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Abstract

The Karhunen-Loève transform (KLT) is a key element of many signal processing and communication tasks.

Many recent applications involve distributed signal processing, where it is not generally possible to apply the KLT

to the entire signal; rather, the KLT must be approximated in a distributed fashion. This paper investigates such

distributed approaches to the KLT, where several distributed terminals observe disjoint subsets of a random vector.

We introduce several versions of the distributed KLT. First, a local KLT is introduced, which is the optimal

solution for a given terminal, assuming all else is fixed. This local KLT is different and in general improves upon

the marginal KLT which simply ignores other terminals. Both optimal approximation and compression using this

local KLT are derived. Two important special cases are studied in detail, namely the partial observation KLT which

has access to a subset of variables, but aims at reconstructing them all, and the conditional KLT which has access

to side information at the decoder. We focus on the jointly Gaussian case, with known correlation structure, and on

approximation and compression problems.

Then, the distributed KLT is addressed by considering local KLT’s in turn at the various terminals, leading to

an iterative algorithm which is locally convergent, sometimes reaching a global optimum, depending on the overall

correlation structure. For compression, it is shown that the classical distributed source coding techniques admit a

natural transform coding interpretation, the transform being the distributed KLT. Examples throughout illustrate the

performance of the proposed distributed KLT. This distributed transform has potential applications in sensor networks,

distributed image databases, hyper-spectral imagery, and data fusion.

Index Terms

transform coding, distributed transforms, distributed source coding, rate-distortion function, side information,

principal components analysis

I. INTRODUCTION

The approximation or compression of an observed signal is a central and widely studied problem in signal

processing and communication. The Karhunen-Loève transform (KLT), also referred to as principal component

analysis (PCA), [3], [4], [5], has always played a pivotal role in this context. Assume, for instance, that the

observed signal is a random vector x with covariance matrix Σx and that the statistics of the source are known.

Then to solve the approximation problem, one can apply the KLT to x to obtain uncorrelated components and

the optimal linear least squares k-order approximation of the source is given by the k components corresponding

to the k largest eigenvalues of Σx. In the case of compression, the uncorrelated components can be compressed

independently and more rate can be allocated to the components related to the largest eigenvalues of Σx, according

to a principle that is sometimes referred to as “reverse water-filling,” see e.g. [6, p.349]. This compression process

is widely known as transform coding and, if the input source is a jointly Gaussian source, it is possible to show

that it is optimal [7]. For an excellent review on transform coding and a discussion of the optimality of the KLT

in this context, we refer to the exposition in [8].

In the present work, which builds on [1], [2], we investigate a related scenario where there are multiple sensors,

each observing only a part of the vector x (see Figure 1). For the scope of the present paper, x is assumed to
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be a vector of jointly Gaussian random variables, even though some of our results are more general. The sensors

transmit an approximation of the observed subvector to a fusion center and cannot communicate with each other.

Thus, signal processing must be done in a distributed fashion and the full KLT cannot be applied to the data.

Therefore, the original approximation and compression problems change significantly under these circumstances,

and we show how to extend the concept of the KLT (or PCA) to such a distributed scenario.

In this paper, the usual, non-distributed scenario is termed joint KLT. We pose the following questions: given a

distributed scenario, what is the best possible performance, and how can it be attained? A trivial upper bound to the

distortion of a distributed scheme is given by the marginal KLT, where each terminal computes a KLT based only on

its local statistics, ignoring the dependencies with other terminals. And an obvious lower bound is the performance

of the unconstrained, joint KLT. Depending on the correlation structure and on the subsets that the various terminals

observe, the two bounds will be close or far apart. The distributed KLT lives between these bounds, and aims at

the best performance (in approximation error or distortion-rate) under the constraint of a distributed scenario.

Of course, in the compression case, various distributed KLT problems are classical distributed compression

problems. The “conditional” KLT, defined below in Section IV-B, is the scenario where all but one of the terminals

provide all of their observations to the reconstruction point, and the task is to design the source code for the

remaining terminal. This is a Wyner-Ziv problem (compression with side information at the decoder [9]), and the

distributed KLT is part of the general distributed source coding problem, for which bounds are known [10]. Our

aim, in the compression part, is thus to give a transform coding perspective to these distributed coding problems.

In addition to giving intuition and structure to the problem, this perspective has clear computational advantages,

since lossy source compression is almost always transform-based for complexity reasons.

Related work is twofold. First, as already pointed out above, the distributed KLT compression falls into the

general area of distributed lossy source compression. This work goes back to the classic lossless result of Slepian

and Wolf [11], and the lossy case with side information to Wyner and Ziv [9]. An early set of general upper

and lower bounds on the performance have been found by Berger and Tung [10], [12], with many refinements

for special cases, including the scenario where all but one of the sources are either not to be reconstructed, or

encoded perfectly (see [13], [14], [15]). Moreover, certain conclusive results are available for the case of high

resolution [16], for the CEO problem [17], [18], for the case with side information [19], and for certain special

distortion measures (not including the mean-squared error) [15]. Finally, a recent result solves the two-source

jointly Gaussian distributed source coding problem with respect to mean-squared error [20]. Second, a recent flurry

of papers has looked at various facets of practical distributed source coding. This includes various schemes using

channel codes for distributed source compression [21], [22], [23], [24], [25], [26], [27], [28], [29], including for

video compression [30], [31], [32]. Several authors looked at distributed transform coding, for example in the high-

rate case and, in this regime, some optimality conditions for the transforms can be proved [33], [34], [35]. In [36],

[37], a related transform is studied from the perspective of estimation theory, and in [38], a particle filtering view

of our problem is investigated. In follow up work, a study of the large block-size (as N → ∞) case was done

by Roy and Vetterli [39], using the asymptotic eigenvalue distribution of Toeplitz matrices (see e.g. [40]). Another
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study considers the generalized problem where the observations are noisy [41].

The paper is organized as follows: Section II reviews the classic approximation and compression problems for

a random vector source with known second order statistics, together with the standard results for the joint KLT.

Then, the problem leading to the distributed KLT is formally stated.

Section III takes a terminal-by-terminal perspective, that is, all terminals but one are fixed, and we search for the

optimal encoding procedure for the remaining terminal. This leads to the optimal local KLT, under the following

two scenarios: In the first scenario, the remaining terminal needs to select a k-dimensional approximation of its

observation; this is sometimes referred to as the linear approximation problem. In the second perspective, the

remaining terminal needs to provide a representation of its observation using R bits per source sample; that is, we

study the information theoretic compression or rate-distortion problem.

In Section IV, two simple special cases are investigated in detail: on the one hand, there is the case when all but

one terminal are cut off. This means that the remaining terminal must provide an approximation of its observation

that permits the best reconstruction of the entire vector. We call this the partial-observation KLT. On the other hand,

there is the case when all but one terminal provide their observations entirely and uncompressed to the decoder.

This means that the remaining terminal can exploit this side information at the decoder in order to provide a more

efficient description of its observation. While the linear approximation perspective of this problem appears to be

new, the related rate-distortion (i.e., compression) problem is well known and has been solved by Wyner and Ziv [9].

In this sense, the present paper extends the result of Wyner and Ziv to the case of correlated vectors and this leads

to the introduction of a new transform called the conditional KLT.

Section V addresses the distributed scenario by using the local KLT of Section III in turn at each terminal. This

leads to an iterative algorithm for finding the distributed KLT. The approximation problem and the compression

problem (under a sum-rate constraint) are studied. In both cases, the convergence of the iterative procedure to a

local optimum or a saddle point is shown. The question of local versus global optima is explored through a set of

examples in Section VI.

Possible applications of the distributed KLT and topics of further research conclude the paper in Section VII.

II. THE DISTRIBUTED KLT PROBLEM

The problem leading to the distributed KLT is illustrated in Figure 1: There are L terminals (the figure illustrates

the case L = 3), and each terminal samples a part of a vector of N jointly Gaussian real-valued random variables,

x
def
=


x1

x2

...

xN

 . (1)

The Gaussian random vector x has zero mean1 and covariance matrix Σx.

1The assumption that x has zero mean is not crucial, but it considerably simplifies the notation. Therefore, it is kept throughout the paper.
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Fig. 1. The distributed KLT problem: Distributed compression of multiple correlated vector sources. Terminal ` provides a description T` of

its observation. This paper investigates the case where T` is a k`-dimensional approximation of the observation, and the case where T` is a bit

stream of R` bits per observation.

The standard (non-distributed) Karhunen-Loève transform arises as the solution of the approximation (or com-

pression) problem illustrated in Figure 1, but with all encoders merged into one overall encoder that observes the

entire vector x. The task of the encoder is to provide a description of the vector x in such a way as to permit the

reconstruction point to produce an estimate x̂ that minimizes the mean-squared error

E
[
‖x− x̂‖2

]
, (2)

where E [·] denotes the expectation.

The distributed version of the problem is interesting because the description provided by the encoder is con-

strained, i.e., the encoder cannot simply provide the reconstruction point with the entire observation. In this paper,

we consider two types of approximations: linear approximation and compression (in a rate-distortion sense).

