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ABSTRACT to satisfy is to be of compact support and able to reproduce poly-

. . . . nomials or exponentials. More preciselyift) is the kernel, we
Recently, it was shown that it is possible to sample classes of Sig-peed it to satisfy

nals with finite rate of innovation [7]. These sampling schemes,
however, use kernels with infinite support and this leads to com- Z Cmnpt—m)=t" m=0,1,...N €h)
plex and instable reconstruction algorithms. n

In this paper, we show that many signals with finite rate of in-
novation can be sampled and perfectly reconstructed using kernels
of compact support and a local reconstruction algorithm. The class »  ¢mnp(t—n) = €e*™*  m =0,1,...,N, andam = ag+m
of kernels that we can use is very rich and includes any function =

satisfying Strang-Fix conditions, Exponential Splines and func- , - . (@)
tions with rational Fourier transforms. for a proper choice of the coefficients, .. Interesting enough,

the reconstruction algorithm proposed in this paper is also based
on the annihilating filter method. We also show, with a simple ex-
1. INTRODUCTION ample, that in some cases it is possible to relax the hypothesis of
compactly supported kernels and that, for instance, many kernels
Sampling theory plays a central role in modern signal processing with rational transfer functions can be used to sample FRI signals.
and communications, and has experienced a recent revival thankspespite the fact that these kernels have infinite support, the recon-
in part, to the recent advances in wavelet theory [5, 4]. In the struction algorithm remains local and its complexity still depends

typical sampling setup, the original continuous-time sigr(@) is on the local, rather than global, rate of innovation:¢f).

filtered before being (uniformly) sampled with sampling periad The paper is organized as follows: in the next section, we
If we call y(t) = h(t) * =(t) the filtered version ofz(t), then briefly review the notion of FRI signals and the annihilating fil-
the sampleg,, are given byy, = (z(t), ¢(t/T — n)) where the  ter method. Section 3 presents new sampling theorems for classes
sampling kernelp(t) is the time-reversed version aft). of FRI signals using kernels that can reproduce polynomials. In

Recently, it was shown that it is possible to develop sampling Section 4, we review the notion of Exponential Splines [6] and
schemes for classes of signals that are neither bandlimited nor beextend our sampling schemes to the case of kernels that can repro-
long to a fixed sub-space [7]. For instance, it was shown that it duce exponentials. Further extensions are discussed in Section 5
is possible to sample streams of Diracs or piecewise polynomial where we also show how to estimate FRI signals at the output of
signals using a sinc or a Gaussian kernel. The common featurean RC circuit. We conclude in Section 6.
of such signals is that they have a parametric representation with
a finite number of degrees of freedom and are, therefore, called 2 PRELIMINARIES
signals with finite rate of innovation (FRI) [7]. The reconstruc- '
tion process is based on the use of a locator or annihilating filter, |, thjs section, we give a brief review of signals with finite rate of
a tool widely used in spectral estimation [2] and error COITection jnnovation and of the annihilating filter method. The notion of FRI

coding [1]. o signals was introduced in [7]. For a more detailed treatment of the
The fundamental limit of the above method, as well as of the gnpjhilating filter method, we refer to [2].

classical Shannon reconstruction scheme, is that they use kernels
of infinite support. As a consequence, the reconstruction algorithm
is usually physically non-realizable (e.g., realization of an ideal
low-pass filter) or, in the case of FRI signals, becomes immediately Consider a signal of the form
complex and instable (the complexity is in fact influenced by the X
global rate of innovation of(¢)). t—tn

In this paper we show that many signals with a local finite rate 2(t) = Z Z An kP ( T ) ’ 3
of innovation can be sampled and perfectly reconstructed using a nenR=0
wide range of sampling kernels and a local reconstruction algo- Clearly, if the set of functiong vk (t) }k=0,1,...,x IS known, the
rithm. In particular, we show that the main property the kernel has only free parameters in the signglt) are the coefficients,, , and

2.1. Signals with Finite Rate of Innovation




the time shiftst,,. It is therefore natural to introduce a counting 3. RECONSTRUCTION OF FRI SIGNALS USING LOCAL

function C; (¢4, t») that counts the number of free parameters in KERNELS THAT REPRODUCE POLYNOMIALS
z(t) over an intervalt,, tp]. The rate of innovation af () is then
defined as [7] We assume that the sampling kerpét) is of compact suppolt,
p= lim lC (_z z) 4) that is,p(t) # 0 fort € [-L/2, L/2] and thaty(t) satisfies the
rooo T 2’2/ Strang-Fix conditions [3], that is, a linear combination of shifted

versions ofp(t) can reproduce polynomials of maximum degree
N (see Equation (1)). We consider the case of streams of Diracs
first and derive the other results directly from this case.

