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Symmetric and a-symmetric Slepian-Wolf codes
with systematic and non-systematic linear codes
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Abstract—We propose a constructive approach for distributed source coding approach can reach the Slepian-Wolf bound and
source coding of correlated binary sources using linear channel s therefore optimal.

codes that can achieve any point of the Slepian-Wolf achievable Notice that similar approaches have recently been proposed

rate region. Our approach is very intuitive and can be used . - .
with systematic and non-systematic linear codes. Moreover, the in [7], [8] and [9]. Although our own approach is relatively

proposed coding strategy can easily be extended to the case ofimilar in spirit to the one in [7], our scheme can also be

more than two sources. used with non-systematic codes, whereas their technique can
Index Terms— Distributed source coding, Slepian-Wolf theo- 0”'¥ bg used with systematic codes. Note that 9009' capacity
rem, symmetric encoding, linear channel codes. achieving LDPC codes are usually non-systematic. In [8]

and [9], iterative decoding procedures are proposed in order
to decode the two correlated blocks simultaneously. Their
main strategy is to apply the standard sum-product algorithm
HE Slepian-Wolf theorem [1] states that separate enco@ressage-passing decoding [10]) on an extended factor graph,
ing of the outputs of two correlated sources can be asrresponding to two standard LDPC decoders connected
efficient as joint encoding, assuming that the two compressimlough correlation nodes modeling the joint distribution be-
signals can be jointly decoded. The achievable rate region fareen the sources. In Section Ill, we show that our approach
such a system is given byRx > H(X|Y), Ry > H(Y|X) does not require the use of such extended graphs since our
andRx + Ry > H(X,Y). methods only needs to decode one single block (the difference
Although this theoretical result has been known for abopgttern). A standard iterative decoding scheme similar to the
three decades, it is only recently that practical coding apne proposed in [5] can therefore be used in our case. Our
proaches have been proposed. In [2], a first coding technicagproach can thus be seen as an intuitive extension of the
using channel coding principles was introduced. Practicasymmetric approach proposed in [5] in order to achieve the
designs mainly based on Turbo and LDPC codes have siredire Slepian-Wolf achievable rate region.
been presented in several other papers (see [3], [4], [5] for

example). Most of these approaches focus on the asymmetfic A siMPLE EXAMPLE WITH THE HAMMING (7,4) CODE
scenario, where one of the two sources is transmitted perfectl

to the receiver. matrix is qiven by-

For practical applications, it might be necessary to have 9 y:
more flexibility in the repartition of the bit-rates between 0001 1 11
the encoders. In [6], Pradhan and Ramchandran proposed H=| 011001 1. Q)
a technique based on their original work (DISCUS [2]) in 101 0101
ordgr to achleve any point of the Slepian-Wolf achlevable ra\tﬁ(ﬁ know that a codeword belongs to the Hamming cod
region. Their method creates two sub-codes of a single channe o . )

o L L and only if its syndrome is equal to zero:

code by splitting the original generator matrix in two. Each
encoder uses then one of these sub-codes to encode its data. sy, =HzT =0 < zeC. )

In this letter, we propose a constructive approach that allows o )
for a flexible repartition of the transmission rates betweeH'® Minimum distance between any two of thiecodewords

the encoders. Our technique uses a single linear channel c8biEhe Hamming code is three. This code is therefore able to
that can be non-systematic. The performance of our appro&Qrect up to one bit error per codeword. Assumeis the
depends only on the quality of the channel code used. Actuafjjfor pattern corresponding to an error at bit positige; has

the two correlated sources can be seen respectively as $ieVS and onel at positioni). We definey =z & ¢; where
input and the output of a certain channel used to model théir corresponds to the binary addition. This codewgrdoes
correlation. We refer to this virtual channel as trarelation clearly not belong ta since its distance from is equal to
channelof the two sources. If we can find a code that achiey¥€- Its syndrome is given by:

the capacity of thicorrelation channelthen our distributed 5y = Hy' =H(z @ e;)T =HeT @ He? =HeT.  (3)