A. Linear Approximation

For the standard (non-distributed) KLT, the goal of the encoder is to provide a k-dimensional approximation of

the vector x. For a fixed k, the goal is to find the approximation space that minimizes the resulting mean-squared

error. The matrix Σx is real, symmetric and positive semi-definite, with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN . It allows

thus a diagonalization given by

Σx = QxΛxQT
x , (3)

where Qx ∈ RN×N is a unitary matrix whose columns are the eigenvectors of the matrix Σx, ordered by decreasing

eigenvalues, and Λx ∈ RN×N is diagonal, with entries λ1, λ2, . . . , λN . The matrix QT
x is called the Karhunen-
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Loève transform for x.2 More specifically, in this paper, we will refer to QT
x as the joint KLT of the vector x, by

contrast to the distributed KLT developed in this paper. We denote the transformed version of x by

y = QT
x x. (4)

Since Qx is unitary, it follows that

E
[
‖x− x̂‖2

]
= E

[
‖y − ŷ‖2

]
=

N∑
m=1

E
[
|ym − ŷm|2

]
, (5)

where ŷ = QT
x x̂. The key insight is that the components of y are uncorrelated. Therefore, in terms of the components

(y1, y2, . . . , yN ), a simple answer can be given. First, if the component ym is retained, then clearly its corresponding

estimate is ŷm = ym. However, if ym is not retained, then its corresponding estimate is ŷm = 0; none of the other

components of the vector y contain anything relevant about ym. The best k-dimensional approximation space is

therefore easily found in terms of y: Denote the set of the k indices corresponding to the retained components of

y by T . Then, the incurred distortion can be expressed as

E
[
‖x− x̂‖2

]
=

∑
m∈T c

λm, (6)

where T c denotes the complement of T in the set {1, 2, . . . , N}. Hence, the best k-dimensional approximation is

given by the eigenvectors corresponding to the k largest eigenvalues.

In the distributed KLT scenario, there are L separate encoding terminals that cannot communicate with each

other. The first terminal observes the first M1 components of the vector x, denoted by x1 = (x1, x2, . . . , xM1), the

second terminal the next M2 components, denoted by x2 = (xM1+1, xM1+2, . . . , xM1+M2), and so on. Clearly, in

that case, it is not possible to apply the KLT to the vector x. Instead, each terminal individually provides a certain

approximation of its samples to a central decoder. The goal of the central decoder is to produce an estimate x̂ in

such a way as to minimize the mean-squared error E
[
‖x− x̂‖2

]
.

Terminal ` provides a k`-dimensional approximation of its sampled vector, where k1, k2, . . . , kL are fixed integers,

0 ≤ k` ≤ M`, for ` = 1, 2, . . . , L. One approach would be for each encoder to apply a (standard) KLT to its

observations, and provide the components corresponding to largest k` eigenvalues. In this paper, we will refer to

this approach as the marginal KLTs. It is easy to verify that the marginal KLT will lead to suboptimal performance

in general. Hence, what are the best approximation spaces for the L terminals? This question can be answered

directly in the following sense: Terminal ` applies a k` ×M` matrix C` to its local observation, and provides this

2The matrix Qx always exists, and it is unique if λ2
m 6= λ2

n, for m 6= n. Conversely, if the matrix Σx has repeated eigenvalues, then

combinations of the respective eigenvectors are also eigenvectors, leading to non-unique approximation and compression. This is a technicality

we do not get into any further.

August 13, 2006 DRAFT



7

to the reconstruction point. Hence, the reconstruction point has access to

Cx def=


C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · CL

x. (7)

However, since we have assumed that x is Gaussian, it is well known that the best estimate of x based on Cx is

the linear minimum mean-squared error estimator, given by the standard formula (see e.g. [42, Thm.3.2.1])

x̂ = ΣxCT
(
CΣxCT

)−1
(Cx), (8)

and the corresponding mean-squared error distortion can be written as (see e.g. [42, Thm.3.2.1])

D = trace
(
Σx − ΣxCT

(
CΣxCT

)−1
CΣx

)
. (9)

From this perspective, our problem can be stated as the minimization of this distortion over all block-diagonal

matrices C ∈ R(
PL

`=1 k`)×N , where the `th block is precisely C`. That is, C has the shape given in Equation (7).

A simple solution for the best such matrix C does not seem to exist in general. Instead, this paper provides an

iterative algorithm that finds (locally) optimal solutions.

B. Compression

In a second version of the problem, the encoder has to compress the observed vector in a rate-distortion sense.

That is, the encoder gets to observe a long sequence {x[i]}n
i=1 of source vectors, where x[i] ∈ RN and i is the

(discrete) time index. This sequence can be encoded jointly.

For the standard (non-distributed) problem, the encoder output is a binary sequence T that appears at rate R bits

per input vector. The reconstruction point produces a sequence of estimates {x̂T [i]}n
i=1, and the goal is to minimize

the average mean-squared error over the entire block of n source vectors, defined as

Dn(R) =
1
n

n∑
i=1

E
[
‖x[i]− x̂T [i]‖2

]
. (10)

Our interest concerns specifically the limit as n →∞. It is well known that one architecture of an optimal encoder is

to apply a KLT to the vector x[i] to obtain y[i] as in (4). Then, each component of y[i] can be encoded separately,

using a rate-distortion optimal code. The rate allocation between the components of y[i] is determined by the

eigenvalues λ1, λ2, . . . , λN , see [43] or [6, p.348].

In the distributed KLT scenario illustrated in Figure 1, there are multiple separate encoding terminals that cannot

communicate with each other. Clearly, in that case, it is not possible to apply the KLT to the vector x. Instead, each

terminal individually provides a binary sequence T` that appears at rate R` bits per input vector, for ` = 1, 2, . . . , L.

The reconstruction point produces a sequence of estimates {x̂T1,T2,...,TL
[i]}n

i=1, and the task is to minimize the

resulting average mean-squared error as in Eqn. (10). As discussed generally in Section I, optimum trade-offs

between the rates R1, R2, . . . , RL and the incurred distortion D, and hence, the optimum processing architecture,
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are mostly unknown to date, except in the case L = 2 (and N = 2) [20]. Instead, in this paper, we evaluate the

best known achievable rate-distortion region [10], [44] in the considered transform coding framework, and show

that they can be attained by an architecture where each terminal applies a suitable local transform C`, followed by

separate encoding of each coefficient stream, for ` = 1, 2, . . . , L. It should also be pointed out that a brief treatment

of the case of two jointly stationary Gaussian sources has been given in [12, Ch.6, pp.75-78].

III. TERMINAL-BY-TERMINAL PERSPECTIVE

This section investigates a local perspective of the problem described in Section II: Suppose that all terminals

except terminal j have fixed descriptions T`, ` 6= j, ` = 1, 2, . . . , L, and the goal is to determine the optimal

description Tj . As outlined above, we consider this problem in two different settings: in a linear approximation

framework, and in a rate-distortion (i.e., compression) framework.

A. Linear Approximation

From the perspective of a selected terminal j, suppose that all other terminals have decided on (arbitrary) suitable

approximations of their observations, and the question becomes to optimally choose the approximation to be provided

by terminal j, where we arbitrarily (and without loss of generality) set j = 1. Terminal 1 observes M components

of the overall data, denoted by x1. The remaining N −M components may be thought of as being merged into one

terminal whose observations we denote, for short, by x2. In line with this, we can partition the covariance matrix

of the entire vector x into four parts, according to

Σx =

 Σ1 Σ12

ΣT
12 Σ2

 , (11)

where Σ1 = E[x1xT
1 ],Σ2 = E[x2xT

2 ], and Σ12 = E[x1xT
2 ]. The approximations provided by all other terminals

can be expressed as

y2 = C2x2 + z2, (12)

where C2 ∈ Rk2×(N−M) is a fixed matrix, and z2 is a vector of k2 jointly Gaussian random variables of mean zero

and covariance matrix Σz, independent of x2. This is illustrated in Figure 2. Note that Σz is not generally assumed

to be of full rank; specifically, we are also interested in the case where z2 ≡ 0. The goal is for the remaining

Terminal 1 to select a k-dimensional approximation of the observed vector x1, denoted by y1 = C1x1, in such a

way as to minimize the resulting overall distortion

E
[
‖x− x̂‖2

]
. (13)

In order to formulate our solution of this problem, consider the matrix A ∈ R(N−M)×(M+k2), defined as

A = (ΣT
12 Σ2C

T
2 )

 Σ1 Σ12C
T
2

C2ΣT
12 C2Σ2C

T
2 + Σz

−1

, (14)
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Fig. 2. For a fixed transform C2 (and a fixed noise covariance matrix Σz), the local KLT finds the best transform C1.

and let A1 consist of the first M columns of A, thus A1 ∈ R(N−M)×M . Moreover, define the matrix Σw ∈ RN×N ,

as follows

Σw =

 IM

A1

(Σ1 − Σ12C
T
2 (C2Σ2C

T
2 + Σz)−1C2ΣT

12

)
(IM AT

1 ). (15)

Note that this matrix has rank(Σw) ≤ M , and denote its eigendecomposition by

Σw = Qw diag(λw,1, λw,2, . . . , λw,N )QT
w, (16)

where λw,1 ≥ λw,2 ≥ . . . ≥ λw,M ≥ λw,M+1 = . . . = λw,N = 0 are the (non-increasingly ordered) eigenvalues

of the matrix Σw. Note that since Σw is a covariance matrix, its eigenvectors (collected in the matrix Qw) are

real-valued.

