model). The distortion can be upper bounded

by quantizing the locations of the vertices:

e2 ≤ T 2V ζ22−
Rs
2V , (24)

where V is the number of vertices, T is the size of the bounding image, ζ = max{L1} ≤ 255 is the

maximal amplitude of the texture and Rs is the number of bits allocated to encoding the contour. The

derivation of this bound is shown in Appendix A. As illustrated in Fig. 9(b), the error which is denoted

by the shaded region can be scaled by the total number of images to compute the distortion in a 3D

layer. The total distortion due to encoding L layers can therefore be upper bounded by:

Ds (Rs) ≤
L∑

j=1

T 2
j VjMζ2

j Cj2
− R

j
s

2Vj , (25)

where M is the total number of images and the subscript j denotes the parameter corresponding to the

j-th layer. Furthermore,

Rs =
L∑

j=1

Rj
s, (26)

is the total encoding rate of the layer contours.

Note that the model in (25) is evaluated by upper bounding the number of coefficients affected by the

quantization of the layer contours. During coding, these pixels are classified to an incorrect layer and

therefore create high-pass transform coefficients. In turn, this will add to the texture distortion when the

coefficients are quantized. We model this distortion by scaling the number of pixels by ζj , which, in the
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worst case scenario, is the maximal value of the texture pixels equal to 255. At high bit rate, however,

observe that the rate allocation between the texture and the layer contours is independent of the scaling

ζj and only determined by the exponent of the RD functions [33].

Note also that the analyzed upper bound of the distortion in (25) does not rely on the quadtree

algorithm used in Section V-A. However, as shown in [27], the RD performance is accurately modeled

by our analysis, especially at high bit rates. In the continuation, the derived RD relations are used to find

the optimal bit budget distribution between the layer contours and texture encoding.

C. RD Optimization - piecewise linear layer contours

We use Lagrangian multipliers [34] to find the bit rate distribution between the layer contours and

the texture. Consider approximating the total distortion as the summation of the texture (22) and layer

contours distortion (25):

D (Rx,Rs) ∼ Dx (Rx) + Ds (Rs)

=
L∑

j=1

Cj

Kj∑
i=1

Nijσ
2
ij2

−2Rij
x + T 2

j VjMζ2
j 2
− R

j
s

2Vj

 , (27)

where Rx and Rs are defined in (23) and (26), respectively. For a given bit budget Rt, the encoding

rate must satisfy the following inequality:

Rx + Rs ≤ Rt. (28)

The above problem can be solved using the reverse water-filling algorithm [33] based on Lagrangian

multipliers. Assuming a high rate analysis, which implies that all the rates are positive, we obtain the

following solutions:

Rx =
L∑

j=1

Kj∑
i=1

Nij

(
1
2

log2

[
2 ln (2)Cjσ

2
ij

]
+

α

2

)
(29)

and

Rs =
L∑

j=1

(
2Vj log2

[
ln (2)CjMT 2

j ζ2
j

2

]
+ 2Vjα

)
, (30)

where the constant α is defined by:

α =

 L∑
j=1

Kj∑
i=1

Nij

2
+ 2Vj

−1Rt −
L∑

j=1

Kj∑
i=1

Nij

2
log2

[
2 ln (2)Cjσ

2
ij

]
+ 2Vj log2

ln (2)CjMT 2
j ζ2

j

2

 .

The derivation of these rate distribution equations is shown in Appendix B.

In the above analysis and RD optimization, we assume the layer contours are piecewise linear. The

closed-form solutions in (29) and (30), therefore, depend on the number of vertices. Next, we generalize

the rate allocation for encoding arbitrary layer contours.
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D. RD optimization - arbitrary layer contours

The bit allocation strategy in (29) and (30) requires the knowledge of the number of vertices Vj in

each contour. Given a set of arbitrary contours (non-piecewise linear) this parameter also depends on

the target bit budget. For example, at low rates only a coarse approximation should be used and this

corresponds to a small number of vertices, whereas at high rates an accurate reconstruction is required.

To find the correct allocation for non-piecewise linear contours we use the following approach: first

we obtain a number of piecewise linear approximations of the layer contours for different error margins.

We illustrate two versions of the resulting approximations in Fig. 10(a) and (b). These approximations

are obtained using a fast algorithm proposed in [35]. The approach initializes a vertex at each point on

the contour, which are then iteratively removed until a maximum allowed distortion is achieved.

