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Abstract

In recent years, wavelet based algorithms have been successful in different signal processing tasks. The
wavelet transform is a powerful tool because it manages to represent both transient and stationary be-
haviours of a signal with few transform coeflicients. Discontinuities often carry relevant signal information
and so they represent a critical part to analyse. In this paper, we study the dependency across scales of the
wavelet coefficients generated by discontinuities. We start by showing that any piecewise smooth signal
can be expressed as a sum of a piecewise polynomial signal and a uniformly smooth residual (Theorem 1,
Section IT). We then introduce the notion of footprints which are scale space vectors that model discontinu-
ities in piecewise polynomial signals exactly. We show that footprints form an overcomplete dictionary and
develop efficient and robust algorithms to find the exact representation of a piecewise polynomial function
in terms of footprints. This also leads to efficient approximation of piecewise smooth functions. Finally,
we focus on applications and show that algorithms based on footprints outperform standard wavelet meth-
ods in different applications such as denoising, compression and (non-blind) deconvolution. In the case
of compression, we also prove that at high rates, footprints based algorithms attain optimal performance

(Theorem 3, Section V).
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I. INTRODUCTION

The design of a complete or overcomplete expansion that allows for compact representation of
certain relevant classes of signals is a central problem in signal processing and its applications.
Parsimonious representation of data is important for compression [14]. Furthermore, achieving a
compact representation of a signal also means intimate knowledge of the signal features and this
can be useful for many other tasks including denoising, classification and interpolation. From
a computational analysis point of view, one can say that the problem is to build a dictionary
D = {fi}ier of elementary functions which can well approximate any signal in a given functional
class F with the superposition of few of its elements.

The design of a dictionary with good approximation properties, however, is not the only impor-
tant element. Together with D, one also needs to develop fast algorithms that can efficiently find
the sparsest representation of any signal g € F in terms of the elements of D. When D = {f; }ier
is a basis, there is a unique way to express g as a linear combination of the f;’s and this represen-
tation can be easily found computing the inner products between g and the duals of f;’s.! Despite
this nice property, overcomplete dictionaries are often preferred to basis expansions. Overcom-
plete dictionaries are more flexible, they can better adapt to the characteristics of the signal
under consideration and this allows for sparser signal representations. Examples of overcomplete
dictionaries include best basis methods or adaptive wavelet packets [5], [26]. In the case of over-
complete bases, however, it is more difficult to develop fast algorithms that find the right sparse
representation of a signal in F. Because the elements of D are linearly dependent, there are
infinitely many ways to express g as a linear combination of the f;’s. In a few cases, it is possible
to arrive at sparse signal representations with linear complexity algorithms [13], [16]. But, in
general, the search for the sparsest signal representation is an NP-complete problem [10]. Note
that techniques based on singular value decomposition (SVD) and pseudo-inverse do not yield
compact signal representations [17]. Other methods like basis pursuit [3] are usually computa-
tionally intensive; matching pursuit [22], which is a greedy iterative algorithm, is computationally
efficient but does not converge in a finite number of iterations in general.

In this paper, we focus on the class of piecewise smooth signals. In particular, we will mostly
consider piecewise polynomial signals. We propose a new representation of these functions in
terms of objects which we call footprints and which make up an overcomplete dictionary of atoms.
The footprints dictionary is built from the wavelet transform. Given a signal of interest, we first
perform the wavelet transform of this signal and then the wavelet coefficients are expressed in
terms of footprints. Together with the scaling coefficients, footprints can represent any piecewise

'The dual elements coincide with f; if the dictionary is orthonormal.
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polynomial signal. The main property of footprints is that they characterize efficiently the singular
structures of the signal, which usually carry important information. Wavelets are also efficient
at representing singularities [21], however the wavelet coefficients generated by a singularity are
dependent across scales. By constructing the footprint expansion on the wavelet transform, we
remove this dependency completely. Thus, by representing any discontinuity with the combination
of a few footprints, we can get a sparser representation of the signal under consideration.

Even though the footprint expansion is overcomplete, it can be made locally orthogonal and
this allows us to use fast algorithms to find the right sparse decomposition of the signal in terms
of footprints. Alternatively, it is also possible to use matching pursuit. We show that there are
situations in which matching pursuit with footprints can attain the sparsest signal representation
with a finite number of iterations. Finally, we will see that the use of this dictionary leads to
efficient algorithms for compression, denoising and non-blind deconvolution of piecewise smooth
signals.

The paper is organized as follows. Section 2 is meant to build up intuition about footprints.
We analyse the dependency across scales of the wavelet coefficients generated by discontinuities
and demonstrate a decomposition of a piecewise smooth signal into a piecewise polynomial signal
and a regular residual (Theorem 1). This theorem will be invoked each time we will move
from piecewise polynomial to piecewise smooth signals. In Section 3, we present the footprint
expansion and in Section 4 we develop algorithms to efficiently represent piecewise polynomial
signals in terms of footprints. In both sections, we study the case of piecewise constant signals in
detail and then extend the analysis to the case of piecewise polynomial signals. Section 5 focuses
on applications, namely, denoising, deconvolution and compression. Traditional wavelet-based
algorithms are reviewed, new algorithms based on footprints are presented and their performance
analysed. In Section 6, numerical simulations showing interesting improvements over traditional

methods are presented and conclusions are given in Section 7.

II. DEPENDENCY OF THE WAVELET COEFFICIENTS ACROSS SCALES

In wavelet based signal processing, it is usually important to exploit the dependency across
scales of the wavelet coefficients and several efforts have been made in this direction recently, see
for instance: [2], [9], [23], [28]. The singular structures of a signal often carry critical information,
and thus their efficient characterization is crucial in many signal processing tasks.

In this section, we review some of the properties of the wavelet transform, namely its ability to
characterize the local regularity of a function, and then we focus on the analysis of the dependency
of the wavelet coefficients generated by discontinuities.

Our interest is in piecewise smooth signals, that is, in signals which are made of regular pieces.
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The regularity of a function is usually measured with the Lipschitz exponent [20].2 We say that
the restriction of f(t) to [a,b] is uniformly Lipschitz a > 0 over [a, b] if there exists K > 0 such

that for all v € [a, b] there exists a polynomial p,(t) of degree m = |« such that
Vi€ (a,b), |f(t)—p,() < Kt —v|* (1)

Therefore, we define a piecewise smooth function f(t), ¢ € [0,T] with K + 1 pieces, as follows

K

F&) =" fil) g b0, (2)

1=0
where tg = 0, tx+1 = T and f;(t) is uniformly Lipschitz « over [t;,t;+1]. Such signals are
interesting, because many signals encountered in practice can be modeled as piecewise smooth.
Consider now an orthonormal wavelet series with scale and shift parameters m and n, respec-

tively. We use the convention that small scales correspond to large, negative m, that is

1 -
where 1(t) is the wavelet basis function. Moreover, assume that the wavelet has k vanishing

moments, that is

o0
/ thp(t)dt =0, d=0,1,....k—1.

—o0
Then, it follows that the wavelet coefficients of a function which is uniformly Lipschitz o < k on
an interval [a,b] decay across scales as 2™(®+1/2) [20]. The (local) decay property of the wavelet
coefficients is at the heart of the success of the wavelet transform in several applications. Now,
because of this decay property, larger wavelet coefficients tend to be around the singular parts of
a signal, that is, around points with small Lipschitz coefficients. These wavelet coefficients gather
most of the energy of the original signal and for this reason we are interested in modeling their
behaviour across scales. For instance, given a signal as in (2), we are interested in studying the
wavelet coefficients related to the break-points ¢; 1 = 1,2, ..., K.

To begin our analysis, we start by considering a particular sub-class of piecewise smooth signals,
namely piecewise polynomial signals. A function p(t) ¢ € [0, T is piecewise polynomial with K +1

pieces if
K

p(t) = Zpi(t)l[ti,tm[(t)a (3)

i=0
where tg = 0, tg+1 = T and p;(t) = ZdDZO az(-d)td 1 =20,1,..., K are polynomials of maximum
degree D. Piecewise polynomial signals have a finite number of degrees of freedom and are
easier to analyse. However, despite their simplicity they can be used to efficiently approximate

2The so defined Lipschitz exponent is sometimes called Hélder exponent.
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piecewise smooth functions. In fact, if the piecewise polynomial approximation is chosen properly,
the approximation error shows interesting regularity properties.