I. INTRODUCTION

Xne consider the Hammin@, 4) codeC whose parity check

The authors are with the Communications and Signal Processing Groyge can therefore see that the syndrome of an erroneous
Electrical and Electronic Engineering Department, Imperial College Lon- d dd d d h iginal cod db |
don, Exhibition Road, London SW7 2AZ, UK (e-mail§nicolas.gehrig, codeword does not depend on the original codeword but only

p.dragottt @imperial.ac.uk). on the error pattern. This means that if we changeithebit
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of all the codewords of, this produces 16 new codewords, all  Ill. CONSTRUCTIVE APPROACH USING ANY LINEAR
having syndromede!. This new set of codewords is called CHANNEL CODE

coset number and has the same properties @s(coset 0),  aAssume we have afm, k) binary linear code with parity
that is, the minimum distance between any two codewordsdfeck matrixH in its reduced form such thal = [H, H,)
still three. All the2” possible 7-bit blocks are thus distributedyhereH, andH., are of size(n—kx k) and(n—k x n—k)

in 8 distinct cosets. Notice that this Hammi(g 4) code has yegpectively. Assume without loss of generality tEt is non

a particular structure such that the syndrome of an erroneQyisqular. Notice that if the code is systematic, we know that

codeword gives the binary representation of the error positiqpe generator matriG is of the form:G = [I,, P], whereP

or similarly, the coset number. . _is of size(k xn—k). The parity check matri¥l has to satisfy:
Consider now two discrete memoryless uniformly disqo” — 0 and can therefore be given B = [-P7 I, ]

tributed 7-bit binary random variablesandy, correlated such ¢y, is thus simply the identity matrix in that case. o

that their Hamming distance is at most ong;(z,y) < 1).  AssumeC is able to correct up td/ errors pern-bit code

Assume thatr and y belong to cosets and j respectively. piock. We know that the following relation must hold:
The difference between andy is given by the error pattern u
ex =« @y (x andy differs at positionk). We know that the ek n .
syndromes ofr andy are given bys, = HzT = He! and 27" 2 Z j (sphere packing bound) ~ (6)
sy = Hy" = He respectively. We can see that: 7=0
' This codeC generatef”* cosets each containir2f’ code-
T _ T _ T T

sp=Hep =H(z®y)" =Ha" @ Hy' =s:®sy- () words of lengthn. We know thatz belongs to the coset
This result shows that knowing only the syndromescaind such thats, = Ha" = He] (e; is the coset leader of coset
y, we can retrieve the syndrome of their difference pattern angmberi, i.e., the codeword with minimum weight).
therefore, the bit position where they differ. Let z; be a binary block of lengti represented as:; =

Our coding technique can now be presented as follows: b; ¢i], wherea;,b; andg; are of lengthk,, k» andn—k
Assume the following block representations fary andH:  respectively k; andk; are chosen such that their sum is equal

to k). The syndrome of;; is defined ass; = Hi[a; b;]7 @

v=lra m] Y=l wl H=[H, H] 6 g1
where the first and the second blocks are of lengind3 ~ Consider now twan-bit blocks z, and,, correlated such
respectively. The syndromes ofandy are computed at their that their Hamming distancéy (21, z2) is at mostn (Assume
respective encoders as; = Hz” = H,zl @ H,z! ands, = that M > m). Our distributed coding strategy consists in
Hy” = H,y? & Hyy?. Encoder 1 transmits, together with sending onlyla; s{] and[b. s3] from the encoders 1 and
a subset of;,,. Encoder 2 transmits, together with the subset 2 respectively. The transmission bit-rates are therefore given
of y, which is complementary to the one chosen by the firby: 21 = n — ks bits andR; = n — k; bits, corresponding to

encoder. For example, as presented in Figure 1, the encodértotal of2n — & bits.
could send{z; =z s.]and encoder 2fys s sT At the receiver, we lete; correspond to the “difference

y] pattern” betweerr; andx, as:eq = 1 ® x2. We know that
the syndrome ot is given bys, = Hel = H(27 @ 21) =
s1@s2. We can now retrieve the error patterpcorresponding
X4 to this syndromes; using one of the following techniques: If
y4 the code is not too large, a simple lookup table storing the
ya Sy > corresponding pattern error for each possible syndrome can
be used. For larger code, an iterative method has to be used.
Fig. 1. Example of distributed source coding of two correlated 7-bit blockkJsing an iterative decoding scheme such as the one proposed
Only the gray squares are transmitted. in [5], we can recovek, as the closest codeword to the all
zero sequence satisfying the syndrome Notice that this
At the decoder, the syndrome of the difference patteiterative decoding approach is particularly suited for LDPC
betweenr andy is obtained by computing the sum of the twaodes which are amongst the best block codes known for
syndromess, & s,,. Using the corresponding error pattern, thenemoryless channels [10].
missing bits ofz, and y, can easily be retrieved. Finally, Knowing the difference pattern;, the missing bits of the
x, and y, are obtained asbe = H;l(sz @ H,2I) and k first bits of x; and z, are easily obtained asa, b1] =
yl =H, (s, ® Hayl). [a1  bo] @ ek, wheree!; corresponds to thé first bits of e,.
Sincex andy are uniformly distributed, we havei (z) = We know that the syndrome af; corresponds tos; =
H(y) = 7 bits. We know thaty can take 8 different equiprob- Hy[a; b;]7 @ Haqf. Let z; be defined asz; = s; @
able values for a specific. Hence,H (y|z) = H(z|y) = 3 Hjyla; b1]T. We can now retrieve;; by computing:q! =
bits. The joint entropy ofz and y is therefore equal to H;'z;. Notice thatH,' can be obtained using Gaussian
H(z,y) = H(xz) + H(y|z) = 10 bits. Our coding scheme elimination and that, i€ is systematic, we can chookEsuch
uses 6 bits to send the two syndromes and a total of 4 bitgtH, = I andg; = z{. The inversion of, is actually done
to send the two complementary subsetscgfand y, and is only once (off-line) and does not introduce extra complexity
therefore optimal. to the decoding phase. This inversion is the one that is usually