For each approximation we obtain a different Vj and use it to evaluate the closed-form rate allocation

curves in (29) and (30). The resulting rate allocation curves are illustrated in Fig. 10(c). Here, one rate

allocation curve is due to the number of vertices in Fig. 10(a) and the other to the Vj obtained from Fig.

10(b).

We also show in Fig. 10(d) the PSNR achieved by the complete compression algorithm when the

approximations in Fig. 10(a) and Fig. 10(b) are used to infer the bit allocation. The figure shows that

the bit allocation obtained using the coarse approximation leads to better overall performance at low

rates, and vice versa at high rates. Therefore, the problem is to choose the right approximation and

thus the right number of vertices given the total bit budget. To solve this, a small number of bit rates

are tested and for each of these rates various approximations are considered. The corresponding bit

allocations, obtained using (29) and (30), are encoded using the complete compression algorithm. The

operational points with the least distortion are then retained and the intermediate bit budgets interpolated.

This process is illustrated in Fig. 11. In this example (see Fig. 11(a)) three bit budgets are chosen (i.e.,

0.03bpp, 0.07bpp and 0.11bpp), and, since there are two possible rate allocation curves, we end up with

six operational points. For each point the complete compression algorithm is executed leading to six

PSNR values (D1, D3, . . . , D6) shown on the plot. We pick D1 because D1 > D2, similarly D3 and

D6 are chosen since D3 > D4 and D6 > D5. The complete bit allocation strategy is obtained by linear

interpolation of the three rate allocations related to D1, D3 and D6. This is shown in Fig. 11(b).

In addition to the vertices Vj , observe that the rate allocation equations also require the knowledge of

the number of layers L. In our approach we directly use the number of layers extracted using the method

outlined in Section IV. In theory, this number should also depend on the total bit budget. However, we
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(a) (b)

(c) (d)

Fig. 10. Two piecewise linear approximations of a layer in the Tsukuba dataset [26] and the corresponding rate allocation

curves for each model. (a) Approximation obtained using a maximal perpendicular error of 1 pixel. (b) Approximation obtained

using a maximal perpendicular error of 3 pixels. (c) Two closed-form rate allocation curves corresponding to each approximation

obtained using (29) and (30). Here, the x-axis corresponds to the total bit budget Rt and the y-axis to the rate allocated to the

segmentation Rs. (d) The obtained PSNR curves using the rate allocation curves in (c).

have evidence from [36] that at bit rates of interest the number of layers provided by the method is

correct in the RD sense.

VII. EXPERIMENTAL RESULTS

We now evaluate the performance of our compression codec. To comprehensively test the algorithm,

four EPI datasets are used as shown in Fig. 12: Animal Farm [232× 624× 16] from [20], Tsukuba

[284× 382× 4], Teddy [368× 352× 4] and Doll [544× 608× 4] (the last three from [26]). In addition,

to show that the proposed method naturally scales to the additional viewpoint dimension, we also present

the Tsukuba Light Field [272× 368× 4× 4] results. Note that the datasets vary in geometric and texture

complexity. Teddy has a wide range of disparities, whereas Tsukuba and Animal Farm can be well

approximated using a small number of depth planes. In addition, the data vary in terms of the number

of views and the spatial resolution. Without loss of generality, only the monochromatic components of
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(a) (b)

Fig. 11. Proposed approach to obtain the rate allocation curve for arbitrary layer contours. (a) A number of total bit budgets

are chosen and the points which lie on the closed-form rate allocation curves are encoded. For each bit budget, the allocation

which corresponds to the least distortion is retained. (b) The intermediate points are subsequently interpolated.

(a) Animal Farm [232× 624× 16] (b) Teddy [368× 352× 4]

(c) Tsukuba EPI [284× 382× 4] (d) Doll [544× 608× 4]

Fig. 12. Multiview image analysis datasets.

the images are encoded. The performance analysis is separated into two subsections. First, the accuracy

of the proposed bit budget allocation strategy between the layer contours and the texture is presented.

Then, the RD optimized codec is compared to the state-of-the-art H.264/AVC [16] and MVC [17] coding
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(a) (b)

Fig. 13. (a) Experimental and theoretical RD performance when encoding a synthetic dataset [512× 512× 4] with one layer

and a background shown in (b). The layer contour is piecewise linear and contains 79 vertices. The vertices are labeled with

blue crosses.

algorithms.