Theorem 1: Given is a piecewise smooth signal f(t) defined as in Eq. (2), that is, with pieces
of Lipschitz regularity «. Then, there exists a piecewise polynomial signal p(t) with pieces of
mazimum degree d = |a| such that the difference signal ro(t) = f(t) —p(t) is uniformly Lipschitz
a over [0,T7.

Proof: See Appendix A.

O
Theorem 1 indicates a practical way to deal with piecewise smooth signals. It shows that any
piecewise smooth signal f(¢) can be expressed as the sum of a piecewise polynomial signal and
a residual which is uniformly Lipschitz . That is f(t) = p(t) + ro(t). Now, since the residual is
regular, it can be well represented with wavelets (the wavelet decomposition of r,(t) results in
small coefficients with fast decay across scales). Therefore, the only elements we need to analyse
are discontinuities in the piecewise polynomial function and, in particular, the dependency across
scales of the wavelet coefficients generated by these piecewise polynomial discontinuities.?

We start by considering the simple case of piecewise constant functions with only one disconti-

nuity at location ¢; (i.e. p(t) = ago)l[o’tl[(t)-i-ago)l

(t,,7[(t)) and a wavelet series with one vanishing
moment and compact support. The decomposition of this signal in the wavelet basis results in
zero wavelet coefficients except for the coefficients in the cone of influence of ¢;. Recall that the
cone of influence of ¢; in the scale-space plane is the set of points (m,n) such that ¢; is included
in the support of ¢, ,(t). In this case, the wavelet coefficients in this cone of influence are de-

pendent: they have only one degree of freedom. This can be easily shown recalling that a wavelet

with & vanishing moments and fast decay can be written as the k** order derivative of a function

kdro(t)
dtk

and Y, ,(t) = (—1)’“2’"’1%, where 0, ,(t) = 2,,%9(2*’”15 —n). Since the k' derivative of a

6 which has also a fast decay [20]. Thus, the following conditions are true: #(t) = (—1)

function is well defined in the sense of distributions, it follows that

W), (tydt =2 / (af” — af)d(t — 1)0m n(t)dt,

—0oQ

(L), Prmn (1)) = 27 /

—0o0

where we used integration by parts to move the derivative from 6(¢) to p(¢). That is, (p(t), M> =

at
—(d’;—gt), 6(t)). Thus, if the wavelet has compact support, (p(t), ¥mn(t)) is equal to zero if 1y, (%)

does not overlap t1, and (p(t), ¥mn(t)) depends only on the difference a§°) — a(()o)

otherwise. This
means that the wavelet behaviour across scales is deterministic. If one knows the value of a single
non-zero wavelet coefficient in the cone of influence of ¢, one can derive from it all the other

3For simplicity, we call piecewise polynomial discontinuity a singularity between two polynomials.
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wavelet coefficients in that cone of influence.

This discussion generalizes to the case of piecewise polynomial signals with polynomials of
maximum degree D. Consider the case of a piecewise polynomial function with one discontinuity
at t; and polynomials p;(t) = dD:O agd)td, i = 0,1. Compute the wavelet decomposition with

a wavelet having D + 1 vanishing moments and compact support. Again, the non-zero wavelet

coefficients are only in the cone of influence of ¢; and we have

(p(t), bmn(t)) = 27F [ di;ﬁ’ﬁt) O ()dt bl 2mUD+1) [0 5D cad D (t — 1) 0 (t)dt,
=D+
(4)

where §(9)(t) is the d** derivative of the Dirac d-function and the coefficients cq depend on the
differences (agd) — agd)), d=0,1,...,D.* Thus, in the more general case, the wavelet coefficients
in the cone of influence of ¢; have only D + 1 degrees of freedom and one can determine all these
wavelet coefficients by knowing only D + 1 non-zero coefficients in that cone of influence.

In summary, the above analysis indicates that piecewise polynomial signals are well represented
by wavelets, but that it is possible to model piecewise polynomial discontinuities in a more efficient
way. In the next section, we present a new way to express discontinuities in piecewise polynomial
signals. Together, with Theorem 1, this will lead to efficient algorithms to represent piecewise
smooth signals. Although, we could perform this analysis in continuous time, we concentrate on
the discrete-time case. This is because our final target is to develop efficient algorithms that act
on discrete-time signals.

Before concluding this section, we want to analyse the border effects. Since our signals are
defined on a finite interval [0, T, we need to extend them outside this interval in order to perform
a wavelet decomposition. Several extensions are possible [20]. In our formulation, we make
a periodic extension, that is, we assume that signals are T-periodic and that, on the period
[0, T, they are given by Eqns. (2),(3). Now, this extension creates an artificial discontinuity at
t =m-T, m € Z and Theorem 1 does not guarantee that the periodic extension of r,(t) is regular
in t = m - T. However, using higher order polynomials (i.e., polynomials of maximum degree
d = |a] 4+ 1), one can easily generalize the result of Theorem 1 and guarantee regularity of (%)

over all R [15].

III. FOOTPRINT DICTIONARIES

We move from continuous-time to discrete-time signals and introduce the notion of footprints
which are scale-space vectors containing all the wavelet coefficients generated by particular poly-

“To be more precise, cq = E?:o t‘ll_"(agD_i) — a(()D_i)).
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nomial discontinuities.® We show that any piecewise polynomial discontinuity is specified by the
linear combination of a few footprints, and that footprints can be interpreted as an overcomplete

expansion with good approximation properties.

A. Preliminaries

For our discussion, we need to introduce two discrete-time wavelet operators. The first one
is an orthonormal discrete-time wavelet decomposition with J levels.® This decomposition can
be efficiently implemented with a critically sub-sampled octave-band filter bank [31]. Let 1;;[n]
denote the wavelet function at scale j and shift [ and ¢;[n] the scaling function at shift /. This
wavelet operator is linear and periodically shift-variant with period 27. The other operator is the
wavelet frame obtained by shifting out (with corresponding equivalent filters) the subsamplers in
the filter bank [31]. In this case, we denote the wavelet functions at scale j and shift [ with ijl[n]
and the scaling function at shift [ with ¢z[n]. This frame is shift invariant.

The discrete-time signals we consider are N dimensional vectors defined over the interval [0, N —
1]. Now, the wavelet operators defined above act in l2(Z), so we need to modify them to act on
[0, N —1]. As anticipated in the previous section, we use a periodic extension [20], so the wavelet
basis becomes ¢ [n] = 3502 abj[n + kN] and #7577 [n] = 3502 dn[n + kN]. Recall that for
any J < logy N, this set of periodic wavelets forms an orthogonal basis in I3([0, N —1]) [20]. The
same extension applies to the wavelet frame and, in this case, we get a frame in l3([0, N — 1]).

Finally, our interest is in the class of piecewise smooth and piecewise polynomial signals and
the previous definitions of piecewise smooth and piecewise polynomial signals can be naturally
extended to the discrete-time case. In particular, a discrete-time piecewise polynomial signal
p[n], n € [0, N — 1] is given by p[n| = Zz’lio Pi[n) L[k, g;y1 (7], Where ko = 0,kx 41 = N and p;[n]
1=20,1,..., K is a sampled polynomial of maximum degree D.

Depending on the use of a wavelet basis or a wavelet frame, we have two different footprint

dictionaries as analysed in the next sections.

B. Footprints built from a wavelet basis

In this section, we construct the footprint dictionary from a wavelet basis. First, we study
the simple case of piecewise constant signals and Haar wavelets. In this particular setting, the
footprint dictionary D is a biorthogonal basis. Then we consider the more general case of piecewise
polynomial signals and higher order wavelets. We show that in this case D is always overcomplete.