Definition 1 (Local KLT): The local KLT of x1 with respect to y2 = C2x2 + z2 is the matrix C1 ∈ RM×M

given by

C1 =
(
Q(M)

w

)T

 IM

A1

 , (17)

where Q
(M)
w denotes the matrix consisting of the first M columns of Qw, which is defined in Eqn. (16), IM denotes

the M -dimensional identity matrix, and A1 denotes the first M columns of A as defined in Eqn. (14).

Remark 1 (Non-uniqueness of the local KLT): It is clear that the local KLT is not unique: it inherits the non-

uniqueness of the first M columns of Qw. More specifically, if the eigenvalues λw,1, λw,2, . . . , λw,M are all distinct,

then the local KLT is unique. If, on the contrary, some of these eigenvalues are equal, then the local KLT is non-

unique. However, any resulting local KLT is equivalent for the mean-squared error criterion considered in this

paper.

In order to provide some intuition for the local KLT, we now establish the following two properties:

Lemma 1: The local KLT has the following properties:

(i) rank(C1) = M, but C1 is not unitary,
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(ii) The components of C1x1 are conditionally uncorrelated, given y2 = C2x2 + z2, and have mean zero and

conditional variances given by λw,m, for m = 1, 2, . . . ,M, as in Equation (16), conditioned on y2.

The proof of this lemma is given in Appendix I.

The motivation for defining the local KLT as in Definition 1 above is that it provides the optimum k-dimensional

approximation for the problem illustrated in Figure 2. We record the following theorem:

Theorem 2 (local KLT): The best k-dimensional linear approximation of x1 for a decoder that has access to

C2x2 + z2 is given by the first k components of the local KLT of x1 with respect to y2 = C2x2 + z2, that is,

y1 = C
(k)
1 x1, (18)

where C
(k)
1 denotes the matrix consisting of the first k rows of C1, as given in Definition 1, i.e.,

C1 =
(
Q(M)

w

)T

 IM

A1

 , (19)

and the resulting MSE distortion is given by

D = D2 +
M∑

m=k+1

λw,m, (20)

where

D2 = trace

Σ2 − (ΣT
12 Σ2C

T
2 )

 Σ1 Σ12C
T
2

C2ΣT
12 C2Σ2C

T
2 + Σz

−1 Σ12

C2Σ2


 . (21)

The proof of this theorem is given in Appendix I.

B. Compression

By analogy to Section III-A, consider again the perspective of a selected terminal j, and suppose that all other

terminals have decided on (arbitrary) suitable approximations of their observations. In the compression scenario, as

explained in Section II-B, we consider sequences {x[i]}i≥1 of source output vectors, where i is the (discrete) time

index. We assume that {x[i]}i≥1 is a sequence of independent and identically distributed (i.i.d.) Gaussian random

vectors with mean zero and covariance matrix Σx. Again, to keep notation simple, we reorder the components of

x and denote the observation of the considered terminal j by x1[i] = (x1[i], x2[i], . . . , xM [i])T . The remaining

components of x will be denoted by x2[i] = (xM+1[i], xM+2[i], . . . , xN [i])T . We study the problem where terminal

j is allowed to use nR bits to encode a sequence of n consecutive observed vectors, denoted by {x1[i]}n
i=1.

As explained above, the key feature of the present local consideration is that it has already been decided how

{x2[i]}n
i=1 is to be compressed, and we are looking for the optimal compression of {x1[i]}n

i=1. It is not immediately

clear how this should be modeled. For the purpose of this paper, we use the following approach, to be justified

to some (though limited) extent in the sequel. Specifically, the effect of compression of {x2[i]}n
i=1 is captured by

providing the decoder with a noisy sequence

y2[i] = C2x2[i] + z2[i], (22)
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Fig. 3. Terminal 1’s local perspective on the compression problem considered in this paper.

where {z2[i]}n
i=1 is a sequence of i.i.d. Gaussian random vectors of mean zero and covariance matrix Σz . Again,

C2 ∈ Rk2×(N−M). This is illustrated in Figure 3.

To justify the model considered in Equation (22), one may think of the case where the remaining terminals have

compressed {x2[i]}n
i=1 using a rate-distortion optimal source code (but entirely ignoring x1). The effect of such a

code (for a Gaussian source under mean-squared error) is equivalent to a linear transformation, followed by additive

white Gaussian noise, see e.g. [6, p.345].

The distortion to be minimized can be expressed as

Dn = E

[
1
n

n∑
i=1

‖x[i]− x̂[i]‖2
]

, (23)

subject to the constraints that, (i), the codeword produced by terminal 1 may only depend on {x1[i]}n
i=1, and (ii),

the coding rate used by terminal 1 may not exceed nR bits to encode the entire (length-n) source sequence. The

reconstruction sequence x̂[i] is generated based on the codeword provided by terminal 1 and the value of the side

information sequence, {y2[i]}n
i=1.

In this paper, we study the performance in the (information-theoretic) limit, that is, as n → ∞. With reference

to Equation (23), we denote D
def= D∞. The minimum rate Rlocal(D) required to reconstruct the vector source

{x[i]}∞i=1 at distortion level D is given by (details are given in Appendix II)

Rlocal(D) = min I(x1;u|y2), (24)

where the minimization is over all (“auxiliary”) random vectors u for which p(u,x1,y2) = p(u|x1)p(x1,y2) and

for which

E
[
‖x− E[x|u,y2]‖2

]
≤ D. (25)

The solution to this minimization problem can be characterized by complete analogy to our derivation in

Section III-A, namely in terms of the eigenvalues of the matrix Σw as defined in Equation (15), as follows.
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Theorem 3: The rate required to encode {x1[i]}i≥1 for a decoder that has access to y2[i] = C2x2[i] + z2[i] is

given by

Rlocal(D) =
M∑

m=1

max
{

1
2

log2

λw,m

dm
, 0
}

, for D ≥ D2, (26)

where D2 is given in Equation (21), and

dm =

 θ, if θ < λw,m

λw,m if θ ≥ λw,m,
(27)

where θ is chosen such that
∑M

m=1 dm + D2 = D, Note that it is not possible to attain a distortion D < D2.

The proof of this theorem is an extension of [45] and is given in Appendix II.

This theorem establishes that the encoder in Figure 3 can be broken into two stages: a linear precoding stage,

consisting of applying the transform (matrix) C1 (i.e., the local KLT) to x1 (with respect to y2), followed by

separate compression of the components in the transform domain. This is illustrated in Figure 4.

Moreover, in the proof of the theorem, it is also found that the auxiliary random vector u (with conditional

distribution p(u|x1)) that solves the minimization problem specified by Equations (24)-(25) is jointly Gaussian

with the source vector x. To interpret this, consider Figure 4: It is consistent to replace the encoder boxes (the

boxes labeled ENC 1, . . . , ENC M ) by additive Gaussian noises, in the sense that the resulting overall distortion will

be the same. Hence, we obtain an overall symmetric picture, in the sense that if terminals 2, 3, . . . , L provide noisy

observations, where the (additive) noise has a Gaussian distribution, then the optimum encoding for terminal 1 is

found to also be characterized by providing noisy observations, where the noise has a Gaussian distribution. This

perspective will prove to be useful in the distributed setting in Section V-B. Therefore, we record the following

corollary.

Corollary 4: For a fixed rate R to be used by the encoder, let k ≤ M be the largest integer satisfying

dk
def
= Gk(λw)2−

2R
k ≤ λw,m, for m = 1, 2, . . . , k, (28)

where Gk(λw) = k

√∏k
m=1 λw,m is the geometric mean of the k largest eigenvalues of the matrix Σw. Moreover,

denote the first k rows of the local KLT of x1 with respect to y2 (see Definition 1) by C
(k)
1 . Then, the auxiliary

random vector u (with conditional distribution p(u|x1)) that solves the minimization problem specified by Equations

(24)-(25) can be written as

u = C
(k)
1 x1 + z1, (29)

where z1 is a Gaussian random vector with mean zero and diagonal covariance matrix, with diagonal entries

ζ2
m =

λw,mdk

λw,m − dk
, (30)

for m = 1, 2, . . . , k. The resulting overall distortion can be expressed as D = kdk +
∑M

m=k+1 λw,m + D2, where

D2 is given in Equation (21).

The proof of this corollary is given in Appendix II.
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Fig. 4. An optimal architecture for the encoder in Figure 3 consists in applying a local KLT to x1 and separately compressing each component

in the transform domain.