A. RD modeling evaluation

In this subsection, the performance of the RD optimization strategy in bit rate distribution between the

layer contours and the texture is analyzed. First we verify distortion model in Section VI-C and then the

proposed rate allocation scheme in Section VI-D for arbitrary layer contours.

Consider a synthetic dataset in Fig. 13(b) consisting of one layer and a background. The layer contour

contains 79 vertices and the texture is linear with an additive Gaussian signal. We verify the RD bound

in (27) by encoding the multiview images using the proposed algorithm, where the rate allocation to

encode the layer contours and the texture is obtained using (30) and (29), respectively. The experimental

and theoretical RD curves are shown in Fig. 13(a). These results show that the distortion model closely

matches the experimental results.

To verify the rate allocation strategy when encoding arbitrary (non-piecewise linear) layer contours

we operate as follows. First we encode the dataset using the outlined approach. Referring to Section

VI-D we use three piecewise approximations and five bit budgets to derive the rate allocation curves for

each dataset. The overall RD performance is then compared to an exhaustive scheme where all possible

combinations are considered. A RD comparison of the proposed approach and an exhaustive search is

shown in Table I, where we show that except for low bit rates, our method matches the performance of

the exhaustive search.

In addition we also show a comparison of proposed allocation strategy and the lossless scenario in
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TABLE I

RD PERFORMANCE COMPARISON BETWEEN THE PROPOSED RATE ALLOCATION METHOD AND AN EXHAUSTIVE SEARCH.

Dataset Tsukuba Teddy

Rate/bpp 0.05 0.1 0.2 0.3 0.056 0.1 0.2 0.3

Proposed method/dB 26.65 29.632 33.17 35.32 27.93 29.98 33.01 34.83

Exhaustive search/dB 26.73 29.634 33.17 35.32 28.05 30.05 33.01 34.85

(a) Tsukuba EPI (b) Teddy

Fig. 14. A comparison of the proposed allocation strategy with the lossless and block-based coding of the layer contours. In

the lossless case the layer contours are encoded using the Freeman algorithm. In the block-based approach the layer contours

are encoded using the quadtree prune-join scheme, where the minimal block size is set to 4× 4 pixels and no intermediate tiles

are used. This representation is losslessly encoded over all the bit rates. In (a) the Tsukuba layer-based representation is simple

and requires a small number of bits. Therefore, beyond a bit rate of 0.12bpp the proposed method encodes the layer contours

in the lossless modality and the two curves converge.

Fig. 14. In the lossless case, the segmentation is encoded using the modified Freeman algorithm at all

bit rates. Observe that at a PSNR of 29dB the proposed approach provides a bit rate saving of 20%

when encoding Teddy. We note that due to the layer contours being more irregular and the representation

having a larger number of layers, the improvement of the proposed approach is higher on Teddy than

Tsukuba. We also compare the proposed approach to a block-based coding strategy. In this case the layer

contours are encoded using the quadtree prune-join scheme where the smallest block size is 4× 4 pixels

and can only be represented using a 0 or 1 tile (with no intermediate tiles). The representation is then

losslessly encoded over all of the bit rates. This type of approach is simpler but less effective than our

solution since there is no optimization between the texture and the layer contours.

In conclusion, the presented results in Fig. 14 and Table I support the proposed rate allocation strategy.
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We note that although only Teddy and Tsukuba results have been shown, Doll and Animal Farm datasets

show a similar pattern.

B. Compression Comparison

In this section, the performance of the proposed algorithm is compared to the state-of-the-art H.264/AVC.

To encode the data, the multiview images are treated as a set of video frames along the temporal dimension

and they are compressed using the High Profile. We use the 2 pass encoding mode with the hexagonal

search and quarter-pixel precision motion estimation settings. All macro-block partitions are considered

and the trellis RD optimization is applied during the final encoding of a macro block. In addition the

early SKIP and coefficient thresholding on P-frames settings have been disabled. We specify the number

of B-frames used in each dataset in Fig. 15. A quantitative comparison of the proposed method and

H.264/AVC is shown in Fig. 15. In addition to the proposed rate allocation strategy, we include the

results of a fixed allocation, where a constant 10% of the total bit rate is allocated to encode the layer

contours. Note that that the fixed allocation strategy has a lower complexity and is an approximation

to the proposed method. In this scheme, the number of bits used to encode the segmentation is set to

Rs = 0.1Rt, and this is an approximation of a typical curve obtained in Fig.11(b).