5In continuous time, one can define footprints equivalently, but they are of infinite dimension and so of little

computational value.
For simplicity, we study only the orthogonal case. However, the notion of footprints easily generalizes to the

case of biorthogonal wavelets.
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B.1 Piecewise constant signals

Consider a piecewise constant signal z[n|, n € [0, N — 1] with only one discontinuity at position

k and consider a J level wavelet decomposition of this signal with a Haar wavelet:

N/29 -1 J N/27 -1
z[n] = Z Cl¢Jl[n]+Z Z yirpiln], (5)
1=0 j=1 1=0

where y;; = (z,v;i), and ¢; = (z,¢7).” Since the Haar wavelet has one vanishing moment and
finite support, the non-zero wavelet coefficients of this decomposition are only in the cone of

influence of k. Thus Eq. (5) becomes

N/27 -1 J
zln] = > agnnl+ > ki 0],
=0 j=1

where k; = |k/2/]. Moreover, as in the continuous-time case, all these coefficients depend only
on the amplitude of the discontinuity at k. Thus, if one defines a vector which contains all of
them, one can specify any other step discontinuity at £ by multiplying this vector by the right
factor. This consideration leads to the following definition (see also Figure 1):

Definition 1: Given a piecewise constant signal x with only one discontinuity at position k, we
call footprint f,go) the scale-space vector obtained by gathering together all the wavelet coefficients
in the cone of influence of k and then imposing ||f,§0)|| = 1. Ezxpressed in the wavelet basis, this
footprint can be written as f,go) [n] = ijl djk; Pjk; 0], where djk; = yjk, /| /Z‘j]:l y?k]

Now, any piecewise constant signal z[n] with a step discontinuity at k& can be represented in terms

of the scaling functions ¢ ;[n] and of féo)_ For instance, the signal z[n] in Eq. (5) becomes

N/27 -1

el = Y agnln] +afn], (6)

1=0
where a = (z, ,SO)) = ijl Yjk;djk;- The above discussion can be repeated for any other step
discontinuity at different locations and for each location [ we have a different footprint fl(o). Call
D= {f,go),k =0,1,..., N — 1} the complete dictionary of footprints. Some of the properties of
this dictionary depend on the number J of wavelet decomposition levels. For instance, just like

the wavelet basis, footprints are shift variant unless the shift is equal to m -2/, m € Z. That is:
FOm = fOm+k-1, if i—k=m-27, me2Z (7)

In addition, footprints are orthogonal to the scaling functions, but the orthogonality condition
between footprints depends on the number J of wavelet decomposition levels. Assume k = k' +

"Note that we are assuming N to be a power of 2, in this way, a wavelet decomposition with a Haar wavelet does

not suffer from border effects.
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Footprint

Fig. 1. Time domain (top) and wavelet domain (bottom) representation of the footprint f,go) with N = 128,
J =5 and k = 41. Notice that, except for the case J = logy, N (N being a power of 2), a footprint
does not look like a pure step edge function, since the footprint definition does not include the scaling

coefficients.
m-27, 1=10'4+n-27 and | > k. We have:
0) (0 )
1 =0 if m # n,

r(od _Jr .
<f1§0)’fl(0)> - % otherwise.

So, footprints related to neighbouring discontinuities are biorthogonal. Finally, consider again

Eq. (7). Since féo) [n] = 0, it follows that fgl)_)Q ;[n] = 0. Thus, D contains only N — N/2” elements.

(8)

Moreover, we have that:
Proposition 1: The elements of D together with the N/27 scaling functions ¢.z[n], 1 = 0,1,..., N/27
form a biorthogonal basis for l2([0, N — 1]).
Proof: See Appendix B |
So, any signal z[n], n € [0, N —1] can be expressed in terms of footprints and scaling functions. In
particular, if x is piecewise constant with K discontinuities, together with the scaling functions, K
footprints are sufficient to represent it. This can be shown by noticing that a piecewise constant
signal with only one discontinuity can be expressed in terms of one footprint (see Eq. (6)) and
piecewise constant signals with K discontinuities are given by the superposition of K piecewise
constant signals with only one discontinuity. Therefore, the footprint representation of a signal

z with K discontinuities at positions k1, ko, ..., kx is given by:

N/29 -1 K
el = > agnln] + > aif V). 9)
=0 =1

Note how this representation is sparser than the corresponding representation in a wavelet basis
which requires J times more wavelets than footprints if the cones of influence do not overlap.
The problem of finding the discontinuity locations and the correct values «; in (9) will be treated

in detail in Section IV.
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10

Finally, one may wonder if any object generated with the superposition of K footprints is
piecewise constant with a number of discontinuities equal to the number of footprints. That is,
are D and the scaling functions an unconditional basis for the class of piecewise constant signals?
It turns out that this property is satisfied only when J = log, N (NN being a power of 2).

Proposition 2: For N = 27, the scaling function ¢jo[n] and the N — 1 footprints f,go), k=

1,2,..., N — 1 represent a biorthogonal basis which is unconditional for the class of piecewise
constant signals defined over [0, N — 1].
Proof: The biorthogonality comes from Proposition 1. We only need to show that this basis
is unconditional. That is, assume that z is a piecewise constant signal with discontinuities at
k1, ka, ..., kx and consider its representation in terms of footprints: z[n| = codjo[n]+ Z{i L flg?)'
We need to show that: for any set of coefficients &; satisfying |&;| < ||, the signal Z[n] =
codgo[n] + Zfil a; f,g?) is still piecewise constant with discontinuity locations k1, ks, ..., kx. This
can be seen by noticing that, for J = log, N, ¢jo[n] is a constant function and f,go) [n] is piecewise
constant with one discontinuity at k (k = 1,2, ..., N —1). Therefore, any linear combination of f,
k; € {k1,ko,...,kK } gives a piecewise constant signal with discontinuity locations k1, ks, ..., kx .

O

B.2 Piecewise polynomial signals

We now generalize the above discussion to the case of discrete-time piecewise polynomial signals
with polynomials of maximum degree D. We show that in this context each discontinuity is
represented by D + 1 footprints rather than one footprint.

Consider orthogonal wavelets with at least D 4+ 1 vanishing moments and compact support
L and consider a piecewise polynomial signal z[n] with only one discontinuity at k. Its J level

wavelet decomposition with periodic wavelets is:

Ny27 -1 J N/2i-1
zn] = Z Clqﬁ’}l [n] +Z Z '!/]ﬂpl [n]. (10)
=0 j=1 1=0

First, notice that the periodic extension of the wavelet basis creates a second discontinuity at
location zero and that this is a polynomial discontinuity. Thus, the non-zero wavelet coefficients
of this expansion are only in the cone of influence of £ and in the cone of influence of zero.
Assume, for now, that 0 < £ < N and 27 < N so that there are no wavelet coefficients in

common between these two cones of influence. We can write

N/29 -1
eln) = Y a¢h I+ Y vl [+ Y vl [n] (11)
=0 ],lEI(] ],lEIk

where I, is the set of indices (j,), which are in the cone of influence of k and Ij is the set of indices

(4,1), which are in the cone of influence of zero. It is easy to verify that there are J x (L — 1)
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11

wavelet coefficients in each cone of influence. From Eq. (4), we know that the wavelet coefficients
in each of these cones of influence have only D + 1 degrees of freedom. Thus, we want to find a
set of D + 1 footprints that can characterize these coefficients. To build this set of footprints, we
resort to time-domain analysis.

The class of piecewise polynomial signals with one discontinuity at a fixed position k € [0, N —1]
forms a linear space of dimension 2(D + 1) and a possible basis for that space is represented by

the following vectors
Dn)=n?, d=0,1,...,D; nel0,N—1]
T9n) = 1y yy(n—k+1)% d=0,1,..,D, nel0,N—1]
We can express these signals in a wavelet basis and we have

J— er er
P(d)[n]= M@ [n]+zj,gop,l P )
D) = N2 “%P ]+ 310 B W] + X gser, 0 wh ),

where we have used the fact that the non-zero wavelet coefficients of P(®)[n] are only in Iy, while
(d)

the non-zero wavelet coefficients of T,

(12)

are in the cones of influence of k£ and zero. Now, any

signal z[n] in this class can be written as

D D
n) = Z a(()d)P(d) [n] + Z a,(cd)T,gd) [n]. (13)
d=0

d=0

Therefore, combining Eqns. (11),(12),(13) and considering only the elements in Iy, we have

> vl n] Za S 0 (14)

Js EIk Js eIk

Call f,gd) [n] =37 e, tg.'li) PE"[n] the scale-space vector gathering the Jx (L—1) wavelet coefficients
)

generated by the discontinuity in TIS . Eq. (14) shows that the wavelet coefficients generated by
any polynomial discontinuity at k are characterized by a linear combination of f ,Ed). This indicates
that the wavelet coefficients in the cone of influence of a polynomial discontinuity have only D+ 1
degrees of freedom and proves that these coefficients lie on a subspace of dimension D + 1. The
vectors f,gd), d =0,1,...,D, span that subspace and can represent the set of footprints we are
looking for. However, it is always better to have orthogonal bases, so the footprints that we will
consider are obtained by applying a Gram-Schmidt orthogonalization process to f,gd). Thus, from
the above discussion it follows that