IV. SPECIAL CASES

A. The Partial-observation KLT (C2 = 0)

Consider the case when C2 is the all-zero matrix, and hence, all other terminals are cut off. This is illustrated in

Figure 5. In this case, the matrix A in Equation (14) simplifies to A = ΣT
12Σ

−1
1 . Moreover, A1 = A, and hence,

we find Σw = (IM

A )Σ1(IM , AT ). For this case, the local KLT thus becomes particularly simple:

Definition 2 (Partial-observation KLT): The partial-observation KLT of x1 with respect to x2 is the linear

transform characterized by the matrix

Cp = QT

 IM

ΣT
12Σ

−1
1

 , (31)

where Q is the unitary matrix for which QT (IM

ΣT
12Σ

−1
1

)Σ1(IM , (ΣT
12Σ

−1
1 )T )Q is diagonal. The transformed version

of x1 will be denoted by y1 = Cpx1.

Remark 2 (Non-uniqueness of the partial-observation KLT): In line with Remark 1, it should be noted that the

partial-observation KLT is not unique.

Hence, we get the following corollary to Theorem 2:

Corollary 5: The best k-dimensional linear approximation of x1 for a decoder that needs to reconstruct the

entire vector x = (xT
1 ,xT

2 )T with respect to mean-squared error is given by the first k components of the partial-

observation KLT of x1 with respect to x2.

By analogy, a similar corollary can be given for the case of Theorem 3.

It is intuitively clear that in the partial-observation (or subsampling) scenario of Figure 5, it is suboptimal to

simply apply the “marginal” KLT to the observations x1, acting as if x2 did not exist. To further illustrate this

point, we consider simple examples.
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Fig. 5. Special case: The partial-observation (or “sub-sampling”) KLT. The components of x2 are not observed, but need to be reconstructed.

Example 1 (Approximation): A toy example illustrating the basic issue is the following: Suppose that a Gaussian

random vector x has mean zero and the following covariance matrix:

Σx =


σ2

1 0 0.1 0.1

0 0.1 0.25 0

0.1 0.25 1 0.25

0.1 0 0.25 1

 . (32)

Suppose that the first two components are observed by terminal 1, i.e., M = 2. The terminal is asked to provide a

1-dimensional approximation. For σ2
1 = 0.11, the marginal KLT is the identity matrix since the first two components

are uncorrelated. Then, selecting the eigenvector corresponding to the larger eigenvalue of Σ1 incurs a distortion

of Dmklt ≈ 1.9182. By contrast, the partial-observation KLT is found to be

Cp ≈

 1.1119 2.6353

1.1902 −0.5524

 , (33)

which is substantially different from the marginal KLT. Retaining the first component of Cpx1, the resulting

distortion is found to be Dpklt ≈ 1.3795, substantially smaller than the distortion incurred by the marginal KLT.

Example 2 (Compression): Consider again the covariance matrix given in Example 1, with σ2
1 = 0.11. The first

two components are sampled and can be encoded using a total rate R. The systematic error (as defined in Equation

(21)) for this example is D2 = 1.1932. The rate-distortion trade-off is shown in Figure 6. The solid line is the rate-

distortion function R1(D) (i.e., incorporating the partial-observation KLT). The dashed line is the performance for

a compression scheme that ignores the hidden part when encoding. At decoding time, the hidden part is estimated

optimally from the available information. The figure witnesses a clear advantage for the partial-observation KLT,

illustrating the fact that the hidden part does alter the compression problem significantly. In the limit of low rates,

as R → 0, it is clear that both schemes have the same performance, since no information is transmitted. In the limit

of high rates, both schemes end up encoding the observations perfectly, and again, the same distortion results.
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Fig. 6. The rate-distortion behavior for the partially observed process of Example 2. The solid line represents the (optimal) partial observation

KLT, while the dashed line is the case of the marginal KLT. The rate is given in bits.

Remark 3 (best sensor placement): For given statistics Σx and desired distortion D, what is the best “placement”

of M sensors? In other words, what choice of M components of x minimizes the rate required for the desired

distortion D? The solution to this problem is given by Theorem 3: Compute Rlocal(D) for all subsets of M

components of the vector x. (For the asymmetric scenario of Example 2, it is easily verified that the best sensor

placement is to sample the last two components. This is intuitively clear from the covariance matrix in Equation

(32): the last two components have by far the largest variances.)

B. The Conditional KLT (C2 = IN−M and k2 = N −M)

In this section, we study the scenario of Figure 7: All other terminals provide the reconstruction point with their

exact observations. In this case, the local KLT can be simplified. Specifically, since y2 = x2, we find that A1 = 0.

This implies that Σw (as in Equation (15)) simplifies to

Σw = Σ1 − Σ12Σ−1
2 ΣT

12, (34)

and the local KLT takes the following simple shape.

Definition 3 (Conditional KLT): The conditional KLT of x1 with respect to x2 is the linear transform character-

ized by the matrix Cc ∈ RM×M that satisfies

CcΣwCT
c = diag(λw,1, . . . , λw,M ). (35)
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Fig. 7. Special case: The conditional KLT. The components x2 = (xM+1, . . . , xN ) are not observed by the encoder, but they are available

at reconstruction time.

The transformed version of x1 will be denoted by y1 = Ccx1.

Remark 4 (Non-uniqueness of the conditional KLT): In line with Remark 1, it should be noted that the condi-

tional KLT is not unique.

Lemma 6: The conditional KLT Cc has the following properties:

1) Cc is an orthonormal transform.

2) The components of the vector y1 are conditionally uncorrelated given x2.

It is immediately clear by construction that Cc will be orthonormal. The second property was established in

Lemma 1.

Hence, we get the following corollary to Theorem 2:

Corollary 7: The best k-dimensional linear approximation of x1 for a decoder that has access to x2 and needs

to reconstruct the entire vector x with respect to mean-squared error is given by the first k components of the

conditional KLT of x1 with respect to x2.

By analogy, a similar corollary can be given for the case of Theorem 3.

Example 3 (Approximation): A toy example illustrating the basic issue is the following: Suppose that a Gaussian

random vector x has mean zero and the covariance matrix specified in Equation (32). Suppose that the first

two components are sampled by the terminal, i.e., M = 2. The terminal is asked to provide a 1-dimensional

approximation. For σ2
1 = 0.1, applying the marginal (usual) KLT to the first two components is simple in this

example: the first two components are uncorrelated, hence the KLT is the identity. Selecting the eigenvector

corresponding to the larger eigenvalue of ΣS incurs a distortion of Dklt ≈ 0.0720. Using the conditional KLT

discussed in this section, and hence making the optimal choice, results in a distortion of Dcklt ≈ 0.0264, and the

transform is

Cc ≈

 −0.9447 0.3280

−0.3280 −0.9447

 . (36)

Example 4 (Compression): Consider again the covariance matrix specified in Equation (32), and suppose that the
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Fig. 8. Rate-distortion behavior for compression with side information in Example 4. Solid line is the performance of the conditional KLT,

while the dashed line shows the one of the marginal KLT. The rate is given in bits.

first two components are sampled by the terminal, i.e., M = 2. The task is to encode these first two components

using a rate R. The resulting rate-distortion function is the solid line in Figure 8. For comparison, the dashed line

shows the rate-distortion performance for a scheme that ignores the side information both at the encoder and at the

decoder, in other words, a scheme that simply compresses (and reconstructs) the sampled vector x1, using a rate

R. The performance of this scheme is hence determined by the rate-distortion function for Gaussian vectors under

mean-squared error (see e.g. [6, p.348]). As expected, there is a significant difference between the two curves.

V. THE DISTRIBUTED KLT ALGORITHMS

The local perspective derived in Section III and further explored in the previous section suggests an iterative

approach to the problem of finding the best distributed approximation to the KLT: in turn, each terminal optimizes

its local encoder, while all other encoders are held fixed (and known). This is an off-line calculation, where the

covariance matrix Σx is kept fixed. Such a “round robin” optimization, while natural, may or may not be optimal,

depending on the shape of the cost function. That is, while each step is optimal (as in Theorems 2 and 3, respectively)

the sequence of steps might lead to a locally stable point that is not a global optimum. This question is central to

distributed optimization, and has in general no simple answer, and we will thus explore it through several examples

in the sequel.
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A. Linear Approximation

Let us now return to the problem illustrated in Figure 1: There are L terminals. Each terminal observes a part

x` of the entire vector x, for ` = 1, 2, . . . , L, as defined in Section II-A: The first terminal observes the first M1

components of x and has to provide a k1-dimensional approximation. The second terminal observes the next M2

components of x and has to provide a k2-dimensional approximation, and so on. The goal is to find the optimum

approximation spaces for each terminal.

From Theorem 2, we know the best approximation space for a selected terminal, when all other terminals have

fixed their approximation spaces. For further reference, we restate Theorem 2 in more general notation in the shape

of the following corollary:

Corollary 8: For fixed C`, ` = 1, 2, . . . , L, ` 6= j, the best kj-dimensional approximation that terminal j can

provide is determined by the matrix Cj containing the first kj rows of the local KLT of xj with respect to

yc
j

def= {C`x`}L
`=1,` 6=j . (37)

Proof: This corollary follows directly from Theorem 2.