Xa Sx

Encoder 1 | X1 , X2, X3
Encoder2 | y1 |
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k first bits

done in order to compute the generator matrix from a parity ,
check matrix. i

Knowing ¢1, we have now completely recovered and we i
can easily obtain:; aszs = 21 $ eq. We can summarize our T
coding approach as follows: -

X1
X2
X3

Proposition 1: AssumeX andY are two binary sequences
of length n, correlated such that their Hamming distance is
at mostm. Consider an(n, k) linear channel cod€ that can
correct up toM > m errors pern-bit block. The following
distributed coding strategy uses a totaRaf- & bits to encode
the two Se_quences and is sufficient to allow for a perfeEltg. 2. Our encoding strategy fdr correlated binary sources. Each encoder
reconstruction of them at the decoder: sends the syndrome and a subset of the firbits of their input block.

« Send the syndromes of andY from their respective

encoders.

« Send only complementary subsets of their firsbits. The decoding method used here is similar to the one

In terms of performance, we can say that the ability Qfiesented in the previous section. The difference pattern of
our distributed source coding technique to work close to thg,qch pair of consecutive blocks is retrieved by running the
Slepian-Wolf bound only depends on the quality of the channgbngard iterative decoding method with the sum of the two
code used. More specifically, iX" and Y are uniformly gyngromes. Knowing all the difference patterns and having
distributed andp(Y'|X) is the transition probability, then the (gceived complementary subsets of the firstits, the firstk

closer the channel code gets to the capacity of the binarypts of each block can then be recovered. Finally, each original

XL

-+
syndromes (n-k bits)

channelp(Y'|X), the closer our system gets to the Slepiarb—|ockxi :

=la; ¢)(@=1,...,L)iscompleted by recovering

Wolf bound. The design of capacity achieving channel codeg; |sty, — & bits as:

however, is beyond the scope of this paper.

Since our decoding strategy can use an iterative decoding
approach similar to the one proposed in [5], similar perfor-
mances in terms of decoding error probability are expect
if the same linear code is used by both systems. Our wor
can thus be seen as an intuitive extension of the work in [5]
in order to cover the full Slepian-Wolf achievable rate region
without any performance loss. (1]

We have run some simulations and we have obtained numer-
ical evidence that our approach presents similar performancgs
than the one proposed in [5].

(3]

IV. GENERALIZATION TO MORE THAN TWO SOURCES

The approach of the previous section can be extended g
any number of correlated sources (see Figure 2), as indicated
in the following proposition: [5]

Proposition 2: Assumez, ..., 2y are L binary sequences
of lengthn correlated such that the Hamming distance between
two consecutive sequences is at mesfi.e., dy (z;, x;11) <
mfori=1,..., L—1). Consider arin, k) linear channel code
C that can correct up td/ > m errors pern-bit block. The
following distributed coding strategy uses a totakof (L —
1)(n — k) bits to encode thd, sequences and is sufficient to [g]
allow for a perfect reconstruction of all of them at the decoder:

« From each encoder, send the syndraspef the corre-

sponding blocke;.

« Send only complementary subsets of their firgiits such

that each bit position is sent from only one encoder.

At the decoder, theL — 1 difference patterns can be[10]
recovered from thd, syndromes, allowing then to complete
the firstk bits of each sequence.

(7]

El

¢/ =Hy'(s; @ Hia). (7

It is possible to show that this coding strategy is optimal
?(ﬁr some particular cases.
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