Proposition 3: Given a piecewise polynomial signal with polynomials of mazimum degree D and

with one discontinuity at position k, the J x (L — 1) non-zero wavelet coefficients in the cone of

influence of that discontinuity lie on a sub-space of dimension D + 1.
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12

Definition 2: We call footprints f,gd) d=0,1,...,D the elements of an orthogonal vector basis
which spans the subspace of dimension D + 1 generated by a polynomial discontinuity at k. Foot-
prints are obtained by gathering together all the non-zero wavelet coefficients generated by the

discontinuity in T,gd) d=0,1,...,D and then imposing the two following conditions:
1£#71=1 d=0,1,...,D;

(D 9y =5 i=0,1,..,D; j=0,1,..,D.
With this set of footprints, we can characterize any polynomial discontinuity at position k. In

particular, Eq. (10) can be written as

N/29 -1 D
sl = > adinl+ Y vy In] + Y o 0]
1=0 jlely d=0

where o(¥ = (z, (d)) d=0,1,...,D.8 With a similar analysis, we can create a different set of
D+ 1 footprints to characterize a polynomial discontinuity at a different location. To characterize
any polynomial discontinuity (including the discontinuity in zero), we need a dictionary D =
{f,gd), d=0,1,..,D;k =0,1,..., N—1.} of (D+1)N footprints. With this dictionary of footprints
and with the scaling functions we can represent any piecewise polynomial signal. In particular, a

signal z with K discontinuities at locations ki, ks, ..., kx is given by

Ny27 -1 K D
gl = Y ad i+ Y. > ol £ m, (15)
=0 1=0 d=0

where kg = 0 is the discontinuity due to the periodic extension. Note again how this representation
is sparser than the corresponding representation in a wavelet basis.

As for the case of piecewise constant signals, footprints are orthogonal to the scaling func-
tions, but footprints related to close discontinuities are biorthogonal. In particular, we have that
(fD £y = 0 for |l — k| > (L — 1) - 27. Moreover, footprints are periodically shift-invariant of

period 27, hence
FOm =+ k-1, if I-k=m-27, meZ d=0,1,..,D. (16)

It is also of interest to note that, due to the periodic extension, the coefficients az(d) in (15) are

not independent. For instance, for D = 0 it follows that ag = — Efil wgiagi where the weights

w,%i depend on the normalization in Definition 2 (without normalization, it would be wgi =1).
In general, we have that

K D
Zzwkﬂkz (17)

i=1 d=0

OO

®In case of biorthogonal wavelets, it would be o/ = (m,flgd)) with f,gd) =i, djnz)fl” [n] where 1&%” is the
dual of 7"
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where the weights wgi depend on the orthogonalization process in Definition 2.° For this reason,
to extend Proposition 2 to the piecewise polynomial case we need to consider the constraint
in (17). Thus:

Proposition 4: For J = logy N, any linear combination of ¢ [n] and of the (D+1)N footprints
f,gd) which verifies (17) gives a piecewise polynomial signal.
Proof: We want to show that given a piecewise polynomial signal z[n| represented as in Eq. (15);
for any set of coefficients dz(-d) satisfying |&§d)| < |a§d)| and Eq. (17), the signal Z[n] = co¢’y [n] +
Zfi 0 EdD:o dz(-d) f,g:i) [n], is still piecewise polynomial with discontinuity locations ki, ko, ..., kx.
This can be proved using arguments similar to that of Proposition 2. The scaling function ¢ jo[n]
is constant. Moreover, any pair of footprints: 64(()0) féo) [n]+ f,g?) [n], with &9 satisfying (17) represent
a piecewise polynomial signal with one discontinuity at k; € {k1, k2, ..., kx }. Therefore, any linear
combination of these pairs of footprints and of ¢ jo[n] gives a piecewise polynomial signal with
discontinuities at ki, ks, ..., kx-

O

Strictly speaking, Proposition 4 shows conditions under which any linear combination of footprints
leads to piecewise polynomial signals, but it does not prove that footprints are an unconditional
expansion for the class of piecewise polynomial signals. However, in the rest of the paper, for
simplicity, we will say that dictionaries of footprints satisfying the hypotheses of Proposition 4

are unconditional for the class of piecewise polynomial signals.

C. Footprints built from a wavelet frame

We have constructed a dictionary of (D + 1)N footprints that can efficiently represent piece-
wise polynomial signals. However, this representation, like the wavelet transform, is not shift-
invariant. In some settings, it is useful to have a shift-invariant dictionary. Such a dictio-
nary can be constructed by simply replacing the wavelet basis with the wavelet frame. In
particular, let z[n] be a piecewise constant signal with only one discontinuity at k. We have
zn] = ;i/oy_l cldzfﬁr[n] + ek, yjlng_’l”[n] + ek, yjl%.’ler[n] where we have again used the
fact that the non-zero coefficients are only in the cones of influence of £ and 0. In this case, the
cone of influence of k contains J x (L; — 1) coefficients, where L; is the length of the equivalent
filter at level j. Moreover y;; is given by y;; = (=, A;)ler), where {$, 4} is the dual frame of {¢,}}.

jiel, dit ~§ler[n]’
where dj; = y1/+ /> Jie, y]2-l. The other footprints can be designed in the same way and it follows
that f]go) [n] = féo) [n—k]. That is, all footprints are shifted versions of one footprint. If J is chosen

Now, the shift invariant footprint related to location k is given by: f,go) [n] =2

9The easiest way to verify this property is by noticing that if we take the (D 4 1)-th order derivative of a periodic

discrete-time piecewise polynomial signal, the sum of the resulting non-zero coefficients is always zero.
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such that ( féo), f,go)> = 0, z[n] can be expressed as

N/27 -1

gln]= Y ad ]+ aofS” + arfL”
=0

where oy = (z, A,SO)) and f,go) [n] =32, 1ci, 4 A;)le "[n]. In the same way, we can design the footprint
dictionary related to higher order polynomials. In this case, one has to consider the signals T,Sd)
and their transforms with a wavelet frame. The footprints f, ,gd) at location k are obtained following
the same procedure as illustrated in Definition 2. Finally, given the dictionary D = { flgd),d =
0,1..,D;k = 0,1,...,N — 1}, we have that f,gd)[n] = féd)[n + k], d=0,1,..,D. As in the

previous case, any piecewise polynomial signal can be expressed in terms of this dictionary and

we have:
N/27 -1 K D
el = Y adn™ I+ >N o F 0. (18)
1=0 i=0 d=0

IV. REPRESENTATION ALGORITHMS

In the previous sections, we have constructed different dictionaries of footprints according to
the kind of wavelets involved (i.e. wavelet bases or wavelet frames) and to the class of signals
considered (i.e. piecewise constant or piecewise polynomial signals). The main characteristics of
these dictionaries are summarized in Table IV. Before focusing on the representation algorithms,
we want to mention that the space required to store these footprints dictionaries is not high,
since it grows only linearly with the size NV of the signal. In particular, in the case of shift-variant
footprints the required storage space is of the order of (L —1)-J - (D + 1) - 27 coefficients, where
(L—1)-J are the wavelet coefficients contained in each footprint and (D+1)-27 are the number of
footprints one has to store, since the others are shifted version of those (see Eq. (16)). Therefore,
when J = logy N (worst case), we have that the required memory space grows like N log, N.
Similar results apply to the case of shift invariant footprints.

Now, we need to develop a fast and robust algorithm that can find the right representation of
piecewise polynomial signals in terms of footprints. The algorithms that we present are valid for
any of the families of footprints in Table IV. However, for simplicity, we study only the case of

footprints built from a wavelet basis, the extension to the wavelet frame being straightforward.

piecewise constant signals

and Haar wavelet

piecewise polynomial signals

and wavelet basis

piecewise polynomial signals

and wavelet frame

dictionary

properties

complete,
shift variant,

unconditional if J = log, V.

overcomplete,
shift variant,
unconditional if J = log, N

and Eq. (17) is verified.

overcomplete,
shift invariant,
unconditional if J = log, N

and Eq. (17) is verified.
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Consider a piecewise polynomial signal z with polynomials of degree D and with K disconti-
nuities at ki, ko, ..., kx. We have seen that this signal can be written as in Eq.(15). Thus, our
target is to develop an algorithm that can find this representation of z. In our analysis, we do
not consider the scaling functions, since coefficients ¢; in (15) are always given by ¢; = (z, ¢';").