As pointed out in Section II-A, there does not seem to be a simple and direct solution to find the optimal

approximation spaces C1, C2, . . . , CL, but Corollary 8 suggests an iterative procedure to find an approximate

solution, as follows.

Algorithm 1 (distributed KLT for linear approximation): Set n = 0 and initialize by selecting arbitrary matrices

C
(n)
` ∈ Rk`×M` , for ` = 1, 2, . . . , L. Then,

1) Set n = n + 1, and for each j, j = 1, 2, . . . , L :

a) Set C
(n)
j to be the best kj-dimensional approximation space, as described in Corollary 8.

Terminate when the difference in the resulting mean-squared error distortion is smaller than a fixed tolerance value

ε.

�

Remark 5: As we illustrate in Section VI, in general, different initializations of the matrices C1, C2, . . . , CL

may lead to different outcomes of the algorithm. However, since the computations are done off-line, one may run

Algorithm 1 many times, using techniques such as simulated annealing, and thus enhance the chance of finding the

global optimum.

This algorithm is illustrated in Figure 9. The figure shows one iteration of the algorithm: The transform matrices

C2 and C3 are kept fixed while Encoder 1 is chosen optimally. By Corollary 8, the optimal choice of Encoder 1 is

indeed composed of a transform matrix C∗1 , followed by an appropriate choice of k1 components in the transform

domain.

The key property of this algorithm is the following:

Theorem 9 (convergence of the distributed KLT algorithm): Denote the transform matrices provided by Algo-

rithm 1 after iteration n by C
(n)
` ∈ Rk`×M` , for ` = 1, 2, . . . , L. Denote the minimum mean-squared error estimate
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Fig. 9. An iteration of the distributed KLT algorithm: The transform matrices C2 and C3 are kept fixed while Encoder 1 is chosen optimally.

of x based on the observations {C(n)
` x`}L

`=1 by x̂(n). Then,

E
[
‖x− x̂(n)‖2

]
≥ E

[
‖x− x̂(n+1)‖2

]
, (38)

i.e., the distortion is a non-increasing function of the iteration number.

Proof: The theorem follows directly from Corollary 8: Suppose that in iteration n, the transform matrix Cj

is being updated. That is, Cj is selected according to Corollary 8. Note that the corollary imposes no restrictions

on Cj ; in particular, the current value of the matrix Cj lies inside the optimization space. Therefore, the distortion

cannot increase.

This theorem implies that the distributed KLT algorithm will converge to a stable point that is either a saddle point

or a local minimum, but it clearly cannot guarantee convergence to a globally optimal configuration of approximation

spaces. Before we study the convergence behavior in more detail, let us illustrate our finding with a few simple

examples.

Example 5: A toy example illustrating the basic issue is the following: Suppose that a Gaussian random vector

x has mean zero and the covariance matrix specified in Equation (32). Suppose that the first two components are

sampled by terminal 1, i.e., x1 = (x1, x2), and the last two components by terminal 2, i.e., x2 = (x3, x4). Both

terminals are asked to provide a 1-dimensional approximation. For σ2
1 = 0.11, if each terminal applies the marginal

KLT to its observation a distortion of Dmklt ≈ 0.8207 is incurred. Note that the KLT’s are simple: Terminal 1

applies the identity transform, and Terminal 2 applies

C2,marginal ≈

 0.7071 0.7071

−0.7071 0.7071

 . (39)

Using the distributed KLT algorithm discussed in this section, and hence making the optimal choice, results in a
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Fig. 10. Convergence for Example 5.

distortion of Ddklt ≈ 0.3457, and the transforms are

C1 ≈

 0.6968 2.6205

−0.9820 0.1996

 , (40)

C2 ≈

 0.2385 0.9758

0.9717 −0.2366

 . (41)

The convergence of the distributed KLT algorithm, when C2 is initially the identity matrix, is shown in Figure 10.

The figure shows the error in the “middle” of the nth iteration (i.e., after the nth update to C1, but before the nth

update to C2), and at the end of the n iteration. Finally, if the entire vector could be handled jointly and the goal

is to find the best two-dimensional approximation, a distortion of Djointklt ≈ 0.1243 is feasible.

Example 6: Suppose Σx is a Toeplitz matrix with first row (1, ρ, ρ2, . . .), x1 contains the odd-indexed components

of x, and x2 the even-indexed. For N = 40, M = 20, k1 = k2 = 10, and ρ = 0.7, the marginal KLT, i.e., the

standard KLT applied to each part separately, leads to a distortion Dmklt ≈ 8.3275, while the distributed KLT gives

Ddklt ≈ 6.8464. Hence, even in this seemingly symmetric scenario, the distributed KLT is substantially different

from the standard, i.e., joint KLT. For comparison, the full standard KLT, applied to the entire vector x, would give

D ≈ 4.5195.

Example 7 (computational perspective): Applying the Karhunen-Loève transform to a vector of length N re-

quires N2 multiplications and N2 additions. Usually, we are only interested in the first k elements, and hence,
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Fig. 11. The resulting distortion (y-axis) versus the number of multiplications (x-axis) for Example 7. The solid line is the distributed KLT,

the dashed line is the marginal KLT.

the computational cost becomes kN multiplications and kN additions. The distributed KLT provides a block-

diagonal approximation of the KLT. Suppose the full vector of length N is decomposed into subvectors of lengths

M1,M2, . . . ,ML, and each subvector is approximated by a k`-dimensional vector, for ` = 1, 2, . . . , L. Then,

applying the distributed KLT to the vector requires only
∑L

`=1 k`M` multiplications, and an equal number of

additions. To gain insight, suppose that M` = N/L and k` = k/L are both integer. Then, the distributed KLT

requires kN/L multiplications, and an equal number of additions. For large L, i.e., for a highly distributed KLT,

this clearly is considerably smaller than the kN multiplications and additions required by the full standard KLT.

Hence, the distributed KLT permits a trade-off between computational cost and approximation quality (measured

in mean-squared error), though this need not be the optimum such trade-off. The following numerical example

illustrates this in more detail.

Let us consider the case N = 60 and
∑L

`=1 k` = 12. Moreover, let Σx be Toeplitz with first row (1, ρ, ρ2, . . . , ρN−1),

for ρ = 0.9. Then, we can study the behavior of the resulting mean-squared error as the M` are varied, and hence,

the amount of “distributedness” is increased. In particular, we consider the case where all M` are equal. For

example, we may select M` = 15, and hence, k` = 3. Figure 11 graphically illustrates the outcome, comparing the

marginal KLT to the distributed KLT, and revealing respective gains. Note that by selecting the covariance matrix

Σx appropriately, these gains can be made large.
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B. Compression

This section addresses the distributed compression problem, illustrated in Figure 1. Terminal ` observes n source

output vectors of length M` and individually provides a binary sequences T` that appears at rate R` bits per observed

source vector, for ` = 1, 2, . . . , L. The reconstruction point produces a sequence {x̂T1,T2,...,TL
[i]}n

i=1 such as to

minimize the distortion

Dn(R1, R2, . . . , RL) =
1
n

n∑
i=1

E
[
‖x[i]− x̂T1,T2,...,TL

[i]‖2
]
. (42)

Again, the goal is to analyze the problem as n →∞. In particular, we will consider the case of a fixed total (sum)

rate
∑L

`=1 R` = Rtot, the goal is to determine and achieve the smallest possible distortion.

Unfortunately, this question cannot be answered in a conclusive manner: the distributed compression problem

illustrated in Figure 1 is an open problem to date (except in the jointly Gaussian two-source (N = 2) case [20]).

The best currently known achievable rate regions and outer bounds appear in [10], as discussed in somewhat more

detail in Section II-B.

Instead, in this paper, we resort to a consideration of achievable rate-distortion behavior. We will proceed along

similar lines as in Section III-B. There, we used the well-known information-theoretic result given by Equations

(24)-(25) and developed it for the vector case under consideration, establishing that an optimal architecture is for

the remaining terminal to apply the local KLT and then separately compress each component in the transform

domain. Here, by analogy, we will consider a well-known information-theoretic achievable rate region. However,

by contrast, there is no proof that this region is the optimal region. The region can be described as follows:

Theorem 10 ([44], [12], [15]): At fixed total rate Rtot, any distortion

E
[
‖x− x̂(u1,u2, . . . ,uL)‖2

]
(43)

is achievable, where the auxiliary random vectors u1,u2, . . . ,uL satisfy

p(u1,u2, . . . ,uL,x) = p(u1|x1)p(u2|x2) · · · p(uL|xL)p(x) (44)

and

I(x;u1,u2, . . . ,uL) ≤ Rtot. (45)

This theorem follows in a straightforward manner from the work of Housewright and Omura (see [44]) and of

Berger and Tung (see [12, Ch. 6, Sec. 6.1]). Details can be found in [15, Section IV].