The results show that at low bit rates the proposed codec achieves a better RD performance on all

datasets. The gains are different and they are influenced by the accuracy of the layer segmentation

algorithm outlined in Section IV. For example, in the Tsukuba EPI dataset, our proposed algorithm

achieves an improvement of almost 3dB at a bit rate of Rt = 0.05bpp, whereas, in case of Teddy, this

gain is around 2dB. Moreover, observe that the performance of the alternative allocation strategy is similar

to the proposed approach, with a maximal PSNR reduction of 0.13dB and 0.2dB in case of Tsukuba EPI

and Teddy, respectively. To show that the proposed algorithm naturally scales to an additional viewpoint

dimension, we present the Tsukuba Light Field results in Fig. 15(e). In this case, to obtain a more fair

evaluation, we compare our results to the H.264/MVC implementation specialized for multiview video.

In comparison our method attains a bit rate saving of 40% at a PSNR of 30dB. The qualitative results

are shown in Fig. 16.

Regarding high rate encoding, it is shown that the proposed algorithm is competitive with H.264/AVC

and MVC. Analyzing Animal Farm and Tsukuba, the proposed codec achieves better RD performance

over the complete range of bit rates. In these cases, the layer based representation captures the 3D scene

efficiently and the segmentation is accurate. Indeed, the data fits our designed representation and seems

to truly consist of layers. Additionally, there are a large number of occluded regions, which our algorithm
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(a) Tsukuba EPI (b) Teddy

(c) Doll (d) Animal Farm

(e) Tsukuba Light Field

Fig. 15. Quantitative comparison of the proposed algorithm with H.264/AVC and MVC. In (a), (b) and (c) H.264/AVC encodes

the dataset with one I-frame, two P-frames, and one B-frame. In (d) one I-frame, eight P-frames and seven B-frames are used.

Regarding the proposed method, we apply a maximal number of decompositions in the inter-view DWT.

deals with efficiently. On the other hand, H.264/AVC attains better results when encoding Teddy at higher

rates. In this case, the 3D structure of the scene is complicated with a large number of disparities which

are not captured effectively by the layer-based representation. Hence, the segmentation errors create

high-pass transform coefficients, which degrade the performance of our method.

Regarding the complexity of the proposed method, we note that the most computationally intensive

stage is the layer-based extraction which uses a level-set method to evolve the layer contours. This

process, however, can be implemented offline with the obtained layer contours being used to compress

the data for different bit budgets. The complexity of the encoding method itself is determined by the
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(a) (b)

(c) (d)

Fig. 16. Qualitative comparison of the proposed algorithm with H.264/AVC and MVC. (a) Animal Farm encoded using

H.264/AVC at 0.024bpp (PSNR 28.93dB). (b) Animal Farm encoded using the proposed algorithm at 0.021bpp (PSNR 32.14dB).

(c) Tsukuba Light Field encoded using H.264/MVC at 0.056bpp (PSNR 27.53dB). (d) Tsukuba Light Field encoded using

proposed algorithm at 0.052bpp (PSNR 29.77dB).

separable wavelet transform which is O(N), where N is the total number of pixels in the dataset.

In conclusion, the presented results have shown that the proposed algorithm achieves an improved RD

performance at low rates and is competitive at high rates in comparison to H.264/AVC and MVC.

VIII. CONCLUSION

We presented a novel compression algorithm for multiview images. A fundamental component of the

method is the layer-based representation, which partitions the data into layers modeled by a constant depth

plane. Initially, the contours which outline each layer are encoded in a lossy or lossless modality. Then,

each layer is efficiently transformed using a separable 3D DWT, first using a 1D disparity compensated

DWT across the views, followed by a 2D SA DWT along the spatial dimensions. Finally, the transform

coefficients are quantized and entropy coded using a context adaptive arithmetic coder. To improve the RD
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performance, we proposed two bit rate allocation schemes which correctly distribute the rate between the

transform coefficients and the layer contours. Experimental results have shown that the proposed algorithm

achieves improved RD performance in comparison to H.264/AVC and MVC on several datasets and for

a wide range of bit rates. Future research includes making the algorithm more robust to segmentation

errors and extending the codec to encode multiview videos.
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APPENDIX A