We present two different approaches. The first one is a variation of the traditional matching
pursuit algorithm. We show that in particular situations, this method can arrive at the correct
representation of z[n] in a finite number of iterations. The second approach is in spirit similar to
matching pursuit, but it uses the property that the orthogonality condition between footprints
depends on the number J of decomposition levels. We show that, with a slight increase in
complexity, this second algorithm always attains the correct signal representation with [K/2]

iterations, where K is the number of discontinuities in the signal.

A. Matching pursuit with footprints

Matching pursuit [22] is a greedy iterative algorithm which derives sparse approximated rep-
resentations of a signal z in terms of a given dictionary D of unit norm vectors.

Assume that D is the footprint dictionary and that z[n] is a piecewise polynomial signal.
Matching pursuit can be used to approximate x with D. We know that the wavelet coefficients
generated by a single polynomial discontinuity at & lie on a subspace of size D + 1 and that this
subspace is spanned by the footprints f,gd), d=0,1,...,D (Proposition 3). Hence, instead of using
the usual matching pursuit which projects the signal on single vectors, we employ a subspace
pursuit, where the signal is projected on different subspaces.

In the first iteration, for each possible discontinuity location k& € [0, N — 1], the algorithm
computes the D + 1 inner products (z, ,gd)), d=0,1,...,D and chooses the location kg such that
Zf:o |(z, Ig?)|2 is maximum. Then, z can be written as its projection onto f,gg), d=0,1,....D
and a residual RL: z = Y0 (x, f,gg)) f,gg) + R.. Since footprints related to the same discontinuity
location are orthogonal (Definition 2), we can write ||z||> = ||RL|> + Z{j,):o |(:1:,f,§0d))|2. So, by
choosing kg such that ZdD:() |z, f,gg)>|2 is maximum, we minimize the norm of the error R.. The
algorithm is then iterated on the residual.

Note that, for D = 0 (piecewise constant signals) the subspace pursuit reduces to the traditional
matching pursuit. The subspace pursuit with the footprint dictionary has the same drawback as
a typical matching pursuit algorithm, that is, it is not guaranteed to converge in a finite number
of steps. However, there exist situations in which it obtains the exact representation of x in a
finite number of iterations. In fact, one can easily verify that [15]:

Theorem 2: Given a piecewise polynomial signal with K discontinuities at ki, ko, ..., kg . If the

distance between the two closest discontinuities is larger than (L — 1) - 27, subspace pursuit with
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footprints obtains the exact footprint representation of x in K iterations.

B. Adaptive depth footprint pursuit

The basic intuition behind Theorem 2 is that the number of decomposition levels J should
be chosen according to the distance between discontinuities. If J is chosen properly, one can
get the correct representation of z in a few iterations with a very simple method like matching
pursuit. The problem is that we do not know a priori the discontinuity locations. Therefore, we
propose a new algorithm, where we first find the discontinuity locations and then estimate the
footprint coefficients related to those discontinuities. For simplicity, we concentrate on the case of
piecewise constant signals and Haar wavelets. Assume, for instance, that = has K discontinuities

at positions ki, ko, ..., kx:

Ny27 -1 K
gl = Y agnnl+ Y. aifVm] (19)
=0 =1

and that the footprint dictionary is chosen with J = logy, N: D = {f,go) = 23'121 djk; Vi k =

0,1,..., N — 1}.10 The discontinuity locations ki, ko, ..., kx are found in the following way

Algorithm IV.1: (location estimation)
1. Compute the dual basis of D and call f,go) k=1,2,..,N —1 the elements of this dual basis.'*
2. Compute the inner products (x, f,go)), k=1,2,...., N — 1. The discontinuity locations corre-
spond to the indexes of the basis’ elements which have non-zero inner products with x.
Now that k1, ko, ..., kx are known, we need to evaluate the coefficients «;. The footprint coef-
ficients are evaluated with an iterative method which is in spirit similar to matching pursuit.
At each iteration, we choose J such that the footprints related to the two closest discontinuities
are orthogonal, we estimate the footprints coefficients of these two discontinuities and iterate the
process on the residual. At each iteration, we do not project the signal directly on the two closest
footprints, instead we compute the two dual footprints and project the signals on these two dual
elements. The complete algorithm operates as follows
Algorithm IV.2: (coeflicient estimation)
1. Call K = {k1,ka,...,kK} the set of estimated discontinuity locations.
2. Assume that ky,—1 and ky, are the two closest discontinuities in K. Choose J1 = |logy(km — km—1) |-
3. Call f,gi) the sub-footprint obtained by considering only the first J1 elements of f,ggz That is
1014 is worth pointing out that, in this case, D is a biorthogonal basis, so the exact representation of z can be

found using the dual basis of D. However, this solution is not robust to noise and does not generalize to piecewise

polynomial signals. Therefore, it will not be considered here.
171t is of interest to note that this dual basis turns out to be a first order derivative.
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f Z D Vi - Deﬁne in the same way, the sub-footprint f,c

4. The sub—footprmt f _, s orthogonal to f,c , k€ K—{km_1} and Uemﬁes

AR =151

Likewise, the sub-footprint fk is orthogonal to fk) ke K—{kn} and (f(o fkm> = ||fko)||2

Thus, the contributions o, 1 and oy, are given by

0 A
m—-1 ~ ? m ~ ’ ~ .
||f,§§3_1|| ||f,523 i LA 1A

(20)

5. Remove ky_1,ky from K and subtract the two estimated contributions from the original
signal: R =z — O‘kmflf/g?j_l — o, 1523

6. If K is not empty, iterate the process on the residual, otherwise stop.
Notice that, since at each iteration we estimate two footprint coefficients, the algorithm ends
after [K /2] iterations. So, we are guaranteed that the algorithm converges after a finite number
of steps. The interesting point of this algorithm is that, at each iteration, it is very easy to
find the pair of dual footprints related to the footprints under consideration. There are two
other advantages of this algorithm compared to matching pursuit. First, at each iteration, we
choose the largest possible J; such that the footprints related to the two closest discontinuities
are orthogonal. Since multiscale operators like footprints are robust to noise, by choosing J; as
large as possible, we increase this robustness. Second, the signal is reconstructed in terms of the
footprint dictionary with J = log, N, this dictionary is unconditional for the class of piecewise
constant signals (Proposition 2). Thus, we are sure that the reconstructed signal is still piecewise
constant. This is a useful property when the signal to estimate has been corrupted by noise.

The algorithm generalizes to the piecewise polynomial case. The discontinuities are estimated

(d)

with a D +1 order derivative, while the coefficients ;" are evaluated with a procedure similar to
the one presented above. That is, at each iteration, we choose J such that the footprints related
to the two closest discontinuities are orthogonal, we estimate the footprints coefficients of these
two discontinuities and iterate the process on the residual. Finally, the coefficient o is computed

using equation (17). As for the previous case, since J = log, N, Proposition 4 guarantees that

the reconstructed signal is always piecewise polynomial.

V. APPLICATIONS

In this section, we focus on three main applications for which wavelets are successful, namely de-
noising, deconvolution and compression. We present alternative algorithms based on the footprint
expansion and show that these methods can further improve wavelet based algorithms. The main

characteristic of the footprint methods is that they can deal more efficiently with discontinuities.
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A. Denoising

The term denoising usually refers to the removal of noise from a corrupted signal. In the
typical problem formulation, the original signal z has been corrupted by additive noise. One
observes z[n] = z[n] + e[n] where e[n] are independent and identically distributed (i.i.d.) zero
mean Gaussian variables with variance o2 and the original signal is deterministic and independent
of the noise. The goal of the denoising algorithm is to obtain an estimate Z of the original signal
which minimizes a risk function, usually the mean square error E[|| z — & ||?]. The wavelet
based denoising algorithm introduced by Donoho and Johnstone [12] simply shrinks the wavelet
coefficients. That is, it sets all wavelet coefficients smaller than a threshold to zero and keeps
the coefficients above the threshold (hard thresholding) or shrinks them by a fixed amount (soft
thresholding). The threshold is usually set to T = ov2In N, where N is the size of the signal
[12]. A limit of this approach is that it does not exploit the dependency across scales of the
wavelet coefficients. Thus, to overcome this limit, we apply a threshold in the footprint domain
rather than in the wavelet domain. Doing so, we better exploit the dependency of the wavelet
coefficients across scales. As a matter of fact, denoising in the footprint domain is equivalent to
applying a vector threshold in the wavelet domain rather than a scalar threshold as in the usual
methods.