The goal of our work is to determine the conditional distributions p(u`|x`) of the auxiliary random vectors u`,

for ` = 1, 2, . . . , L, and hence, the architecture of the coding scheme, such as to minimize the distortion. In this

paper, we again take an iterative approach in which we fix all but one of these conditional distributions, leading to

a set of auxiliary random vectors denoted by

uc
j

def
= {u`}L

`=1,` 6=j (46)

and determine the optimal uj . More specifically, if we select uc
j to be jointly Gaussian with x, then we know from

Theorem 3 that the overall situation will be symmetric in the sense that the remaining uj should also be selected
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jointly Gaussian with x. Therefore, we restate Theorem 3 in more general notation in the shape of the following

corollary:

Corollary 11: Assume the following:

(a) for ` = 1, 2, . . . , L, ` 6= j, the conditional distributions p(u`|x`) are Gaussian with mean zero. Hence, they can

be characterized by u` = C`x` + z`, where C` is a transform matrix and z` is a random vector independent

of x, with zero mean and covariance matrix Σz,`. Define

uc
j

def= {C`x` + z`}L
`=1,` 6=j , (47)

and R0
def= I

(
x;uc

j

)
.

(b) a total rate budget of Rtot is imposed such that R0 ≤ Rtot.

Then, the optimal (distortion-minimizing) conditional distribution for the remaining terminal, p(uj |xj) is also

Gaussian (with mean zero), and is found by first determining the local KLT C of xj with respect to uc
j . Let k be

the largest integer satisfying

dk
def= Gk(λw)2−

2(Rtot−R0)
k ≤ λw,m, for m = 1, 2, . . . , k, (48)

where Gk(λw) = k

√∏k
m=1 λw,m is the geometric mean of the largest k eigenvalues of the matrix Σw. Then, the

conditional distribution p(uj |xj) of the auxiliary random vector uj minimizing (43) subject to (44) and (45) is

characterized by uj = Cjxj + zj , where Cj contains the first k rows of C, and the Gaussian vector zj has mean

zero and covariance matrix

Σz,j = diag

({
λw,mdk

λw,m − dk

}k

m=1

)
. (49)

Remark 6: It is a simple matter to verify that the uj constructed along the lines of Corollary 11 satisfies

I
(
xj ;uj |uc

j

)
= Rtot −R0. (50)

But then, the total rate of the source code (as in Theorem 10) is simply given by

I(x;u1,u2, . . . ,uL) = I
(
x;uc

j

)
+ I

(
xj ;uj |uc

j

)
(51)

= Rtot, (52)

as desired. Here, the first equality follows by the chain rule of mutual information [6, Thm.2.5.2] and the fact that

uj is conditionally independent of x`, for ` 6= j, when conditioned on xj .

To obtain an iterative procedure based on Corollary 11, assume that initially, the auxiliary random vectors

u2,u3, . . . ,uL, and x are jointly Gaussian random vectors. Hence, they can be parameterized by transforms

C2, C3, . . . , CL and additive Gaussian “compression” noises, as illustrated in Figure 3.

Algorithm 2 (distributed KLT for compression): The first terminal observes the first M1 components, the second

terminal observes the next M2 components, and so on. A total rate of R bits per source vector is available, to be

shared by the L terminals. Initialize as follows:
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(a) Let C
(0)
` = 0`, where 0` denotes a column vector of length M` with all zero entries, for ` = 1, 2, . . . L and

Σ(0)
z,` = 0.

(b) Select a suitable non-negative, non-decreasing, discrete-indexed function (a “rate schedule”) R(i) satisfying

R(0) = 0, R(i) ≤ R, for all i > 0.

In the ith iteration (i > 0),

1) For each j, j = 1, 2, . . . , L:

Fix the transform matrices C
(i−1)
` and the covariance matrices Σ(i−1)

z,` , for ` = 1, 2, . . . , L, ` 6= j,

set Rtot = R(i) and find the best transform C̃j and the best covariance matrix Σ̃z,j , as described in

Corollary 11. Denote the resulting overall distortion by Dj .

2) Only retain the one updated matrix that enables the largest decrease in distortion. More formally, set j∗ =

arg minj Dj and update as follows:

for ` = j∗ : C
(i)
j∗ = C̃j∗ and Σ(i)

z,j∗ = Σ̃z,j∗ (53)

for ` 6= j∗ : C
(i)
` = C

(i−1)
` and Σ(i)

z,` = Σ(i−1)
z,` (54)

�

Remark 7: This algorithm attempts to simultaneously find a rate allocation between the terminals and the

corresponding source code such as to minimize the overall distortion. It is important to point out that this algorithm

may yield entirely different solutions, both in terms of the rate allocation and in terms of the corresponding source

code, depending on the “rate schedule” function R(i) that is selected.

Remark 8: A greedy rate allocation strategy as used in Algorithm 2 is inherently “short-sighted” and may not

lead to a globally optimal solution in general [46, Section 8.4, p.234].

By analogy to Algorithm 1, it is easy to show that this algorithm must converge to a stable point that can either

be a saddle point or a local minimum. Clearly, one cannot generally expect the algorithm to converge to a global

minimum. Instead, we again illustrate the behavior with a few examples.

Theorem 12 (local convergence): Denote the transform and covariance matrices provided by Algorithm 2 after

iteration i by C
(i)
` ∈ Rk`×Mi and Σ(i)

z,`, respectively, for ` = 1, 2, . . . , L. Let z(i)
` be a Gaussian random vector,

independent of x, with mean zero and covariance matrix Σ(i)
z,`. Denote the minimum mean-squared error estimate

of x based on the observations {C(i)
` x` + z(i)

` }L
`=1 by x̂(i). Then,

E
[
‖x− x̂(i)‖2

]
≥ E

[
‖x− x̂(i+1)‖2

]
, (55)

i.e., the distortion is a non-increasing function of the iteration number.

Proof: The theorem follows directly from Corollary 11: Suppose that in iteration i, the transform matrix Cj

and the corresponding covariance matrix Σz,j provide the largest decrease in mean-squared error, and thus, are

being updated. That is, they are selected according to Corollary 11. Note that the only restriction imposed by the

corollary is (45). However, since R(i) ≥ R(i− 1), it is clear that the current values of Cj and Σz,j are inside the

optimization space. Therefore, the distortion cannot increase.

August 13, 2006 DRAFT



25

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

R

D

Fig. 12. Rate-distortion functions for Example 8: The solid line is the rate-distortion function for the distributed KLT algorithm (Algorithm 2),

the dashed line the rate-distortion function for joint encoding of the entire vector, and the dotted line is the rate-distortion function for the case

where each terminal individually compresses its observations, ignoring the other terminal’s presence. The rate is given in bits.

Example 8: To illustrate Algorithm 2, reconsider the covariance matrix of Example 6. The outcomes of our

numerical investigation are shown in Figure 12. The solid line is the performance of the scheme following from

the distributed KLT algorithm. That is, for each point on the solid line, the distributed KLT algorithm was run,

using a random rate schedule. More specifically, the function R(i) in Algorithm 2 was made up of 100 random

increments from R(i) = 0 to R(i) = 1. As the smoothness of the curve reveals, for the example at hand, multiple

runs with different random rate schedules led to the same rate-distortion points. For comparison, the dashed line

is the rate-distortion function for joint encoding of the entire vector x, and the dotted line is the performance of a

scheme where no distributed coding is done, but instead each terminal individually (and optimally) compresses its

observations, ignoring each other’s presence.

VI. ILLUSTRATION: CONVERGENCE OF THE DISTRIBUTED KLT ALGORITHM

While the distributed KLT algorithm presented in Section V is an intuitively pleasing approach and can be shown

to converge to a locally stable point which is either a local optimum or a saddle point (Theorem 9), convergence to

a global optimum cannot be guaranteed in general. In this section, we illustrate this fact by two simple examples.

In the first example, there is only one local minimum, which for that reason must also be a global minimum.

Therefore, the proposed algorithm will converge to the globally optimum solution. In the second example, different
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local minima exist, and hence, the outcome of the proposed algorithm depends on the parameter settings and

initializations.

Example 9 (Gauss-Markov source): Consider the case N = 4, M1 = M2 = 2, and k1 = k2 = 1. Let

Σx =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1

 . (56)

In this simple example, the transform applied by terminal 1 is simply a vector of length 2. Since the performance is

invariant under scaling, the transform can be parameterized by a single real number, characterizing the relationship

between the two components. By analogy, the same holds for the transform applied by terminal 2. For example,

we may parameterize the transforms by two angles, α and β, by which we mean that terminal 1 provides y1 =

x1 cos α + x2 sinα, and terminal 2 provides y3 = x3 cos β + x4 sinβ. For ρ = 0.9, Figure 13 shows the resulting

error surface, as a function of α and β, revealing the obvious π-periodic structure and the fact that there is only

one local minimum in each period. Consequently, any locally converging algorithm, and in particular, the suggested

distributed KLT algorithm (Algorithm 1) will converge to the globally optimal solution. For the considered example,

the distortion incurred by the distributed KLT is Ddklt ≈ 0.1693, while applying marginal KLTs at each terminal

results in a distortion of Dmklt ≈ 0.1714. The joint KLT, having access to the entire vector simultaneously, incurs

Djklt ≈ 0.1637.