PROOF OF (24)

Consider a polygon, bounded by a box of size T having V vertices. The distortion bound is derived by

quantizing the vertex locations for a given bit budget of R bits, where each vertex is, therefore, allocated
R
V bits. This corresponds to quantizing the x and y locations with a step-size ∆ = T2−

R

2V . The maximal

quantization error ε along each dimension can be upper bounded by:

ε ≤ ∆
2

=
T

2
2−

R

2V . (31)

Therefore, using Pythagoras, the maximal distance to the original vertex can be upper bounded by
T√
2
2−

R

2V . Since each side of the polygon is bounded by T
√

2, the number of pixels affected by quantizing

the vertices is bounded by T 2V 2−
R

2V .

Denote with ζ the maximal amplitude of the texture in the polygon. Assuming the texture is set to

zero in the quantization error regions, the total distortion can be upper bounded by:

e2 ≤ ζ2T 2V 2−
R

2V , (32)

which coincides with (24).
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APPENDIX B

PROOF OF (29) AND (30)

Here, we prove the optimum rate distribution between segmentation and texture in (29) and (30). The

cost function to be minimized is defined by:

D (Rx,Rs) ∼ Dx (Rx) + Ds (Rs)

=
L∑

j=1

Cj

Kj∑
i=1

Nijσ
2
ij2

−2Rij
x + MT 2

j Vjζ
2
j 2
− R

j
s

2Vj

 , (33)

where Rx and Rs are defined as in (23) and (26), respectively. The minimization is subject to a bit rate

constraint:

Rt ≥ Rx + Rs (34)

=
L∑

j=1

Kj∑
i=1

NijR
ij
x +

L∑
j=1

Rj
s. (35)

The constrained optimization can be transformed into an unconstrained one using Lagrangian multipliers,
where the new objective function to be minimized is given by:

J (Rx,Rs, λ) =

L∑
j=1

Cj

(
Kj∑
i=1

Nijσ
2
ij2

−2R
ij
x + MT 2

j Vjζ
2
j 2

−
R

j
s

2Vj

)
+ λ

(
L∑

j=1

Kj∑
i=1

NijR
ij
x +

L∑
j=1

Rj
s −Rt

)
. (36)

The minimum is obtained by partially differentiating the cost function with respect to the free variables

and setting the derivative to zero:

∂J

∂Rij
x

= −2 ln (2)CjNijσ
2
ij2

−2Rij
x + λNij = 0, (37)

∂J

∂Rj
s

= − ln (2)
2

CjMT 2
j ζ2

j 2
−R

j
s

2Vj + λ = 0. (38)

Therefore,

Rij
x =

1
2

log2

[
2 ln (2)Cjσ

2
ij

]
− 1

2
log2 λ, (39)

Rj
s = 2Vj log2

[
ln (2)CjMT 2

j ζ2
j

2

]
− 2Vj log2 λ. (40)

Consider that the total Lagrangian cost is minimized when the bit rate constraint is active:

Rt =
L∑

j=1

Kj∑
i=1

NijR
ij
x +

L∑
j=1

Rj
s. (41)

Substituting (39) and (40) into the above equation and solving for log2 λ we obtain the following:

log2 λ = −

(
L∑

j=1

[
Kj∑
i=1

Nij

2
+ 2Vj

])−1(
Rt −

L∑
j=1

[
Kj∑
i=1

Nij

2
log2

[
2 ln (2) Cjσ

2
ij

]
+ 2Vj log2

ln (2) CjMT 2
j ζ2

j

2

])
.

(42)
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We denote with α = − log2 λ. Substituting (39) and (40) into (23) and (26), we obtain the following

solutions:

Rx =
L∑

j=1

Kj∑
i=1

Nij

(
1
2

log2

[
2 ln (2)Cjσ

2
ij

]
+

α

2

)
, (43)

and

Rs =
L∑

j=1

(
2Vj log2

[
ln (2)CjMT 2

j ζ2
j

2

]
+ 2Vjα

)
, (44)

which coincides with the layer contour and texture rates in (29) and (30), respectively.
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