Assume that z[n] is piecewise polynomial. We can express piecewise polynomial signals in
terms of footprints, thus our denoising system attempts to estimate this footprint representation
from the observed noisy version z[n|. The estimation procedure follows the same steps as algo-
rithms IV.1 and IV.2. That is, one first estimates the discontinuity locations and then evaluates
the footprint coefficients. Since we only observe a noisy version of the signal, we need to slightly
modify these two steps to make them more robust to noise. Again, for simplicity, we focus on
piecewise constant signals. The discontinuity locations are estimated in the following way

Algorithm V.1: (location estimation, noisy case)

1. Choose a dictionary D = {f,go) = 23'121 djk;Vjk;3 k = 0,1,..., N — 1} of footprints with J =
logy N. This dictionary represents a biorthogonal basis.

2. Compute the dual basis of D and call f,go) k=1,2,..., N — 1 the elements of this dual basis.

3. Compute the N — 1 inner products <z,f,§0)) k=1,2,..,N —1.

4. Consider as discontinuity locations the ones related to the inner products larger than the
threshold Ty, = ||f,£0)||T. That s, if |(z, f,go))| > Ty, then assume that there is a discontinuity at
location k. T is the universal threshold equal to o/2In N [12].

We have a set of estimated discontinuity locations: lAcl, I:;g, - k - The problem is that, due to the

noise, this estimation can have errors. Thus, this possibility must be considered in the next step
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where the footprints coefficients are evaluated.
Algorithm V.2: (coefficient estimation, noisy case)
1. Call K the set of estimated discontinuity locations.
2. Choose Ji = |logy(km — km_1)], where km_1,km are the two closest discontinuity locations

in K.

~ ~ (0) N
3. For each possible location k € [kpy—1,km| compute the inner product (z, 7 (0)”), where f,go)

the sub-footprint obtained by considering only the first J1 wavelet coefficients of f,c 0)
”(0)

4. Choose the location ki such that |(z, )| is mazimum.

||f,5°>||
5. If
fi
(z, =y 2 T, (21)
i
then compute the residual: R. = z — (0) (2, f’z})) )fk .
[ A (R

6. Iterate step 4-5 on the residual untzl condztwn (21) is not verified anymore.

7. Once condition (21) is not verified anymore, remove the two discontinuity locations Em—1, km
from K.
8. IfIAC is empty, stop. Otherwise go to step 2.

Finally, the estimated signal Z is:

M—-1 1 +(0)
&= (=, ds0)ds0ln] + Y —G-(RT, =) fi[nl, (22)
o WEIT 7T NEN

where M is the total number of iterations, R is the residual after m iterations and R) = 2.

First, notice that, since the footprints f,g?j in Eq. (22) are obtained taking a wavelet transform
with J = log, N decomposition levels, we are sure that the estimated signal Z is piecewise constant
like z (Proposition 2). This is an important property, because traditional denoising algorithms
suffer from the presence of artifacts around discontinuities (pseudo-Gibbs effects). The advantage
of denoising in the footprints basis is that these artifacts are automatically eliminated.

Notice that, at each iteration, given the two closest discontinuity locations l%m_l, l%m, we run a
complete matching pursuit algorithm on the interval [ky,_1, km] (step 3-6 of the algorithm). Tn
this way, if there is a discontinuity that has not been detected in the discontinuity estimation
step, it can be found in this step. This is the main difference between the noiseless and noisy
version of the algorithm.

The proposed denoising algorithm generalizes to piecewise polynomial signals. In this case,
given the interval [I;m_l, I;m], instead of running matching pursuit on this interval, we run the
subspace pursuit presented in Section IV-A. That is, for each k € [lfcm_l, l%m], we project the set of

corresponding noisy wavelet coefficients on the right sub-space, we choose the largest projection
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and if this projection is larger than the threshold, we keep it. All the other previous considerations
apply also to the piecewise polynomial case.

Denoising in the wavelet domain suffers from the lack of shift invariance of the wavelet basis.
One way to overcome this limitation is to use a denoising method called cycle-spinning [6]. For
a range of shifts, cycle spinning shifts the noisy signal, denoises each shifted version and, finally,
unshifts and averages the denoised signals. Since footprints suffer from the same lack of shift
invariance as wavelets, one can use the idea of cycle spinning to reduce this shift dependency.
The only difference between cycle spinning with wavelets and cycle spinning with footprints
is that, in this second case, each shifted version of the signal is denoised with footprints (Algo-
rithms V.1, V.2) rather than wavelets. The only limit of this approach is that we cannot guarantee
anymore that the denoised signal is piecewise polynomial. That is, Proposition 2 and 4 do not
apply to this case. In Section VI, we consider both methods (denoising with footprints and cycle

spinning with footprints) and compare them with the equivalent wavelet based algorithms.

B. Deconvolution

In its simplest form, the deconvolution problem can be stated as follows. The original unknown
signal z[n] is blurred by a convolution operator h[n] and corrupted by additive white Gaussian

noise. One searches for a good estimate of z[n] from the observed signal
y[n] = h[n] * z[n] + e[n]. (23)

Either h[n] is known, or it has to be estimated (blind deconvolution). In most cases, h[n] behaves
as a low-pass filter and does not have a bounded inverse, for this reason such a deconvolution
problem is usually called ill-posed.

There is a large number of methods that provide possible solutions to the deconvolution problem
(1], [2], [7], [11], [18], [19], [24], [29]. Among them, wavelet based methods have become popular
recently [11], [18], [1], [24], [2]- This is mostly because these methods deal well with discontinuities
and are computationally simple. In our approach, we use the footprint expansion to further
improve wavelet based techniques. We assume that h[n] is known.!2
Consider the case where z[n| is piecewise polynomial. We know that it can be written as

a linear combination of footprints (see Eq. (15)). Thus, by replacing z[n] with its footprints

representation, Eq. (23) becomes

N/27 -1 K D Nj27 -1 K D
y[n] = Z ad’] | —I—ZZa hin] >|<f,c [ J+e[n] = Z per| +ZZO‘ (d) fk )[n |+e[n],
1=0 i=0 d=0 1=0 i=0 d=0

21t is worth pointing out that, in some cases, footprints can be used for blind deconvolution too [15].
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where, in the last equality, we assumed f,g?) [n] = h[n] % f,gf) [n].!3 That is, y[n] is given by a linear
combination of blurred footprints f,gf) [n] plus the additive white noise e[n]. In our deconvolution
algorithm, we first attempt to remove the white noise and then the blurring effect. The noise is
removed using the denoising algorithm V.1, V.2, but we use the blurred dictionary D to perform
denoising rather than D. The deblurring process then simply consists in replacing the f,gf)’s with
the corresponding non-blurred footprints. The complete algorithm can be summarized as follows
Algorithm V.3: (Deconvolution of piecewise polynomial signals)
1. Consider the dictionary of blurred footprints D = {f,gd);k =0,1,.,N—-1;d =0,1,..,D}.

Remove the noise in y[n] using algorithms V.1, V.2 and assuming D as the reference footprints

dictionary.

. . At 1 =Nj27 -1 2 ~(d) (
2. Call the denoised signal gln] = >, b n] + ZZ 0 Zd 0 G, ic [n]. The deconvolved
signal &[n] is given by Z[n] = fi/oy_l ady, [n] + Ei:o Zd:o )[ |, where we have simply

replaced fs)[n] with f}gf)[n]

If z[n] is piecewise smooth, we use a two step deconvolution algorithm. The procedure of this
algorithm is based on the result of Theorem 1, which says that z[n] can be written as the sum
of a piecewise polynomial signal p[n] and a regular function r[n]. That is, z[n] = p[n] + r[n].
Therefore, the observed signal y[n] can be written as: y[n] = h[n| * p[n] + h[n] * r[n] + e[n]. The
aim of the algorithm is to estimate the two contributions p[n] and r[n] in two different phases.
The complete algorithm operates in the following way (we assume that h[n] is known)

Algorithm V.4: (Two step deconvolution)

1. Estimate the piecewise polynomial behaviour underlying y[n| with the deconvolution algo-
rithm V.3. Call the estimated signal p[n).

2. Compute the residual 7[n] = y[n] — hln] * p[n].

3. Deconvolve the residual with a Wiener filter g[n|: #[n] = g[n] % 7[n]

4. The estimated signal is: £[n] = p[n] + 7[n].

C. Compression

Wavelets are widely used in compression. The reason is that wavelets have very good approxi-
mation properties for representing certain classes of signals like piecewise smooth signals. While
good approximation properties are necessary for good compression, it might not be enough.
In compression, one has to consider the costs corresponding to indexing and compressing the
retained elements in the approximation and independent coding of these coefficients might be
inefficient [30].