By contrast to the preceding example, the following example shows that a local optimum need not be a global

optimum in the distributed KLT problem.

Example 10: Consider again the case N = 4, M1 = M2 = 2, and k1 = k2 = 1, but now, let

Σx =


2 0 1 0

0 2.3 0 0

1 0 2 0

0 0 0 2.1

 . (57)

By analogy to Example 9, we again plot the error surface as a function of α and β. The outcome is shown in

Figure 14, clearly revealing the existence of two different local minima. Obviously, no locally convergent algorithm

can be guaranteed to find the global minimum (i.e., the smaller of the two local minima).

To get further insight, suppose that Algorithm 1 is initialized with C2 = (1 0), i.e., terminal 2 provides the

component x3. It is easy to see that Algorithm 1 will then select C1 = (0 1), i.e., terminal 1 provides the component

x2. Thereafter, Algorithm 1 does not change the matrices C1 and C2 any further. The resulting distortion is D = 3.6.

However, if Algorithm 1 is initialized with C2 = (0 1), then the (locally) optimal choice is C1 = (1 0). Thereafter,

Algorithm 1 does not change the matrices C1 and C2 any further. The resulting distortion is D = 3.8, illustrating

that the algorithm converged to a local minimum.
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Fig. 13. The resulting distortion as a function of the distributed transforms (parameterized by α and β) for Example 9. All local minima are

of the same depth, and hence, global minima.

VII. CONCLUSIONS

This paper derives a distributed version of the Karhunen-Loève transform: when the correlated data cannot be

observed centrally, a scenario arising for example in sensor networks, it is impossible to apply the KLT to the entire

data vector. Instead, we suppose that L independent agents each observe a separate part of the data, and have to

locally process their part, providing a compressed version upstream. We consider two kinds of compressed versions:

on the one hand, we consider linear approximation, where each agent provides a small-dimensional approximation

of its observation, and on the other hand, we consider a rate-distortion framework where each agent provides a bit

stream. Somewhere upstream sits a central data collector, wishing to reconstruct the entire underlying data vector

at the smallest mean-squared error possible. The problem studied in this paper is to determine the optimum local

operations to be executed by the independent agents.

Special cases are addressed for which explicit solutions can be given, including the partial and the conditional

KLT. For the general case, the paper derives a locally convergent algorithm. For the Gauss-Markov example

(Example 9), the algorithm converges to a global optimum. Generally, however, we show that the distributed KLT

problem typically results in a non-convex optimization problem, and hence, further investigations are necessary to

determine the precise (global) convergence behavior.

As far as applications are concerned, many scenarios of current interest involve distributed compression. For
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Fig. 14. The resulting distortion as a function of the distributed transforms (parameterized by α and β) for Example 10. As the figure reveals,

there exist local minima that are not global minima. More precisely, there are two kinds of (periodically repeated) local minima. In the graph,

the global minima can be seen most easily along the β-axis, and the local minima that are not global along the α-axis.

example, data gathering in sensor networks involves distributed coding of correlated data, where the distributed KLT

can play a role. Another example is found in interactive communication schemes, e.g. two databases exchanging

images with known cross-correlation, which leads directly to a conditional KLT problem.
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APPENDIX I

To establish Lemma 1 and Theorem 2, we start by noting that since x is assumed to be a vector of jointly

Gaussian random variables,3 and since y2 = C2x2 + z2, where z2 is also Gaussian and independent of x, there

exist matrices A1 and A2 such that

x2 = A1x1 + A2y2 + v, (58)

3The theorem can be proved more generally if one imposes the restriction of linear reconstruction, but this is beyond the scope of the present

paper.
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where the Gaussian random vector v is independent of x1 and of y2. It is straightforward to verify that the matrix

A = (A1, A2) is the one given in Equation (14). Simultaneously, there exists a matrix B2 such that we can write IM

A1

x1 = B2y2 + w, (59)

where the random vector w is independent of y2. The matrix Σw given in Equation (15) is the covariance matrix

of the random vector w. We will now use these relationships to simplify the distortion expression to be minimized.

Proof: (Proof of Lemma 1.) For Lemma 1, the fact that rank(C1) = M follows from the fact that the columns

of Q
(M)
w are orthogonal and that the matrix (IM

A1
) has full (column) rank, trivially. Clearly, however, C1 is not

generally unitary. The second fact can be established by considering the random matrix

Cov(C1x1, C1x1|y2) = Cov

(Q(M)
w

)T

 IM

A1

x1,
(
Q(M)

w

)T

 IM

A1

x1

∣∣∣∣∣∣y2


= Cov

((
Q(M)

w

)T

(B2y2 + w) ,
(
Q(M)

w

)T

(B2y2 + w)
∣∣∣∣y2

)
= Cov

((
Q(M)

w

)T

w,
(
Q(M)

w

)T

w
∣∣∣∣y2

)
, (60)

and since w is independent of y2, we find

Cov(C1x1, C1x1|y2) =
(
Q(M)

w

)T

ΣwQ(M)
w (61)

with probability one. Moreover, the matrix on the LHS of Eqn. (61) is diagonal by construction of Q
(M)
w , with

diagonal entries λw,m, for m = 1, 2, . . . ,M , as in Equation (16). Hence, the components of C1x1 have conditional

variances λw,m, for m = 1, 2, . . . ,M , conditioned on y2.

Proof: (Proof of Theorem 2.) To establish Theorem 2, we assume that the encoder provides a linear approxi-

mation, i.e., the encoder provides4

y1 = C1x1. (62)

Hence, the decoder has access to y1 = C1x1 (or, along the same lines, a noisy version C1x1 + z1) and of

y2 = C2x2 + z2, and needs to provide an estimate x̂ such as to minimize

E
[
‖x− x̂‖2

]
. (63)

In the Gaussian case considered in this paper, it is well known that linear reconstruction is optimal (a straightforward

consequence of, e.g., [47, Thm.34.8]), that is, x̂ is an (arbitrary) linear5 function of y1 = C1x1 and of y2 =

4Note that the same analysis applies to the case where the encoder is to provide a noisy linear approximation of the form y1 = C1x1 + z1,

where z1 is additional noise, independent of all components of the original vector x.

5Recall, however, that beyond the case of Gaussian statistics, non-linear estimation may perform better. We do not address this issue in the

present paper.
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C2x2 + z2. The matrix C2 is fixed, and the goal is to determine the optimal matrix C1. To this end, let us first

trivially rewrite

E
[
‖x− x̂‖2

]
= E

[
‖x1 − x̂1‖2

]
+ E

[
‖x2 − x̂2‖2

]
, (64)

where we use x̂1 to denote the first M components of x̂, and x̂2 to denote its remaining N − M components.

Furthermore,

E
[
‖x1 − x̂1‖2

]
+ E

[
‖x2 − x̂2‖2

]
= E

[
‖x1 − x̂1‖2

]
+ E

[
‖A1x1 + A2y2 + v − x̂2‖2

]
, (65)

where we have used Eqn. (58). Recall that v is independent of x1 and y2 (by construction of v, see Eqn. (58)).

Therefore,

x̂2 = A1x̂1 + A2y2, (66)

and thus,

E
[
‖x− x̂‖2

]
= E

[
‖x1 − x̂1‖2

]
+ E

[
‖A1x1 −A1x̂1‖2

]
+ E

[
‖v‖2

]
, (67)

Finally, merging the two contributions that involve x1, we obtain

E
[
‖x− x̂‖2

]
= E

[
‖(IM

A1
)x1 − (IM

A1
)x̂1‖2

]
+ E

[
‖v‖2

]
. (68)

To proceed from here, we will rewrite the distortion as an iterated expectation, as follows:

E
[
‖x− x̂‖2

]
= E

[
E
[
‖(IM

A1
)x1 − (IM

A1
)x̂1‖2

∣∣∣y2

]]
+ E

[
‖v‖2

]
. (69)

Now, consider the random variable E
[
‖(IM

A1
)x1 − (IM

A1
)x̂1‖2

∣∣∣y2

]
. For a specific instance y2 = ξ2, we can consider

E
[
‖(IM

A1
)x1 − (IM

A1
)x̂1‖2

∣∣∣y2 = ξ2

]
. (70)

Next, since the columns of the matrix Q
(M)
w are orthonormal, we can multiply both expressions inside the expectation

in Equation (70) by
(
Q

(M)
w

)T

without changing the outcome. But then, using our definition of C1, we can rewrite

E
[
‖(IM

A1
)x1 − (IM

A1
)x̂1‖2

∣∣∣y2 = ξ2

]
= E

[
‖C1x1 − C1x̂1‖2

∣∣y2 = ξ2

]
, (71)

which we can now rewrite in terms of the components of the vector y1 = C1x1 = (y1, y2, . . . , yM ) as