131n practice, the convolution filter has little effect on the low-frequency scaling coefficients. Therefore, in our

formulation, we do not consider this effect and use the original scaling functions.
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Consider a piecewise smooth signal defined as in Eq. (2), that is, a function with pieces that
are «-Lipschitz regular and with a finite number of discontinuities. It was shown in [4] that
standard wavelet based schemes such as zerotrees [28] can achieve the following distortion-rate

performance:

D(R) < Cle_Qa + Co vV Rerc;:,\/R_e, (24)

where R = R; + R, and R, are the bits used to quantize the wavelet coefficients generated by
the discontinuities, while R, are the bits used to code the wavelet coefficients corresponding to
the smooth parts of the signal. Now, suppose that the signal is piecewise polynomial. Then the
wavelet coefficients related to the smooth parts of the signal are exactly zero, and so there is no

need to use any bits to code them. The distortion of a wavelet based scheme becomes
D(R) < caVR2~VE, (25)

However, a direct approach to compression of piecewise polynomial signals, based on an oracle
telling us where discontinuities are, will lead to D(R) < 427 %% [25] and such behaviour is
achievable using dynamic programming [25]. This large gap between ideal performance given
by the scheme based on dynamic programming and wavelet performance is mainly due to the
independent coding of the wavelet coefficients across scales. Statistical modeling [9] of such
dependencies can improve the constants in (25), but going from v/R to R in the exponent requires
taking the deterministic behaviour of wavelet coefficients across scales at singularities into account.
This is well done using footprints, which thus close the gap with the ideal performance:
Theorem 3: Consider piecewise polynomial signals with polynomials of maximum degree D and
no more than K discontinuities. A coder, which represents these signals in the footprints basis

and which scalar quantizes the discontinuity locations and the footprint coefficients achieves

D(R) < ¢g2 7R, (26)

Proof: See Appendix C.
O
Thus, this theorem shows that, in case of piecewise polynomial signals, footprints significantly
improve performance of wavelet coders. Footprints can be used for piecewise smooth signals
too. Theorem 1 shows that a piecewise smooth signal can be separated into two contributions a
piecewise polynomial part (call it p[n]) and a residual r[n] which is regular (a-Lipschitz over R).
Now, p[n] can be compressed with footprints and this coder achieves (26). The residual r[n] can

be compressed with any other coder which achieves [4]
D(R) < cgR™%. (27)
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It is worth noticing that, because of the regularity of r[n], the performance in (27) can be achieved
with a simple coder based on linear approximation of r[n] in a wavelet or Fourier basis [4].
Combining (26) and (27) shows that a two stage compression algorithm based on footprints and

on linear approximation of the residual achieves
D(R) < cgR;?* 4 ¢g27c7He, (28)

Comparing (24) and (28), we can see that this coder does not change the asymptotics of the
distortion-rate function of wavelet coders (~ cgR;2®). But, by coding the discontinuities effi-
ciently, this coder reaches the asymptotic behaviour more rapidly. Finally, notice that, for this
last performance, the underlying assumption is that the encoder knows in advance the signal to
code, in this way it can separate the polynomial and the smooth parts of the signal. In the ex-
perimental results, we will show that a realistic encoder can obtain similar performance without

knowing the signal characteristics in advance.

VI. NUMERICAL EXPERIMENTS

In this section, we compare footprints with wavelet-based methods on several examples. Our
purpose is to show that footprints are a versatile tool and that we can get good results in a variety

of applications.

A. Denoising

For denoising, we consider only piecewise polynomial signals. In Table VI-A, we compare
the performance of our denoising systems with a classical hard thresholding algorithm [12] and
cycle-spinning [6]. In this experiment, we consider piecewise linear signals with no more than
three discontinuities. The performance is analysed in function of the size N of the signal. The
table clearly shows that denoising with footprints outperforms the hard thresholding system,
while cycle-spinning with footprints outperforms traditional cycle-spinning. In Figure 2, we show
an example of the denoising algorithm on piecewise quadratic signals. We can see that signals
denoised with footprints present better visual quality since they do not suffer from pseudo-Gibbs

effects.

N 64 128 256 512
Footprints 17.4dB | 19.9dB | 21.9dB | 24.5dB
Hard thresholding 15.1dB | 17.1dB | 18.7dB | 21.4dB

Cycle spinning 17.9dB 20dB 22dB 24.5dB

Cycle-spin footprints | 18.4dB | 20.4dB | 22.5dB | 24.9dB

Table VI-A. Denoising of piecewise linear signals with no more than three discontinuities.
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Fig. 2. SNR results for denoising. a) Original signal. b) Noisy signal (22.5dB). c¢) Hard thresholding
(25.3dB). d) Hard thresholding with footprints (28.5dB). e) Cycle spinning with wavelet transform
(29.8dB). f) Cycle spinning with footprints (30.8dB).

B. Deconvolution

In this case, we consider two different signals. One is a piecewise linear signal, the other one
is a line of the image ‘Cameraman’, which represents a possible example of piecewise smooth
signals. We first consider the case of a piecewise linear signal and compare the performance of
our system with WaRD [24]. In this simulation, the original signal is first convolved with a box
filter and then white noise is added. The noise variance is set to o2 = 0.02. Figure 3 shows that
our system outperforms WaRD in both visual quality and SNR. It is of interest to note that the
signal reconstructed with footprints does not present artifacts around discontinuities and that it
manages to efficiently sharpen the discontinuities. Of course, one of the reasons why footprints
perform so well is because the considered signal perfectly fits the model, since it is piecewise
polynomial.

In Figure 4, we consider the case where the signal is piecewise smooth. Again, the original
signal is convolved with a box filter and then white noise is added. In this case, we use the two
step deconvolution algorithm. The estimated piecewise polynomial behaviour p[n] underlying the
signal is shown in Figure 4(c). The estimated residual 7[n] and the deconvolved residual #[n]
are shown in Figures 4(d) and 4(e) respectively. Finally, the reconstructed signal is shown in

Figure 4(f).

C. Compression

In Theorem 3, we have shown that in case of piecewise polynomial signals, a footprint based
coder can achieve the ideal rate-distortion performance. That is, it has the correct rate of decay
of the R-D function. Now, we are interested in a numerical confirmation of this theorem. We

consider piecewise constant signals with no more than five discontinuities. The signal has size
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Fig. 3. Deconvolution of a piecewise linear signal. (a) Test signal (N=256). (b) Signal convolved with
a box filter. (¢) Observed signal.(SNR=6.5dB) (d) Deconvolution with WaRD (SNR=8.8dB). (e)
Deconvolution with Footprints (SNR=13.4dB).

Fig. 4. Deconvolution of a piecewise smooth signal. (a) Test signal (N=256). (b) Observed signal
(SNR=16.7dB). (c) Piecewise polynomial estimation (SNR=21.1dB). (d) Residual: 7 =y — h x p. (e)
Deconvolution of the residual with a Wiener filter. (f) Complete deconvolved signal (SNR=21.8dB).

N = 219 and the discontinuity locations are uniformly distributed over the interval [0, N —1]. The
footprint coder operates as in Theorem 3, that is, it scalar quantizes the footprint coefficients and
the discontinuity locations. Bits are allocated with a reverse waterfilling strategy. In Figure 5, we
compare the rate-distortion performance of this footprint coder against the ideal bound and the
ideal performance of a wavelet based coder. We can see that the behaviour of the footprint coder
is consistent with the theory, since it has the same rate of decay as the ideal distortion function.
Finally, we consider a piecewise smooth signal. The compression operates in the following way.
With a denoising-like algorithm, we estimate the piecewise polynomial behaviour underlying the
signal and compress it with footprints. The residual is assumed regular and it is compressed in a

wavelet basis. That is, the first k coefficients of the wavelet decomposition are quantized, while
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the others are set to zero (linear approximation). The allocation of the bits between the piecewise
polynomial signal and the residual and the number k of wavelet coefficients that are quantized
is chosen off-line, using some a-priori knowledge of the signal. In Figure 6, we show an example
of the performance of the proposed compression scheme and compare it with a 1-D version of
SPIHT [27]. The signal to compress is given by the union of smooth pieces. In this example,
our system outperforms SPITHT by more than 4dB. Since SPTHT is more suited to compress 2-D
signals, this comparison is only indicative. However, it shows that a compression system based
on footprints can outperform traditional wavelet methods also in the case of piecewise smooth

signals.

VII. CONCLUSIONS

In this paper, we have presented a new way of modeling the dependency across scales of wavelet
coeflicients with elements we called footprints. Footprints form an overcomplete dictionary and
are efficient at representing the singular structures of a signal. With footprints, it is possible to get
a sparser representation of piecewise smooth signals than with wavelet bases and this is useful in
several signal processing tasks. Numerical simulations confirm that footprints outperform wavelet
methods in several applications. In short, wavelets have been very successful on signals with
discontinuities, be it for denoising, deconvolution or compression. Wavelet footprints pursue this
program further, by explicitly using the structure of discontinuities across scales. The results,
both theoretical and experimental, confirm the potential of this approach. Together with the

simplicity of the algorithms involved, this indicates the power of this new data structure.
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APPENDIX
A. Proof of Theorem 1

Consider, first, a piecewise smooth signal f(¢) ¢ € [0,7] with only two pieces. That is:
f@#) = fil®) Lo + f2(t) 1, 7 and f1(2), f2(t) are uniformly Lipschitz o over [0,#1] and [t1, 77,
respectively. Recall that, if a function f is uniformly Lipschitz a > d in the neighbourhood of v,
then it is necessarily d times continuously differentiable in that neighbourhood.'® Moreover, the
polynomial p, (t) in Eq. (1) is the Taylor expansion of f at v. Now, since f1(t), f2(t) are uniformly
Lipschitz « over [0,¢1] and [t1, 7], they are necessarily d = || times continuously differentiable
on these intervals. Call p(t) = Pe ()10, + Pyt ()1, 1 t € [0, T[ the piecewise polynomial signal
whose two pieces p,— (t) and p,+(t) are given by: p,—(t) = fi(t1) +f(t)(E—t)+...+ %(t—tl)d
and py+ (t) = fo(t) + f5(t)(E—t1) + ... + %(t —t1)4. That is, Py (t) and Py (t) are the Tay-
lor expansions of f(t) about #; taken from the left and from the right of ;. Now, the signal
ro(t) = f(t) — p(t) is d times continuously differentiable in [0, 7[—{¢;} and in ¢; it verifies

lim 7q(¢) = lim f1(t) —p,-(t) = lim ro(t) = lim f(t) —p,s (¢) =0,

t—t] t—t] T ioh
: Dy — 1 Mgy _ oDy — 75 Dy — 1 Mgy — Dy — _
i 78000 = fig £00) ~ #2(0) = i r(0) = fim 100~ 00 =0, 1=1.2

Therefore, 74,(t) is d times continuously differentiable on the entire interval [0,7[. So, it is
uniformly Lipschitz o/ > d on that interval. The remaining step is to prove that o/ = «. This
is clearly true for all points away from ¢;, we only need to prove that r,(t) is a-Lipschitz in
t1. Using the definition of Lipschitz regularity we have that |f(t) — Py (t)| < K|t — t1]%, for
t < t; and |f(?) —ptf(t)| < Kolt — t1]|*, for t > t;. Now, since r,(t) = f(t) — p(t), we can
write |ro(t)| < K|t — 11|, for t < t; and |ro(t)| < Ka|t — 11|, for ¢ > ¢1. Thus, if we call
K = max{Kj, K>}, then in the neighbourhood of ¢; we have |ry(t)| < K|t — t1|%, which proves
that r4(t) is Lipschitz « in ¢;. This completes the proof.

The generalization of this result to the case of a piecewise smooth signal f(t) with K dis-
continuities at locations t1,%s,...,tx is straightforward. Call p;(¢) = Pe ()10, + Pyt &)1, 1
i =1,2,..., K; the piecewise polynomial signal with two polynomials P (t) and P (t) and only
one discontinuity at location ;. P (t) and Py (t) are the Taylor expansions of f(t) about t; taken
from the left and from the right of ¢;. Then the piecewise polynomial signal p(t) = Zfil pi(t) is
such that r4(t) = f(t) —p(t) is d times continuously differentiable in t1,to, ..., tx. Therefore, r4/(t)
is d times continuously differentiable on [0,7'[ and uniformly Lipschitz o/ > d on that interval.

14The converse is also true. That is, a function which is d times continuously differentiable in the neighbourhood

of v is Lipschitz o' > d at v.
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Finally, as in the previous example one can show that o/ = a.

B. Proof of Proposition 1

We are considering signals in RY and the union of footprints and scaling functions gives N
elements. We need to show that this set of elements is complete. This is equivalent to showing

that there exists no z[n| with ||z|| > 0 such that it has a zero expansion, that is, such that
0
Dol SO+ 3 [ )l = 0. (29)
k l

We prove this for the case J = logy N, noting that with the same method one can prove it
for any J. Consider the representation of z in terms of the wavelet basis: z[n]| = codo[n] +
Zj:l ZlN:/()Q /-1 yiivjin]. Eq. (29) already implies that the scaling coefficient ¢ = (z, ¢so) is zero.
We will show that if Eq. (29) is true then also all the wavelet coefficients of x are zero and so it
must be ||z|| = 0. Recall that, since J = logy N, there is only one wavelet coefficient at level J, two
wavelet coefficients at level J—1 and so on. First consider the footprint f,go) [n] = ijl djk; ik, 0]
with k = 27/2 and the corresponding inner product (z, ,SO)). One can easily verify that the only
non-zero coefficient dj; of f,go) [n] is the one at scale J. That is: f,go) [n] = dyk, Yk, [n] = djotpso[n]
where in the last equality we have used the fact that k; = 0. Thus, we have that (z, f,go)) = yjodjo
and this inner product is equal to zero only if y;0 = 0. Consider now the footprint f,go) with
k = 27/4. In this case, f,go) = djotpso[n] + d(s_1)0¥(s-1)0[n], that is, f,go) has only two non-zero
coefficients d;i, at scales J and J — 1. So, we have that (z, f,go)) = yJjodjo +Y(s-1)0d(s-1)0- Since
we have seen that yj0 = 0, this second inner product is zero only if y;_1)0 = 0. In the same
way, but with the footprint related to position 27 /4 +27 /2 we can prove that Ys-1)1 = 0. So the
wavelet coefficients at scales J and J — 1 are zero. The same analysis can be repeated at each

scale and in conclusion we have that condition (29) implies that all the wavelet coefficients of z

are zero. Therefore, x must be the zero vector.

C. Proof of Theorem 3

Consider a piecewise polynomial signal z[n| € [0, N — 1] of maximum degree D and with no
more than K discontinuities. Assume that the signal is bounded in magnitude between [—A, A].

We want to prove that a compression scheme based on footprints can achieve
)
D(R) < ¢g2 DFIK+DF) ~ 2 TR,

Consider the representation of  in terms of footprints for the case J = logy N:

zln] = cody [n] + > Y ol 70, (30)

1=0 d=0
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The compression algorithm consists in uniform scalar quantizing the discontinuity locations k; and

(d)

the footprints coefficients «; ’. Since z is bounded, the square error relative to the quantization

of a single discontinuity location can be upper bounded by ||z — Z||> < 4A42|k; — k;|, where &
is the approximated signal. If Ry, bits are used to quantize each discontinuity then |k; — lAcZ| <
(N/2)27H*: and the distortion related to a single discontinuity is D;(Ry,) < 242N2~ % Consider,

now, the quantization of the coefficients of the footprints expansion.'® Since || f,gd) || = 1, the square

(d) ~(d)

s |z — 2 = (az(-d) —&")?. Now, z is
bounded and so each coefficient ozz(-d) is bounded too: agd) € [—BZ-(d), Bz-(d)]. Thus, if Rz(d) bits are
(d)

i

by Da(REd)) < 322_2R§d), where B = max Bi(d). The global distortion bound is obtained by

2,d

error due to the quantization of a single coefficient «

allocated to quantize «; ’, then the distortion due to this quantization can be upper-bounded

adding all the distortion contributions: D(R) < Efi 1 Di(Ry,;) + Efi 0 E?:o Da(RZ(d)), where
R = Efi 1 Ri, + Efi 0 ZdDZO Rgd). Finally, by allocating bits over the different distortions with a

reverse waterfilling scheme [8], the global distortion becomes
D(R) < g2~ DK+ ~ g2~ TR,
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