E
[
‖(IM

A1
)x1 − (IM

A1
)x̂1‖2

∣∣∣y2 = ξ2

]
=

M∑
m=1

E
[
|ym − ŷm|2

∣∣y2 = ξ2

]
. (72)

Lemma 1 ensures that the components y1, y2, . . . , ym are conditionally uncorrelated given y2 = ξ2. Therefore, in

terms of the components y1, y2, . . . , ym, it is a simple matter to determine the optimum k-dimensional approximation

space. First, if the component ym is retained, then clearly its corresponding estimate is ŷm = ym. However, if ym

is not retained, then its corresponding estimate is ŷm = 0; none of the other components of the vector y contain

anything relevant about ym, conditioned on y2. The best k-dimensional approximation space is therefore easily
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found in terms of y1: Denote the set of the k indices corresponding to the retained components of y by T . Then,

the incurred distortion can be expressed as

E
[
‖(IM

A1
)x1 − (IM

A1
)x̂1‖2

∣∣∣y2 = ξ2

]
=

∑
m∈T c

λw,m, (73)

where λw,m, for m = 1, 2, . . . ,M, denote the conditional variances of the components of y1 = C1x1, conditioned

on y2 = ξ2, as given in Equation (16), and T c denotes the complement of T in the set {1, 2, . . . ,M}. Therefore, the

best k-dimensional approximation is given by the components ym corresponding to the largest eigenvalues λw,m.

It is important to note that the matrix C1, and hence the resulting approximation space, does not depend on the

particular realization of y2. Therefore, we can trivially evaluate the iterated expectation in Eqn. (69) to obtain

E
[
‖x− x̂‖2

]
= E

[
E
[
‖(IM

A1
)x1 − (IM

A1
)x̂1‖2

∣∣∣y2

]]
+ E

[
‖v‖2

]
(74)

=
∑

m∈T c

λw,m + E
[
‖v‖2

]
(75)

Finally, to evaluate E
[
‖v‖2

]
, we need the covariance matrix Σv of the random vector v in Equation (58). From

standard covariance considerations, we find that Σv must satisfy

Σv = Σ2 − (ΣT
12 Σ2C

T
2 )

 Σ1 Σ12C
T
2

C2ΣT
12 C2Σ2C

T
2 + Σz

−1 Σ12

C2Σ2

 , (76)

and by definition, E
[
‖v‖2

]
= trace Σv.

APPENDIX II

Proof: (Proof of Theorem 3.) We establish the theorem in two parts, first showing that no lower rate can be

hoped for, and then showing that there exists a coding technique that achieves this rate.

Proofs of similar statements can be found in the literature, see e.g. [48], [49], [50].

Converse: To establish the converse, suppose that the value of the side information, y2, is known both at the

encoder and at the decoder. In this idealized scenario, denote the minimum rate required to achieve a distortion no

larger than D by Rboth(D). Clearly,

Rlocal(D) ≥ Rboth(D), (77)

since any code that works for the scenario of Theorem 3 also works in the idealized scenario.

The goal of the first part of the proof is to provide a lower bound to Rboth(D), and hence, to Rlocal(D). The

idealized scenario where both the encoder and the decoder know the side information y2 is sometimes referred

to as the conditional rate-distortion function, and has been considered in [51]. Our scenario is slightly different

from [51] in that the distortion criterion involves the side information. Let us define the following object:

Rc(D) = min I(x1; x̂|y2) (78)

where the minimum is over all p(x̂|x1,y2) satisfying

E
[
‖x− x̂‖2

]
≤ D. (79)

August 13, 2006 DRAFT



32

It follows straightforwardly from [6, Lemma 13.4.1] that Rc(D) is a convex and non-increasing function of D.

Consider any (block) code of length n for the observed source vector sequences {x1[i]}n
i=1. If the rate per source

(vector) sample is Rboth(D), there are at most 2nRboth(D) different codewords. Along the lines of [6, (13.58)-

(13.70)], it is easy to show that Rboth(D) ≥ Rc(D).

The next step is to evaluate Rc(D) for the case at hand. First, we rewrite

(IM

A1
)x1 = B2y2 + w, (80)

which implies I(x1; x̂|y2) = I(w; x̂|y2). Similarly, for the distortion, we can write

E
[
‖x− x̂‖2

]
= E

[
‖(IM

A1
)x1 − x̂‖2

]
= E

[
‖w − x̂‖2

]
+ E

[
‖v‖2

]
. (81)

Next, consider w̃ = QT
ww, where Qw is the unitary matrix satisfying

QT
wΣwQw = diag(λw,1, . . . , λw,M , 0, 0, 0, . . . , 0︸ ︷︷ ︸

N−M zeros

). (82)

In terms of w̃, we can rewrite the minimization problem (78)-(79) as

min I(w̃; x̂|y2) (83)

where w̃ and y2 are independent Gaussian random vectors, and the minimization is over all p(x̂|x1,y2) that satisfy

E
[
‖w̃ − x̂‖2

]
≤ D. (84)

Since w̃ and y2 are independent, the minimizing x̂ will depend only on w̃. In other words, the problem can be

expressed as

min I(w̃; x̂) (85)

where the minimization is over all p(x̂|w̃) that satisfy

E
[
‖w̃ − x̂‖2

]
. (86)

But since the components of w̃ are independent Gaussian random variables with mean zero and variances

λw,1, . . . , λw,M , 0, 0, 0, . . . , 0︸ ︷︷ ︸
N−M zeros

, (87)

this is merely the problem of compressing independent Gaussian sources of different variances, whose solution is

well-known to be [6, p.348]

Rc(D) = min
D1,...,DM

M∑
m=1

max
{

1
2

log2

λw,m

Dm
, 0
}

, (88)

where λw,m are the eigenvalues of the matrix Σw, and where the minimum is over all D1, . . . , DM satisfying∑M
m=1 Dm + E

[
‖v‖2

]
≤ D.
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Finally, evaluating the minimization over the D1, . . . , DM , the following expression is obtained:

Rc(D) =
M∑

m=1

max
{

1
2

log2

λw,m

Dm
, 0
}

, (89)

where

Dm =

 θ, if θ < λw,m

λw,m if θ ≥ λw,m,
(90)

where θ is chosen such that
∑M

m=1 Dm + E
[
‖v‖2

]
= D.

Hence, we have shown that

Rlocal(D) ≥ Rc(D), (91)

with Rc(D) as in Equations (89)-(90).

Achievability: The remaining part of the proof is to show that there exists a coding scheme for the scenario of

Theorem 3 whose performance arbitrarily closely approaches Rc(D). To do so, let the encoding device first apply

the local KLT C1 to x1[i] (with respect to y2[i]), as in Definition 1. Note that since the source is memoryless, the

transform C1 does not depend on i. This yields a (transformed) sequence of vectors y1[i] = C1x1[i]. For each i,

the components of the vector y1[i] are conditionally independent given y2[i]. It now suffices to apply the result

of Wyner and Ziv [9], [52] separately to each component of y1[i]. More precisely, for the “component sequence”

{ym[i]}∞i=1, m = 1, 2, . . . ,M, with side information at the decoder {y2[i]}∞i=1, it was found in [9], [52] that

Rm(Dm) = max
{

1
2

log2

λw,m

Dm
, 0
}

. (92)

Finally, we minimize the sum rate
∑M

m=1 Rm subject to the constraint that
∑M

m=1 Dm + E
[
‖v‖2

]
= D. The

solution is easily found to be (88).

Proof: (Proof of Corollary 4.) Consider the proof of achievability for Theorem 3. After applying the local KLT

to x1, yielding y1 = C1x1, the components y1, y2, . . . , yM of y1 are treated separately, incurring distortions of

D1, D2, . . . , DM , respectively. That is, consider the single-source Wyner-Ziv problem (as in [9], [52]), the source

being ym, and the side information being the vector y2. The minimum rate can be characterized as

Rm(Dm) = min I(ym;um|y2), (93)

where the minimization is over all distributions p(um|ym)p(ym,y2) for which there exists a function fm(·) such

that

E
[
|ym − fm(um,y2)|2

]
≤ Dm. (94)

Evaluating this reveals Equation (92), but it also reveals that the minimizing p(um|ym) makes um and ym jointly

Gaussian random variables. Since um is only determined up to a scaling factor, this simply implies that we can

express um as

um = ym + zm, (95)
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where zm is Gaussian and independent of ym. It is easily verified that zm has mean zero and variance σ2
Z satisfying

Dm =
λw,mσ2

Z

λw,m + σ2
Z

. (96)

Finally, just like in the proof of achievability for Theorem 3, Dm must be chosen to minimize the resulting sum

rate,
∑M

m=1 Rm(Dm), subject to the constraint
∑M

m=1 Dm + E
[
‖v‖2

]
= D. This minimization is carried out by

analogy to (89)-(90), and Equation (90) implies the rule for selecting k in Corollary 4.
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