Definition 1 ([7]) A signal with a finite rate of innovation is a sig-
nal whose parametric representation is given in (3) and with a
finite p as defined in (4).

It is of interest to note that shift-invariant signals, including ban- 3.1. Streams of Diracs

dlimited signals, are included in Definition 3. For instance, if we . . .
call fmq- the maximum non-zero frequency in a bandlimited real Theorem_ 1 Given IS a sampling kerneb(¢) that can reproduce
signal, themp = 2 f,as.- polynomials of maximum degréé > 2K —1 and of compact sup-

In some cases it is more convenient to consider a local rate OfportL An infinite-length stream of Diracs(t) = anz and(t —

innovation with respect to a moving window of size The local tn) |sTun|quer detfermcllneo: fr]?nk: the sample:;géjg‘me@,byf
rate of innovation at time is thus given by [7] < (t/ n), (?)) if and only if there are at mo fracs nan
interval of lengthK LT

1
p-(t) = ;Cﬂ” <t a §’t + 5) ) ®) Proof: Assume for simplicity thal” = 1 and assume for now
thatz(t) contains onlyK Diracs, that isg(t) = S5 and(t —
Clearly p-(t) tends top ast — oo. ty) andt € R. Call sfm] = Y, cmnyn, m = 0,1,..,N
the weighted sum of the observed (non-zero) samples, where the
2.2. The annihilating filter method weightsc, » are those in Equation (1). We have that
Assume that we observe a signal sim] = >, tmn¥n
iy @
= aku’l’cn meE7Z (6) = <Z‘(t), Zn CmynQO(t - TL)>
= o (©)
_ _ _ = [ x)t"dt
and that we want to find the weights, and the locations:, of 0
s[m]. Callh[m] m = 0,1, ..., K afilter with z-transform ©
= Zkoak m=0,1,...N
K K—1
= Z hlm]z~™ = H 1- uszl). @) where (a) follows from the linearity of the inner product, (b) from
m=0 k=0 the polynomlal reproduction formula in (1), and (c) from the fact
_ ) thatz(t) = Zk o ' ax6(t—11). Hence by opportunely combining
That s, the roots off (z) correspond to the locations,. It clearly the Samp|egym we end-up observing a signalm] of the form
follows that sim] = Yr- axty', m = 0,1, ..., N which is equivalent to the
signal in (6). It is thus possible to retrieve the amplitudgsand
] % s[m] = Z hlis] 8) the locationg . of the Diracs using the annihilating filter method.

Call hfm] m = 0,1, ..., K the filter that annihilates[m].
This filter is unique since the locations of the Diracs are distinct
The filter h[m] is thus called annihilating filter since it annihilates and we are assuming[0] = 1. We observes[0], s[1], ..., s[V],
the observed signai[m]. Notice thath[m] is unique for the ob-  therefore theX unknown coefficients of[m] are the solution of
served signal since the locations are distinct. the Yule-Walker system produced by the identity in (8). Notice
The knowledge of:[m] is sufficient to retrieve the locations  that, since we need at le&3K values ofs[m], it is crucial that the
up, u1, ..., UK —1, Since these locations are the roots of the poly- sampling kernelp(t) be able to reproduce polynomials of degree
nomial in (7). The filter coefficientd[m] must be such that (8) N > 2K —1. Once the filter coefficients are found, the Diracs’ lo-
is satisfied. Since there af€ unknown coefficients (recall that  cations are the roots of the polynomj#lz) = Z,{;O h[m]z=™.
h[0] = 1), we need at leask’ linear equations. The identity in (8)  Finally the amplitudes of the Diracs are obtained by solving the
leads to a Yule-Walker system of equations involvifg consec- first K equations in (9). These equations form a Vandermonde sys-
utive values of[m] and, in this case, it has a unique solution since tem which has a unique solution since ths are distinct. Hence,
h[m] is unique for the given signal. Given the filter coefficients the annihilating filter methods allows us to retrieve the original
h[m] and therefore the locations, u1, ..., ux; the weightsu;, are signal from its samples.
obtained by solving< consecutive equations in (6). These equa- In generalx(t) may contains more thaK Diracs. However,
tions form a Vandermonde system which yields a unique solution since the kernel is of compact support, only a finite number of sam-
for the weightsu,, given that theuss are distinct. ples is influenced by a certain set of Diracs. Thus, if we are sure
In the following sections, we will show that our sampling prob- that the samples generated by different set& diracs do not in-
lem can always be reduced to that of finding the weights and the fluence each other, we can still use the above method sequentially.
shifts of a signal likes[m)]. It is easy to see that this happens when there are no mork the



Diracs in an interval of sizéd( LT or, using the terminology in-

troduced in the previous section, when the local rate of innovation

PKLT(t) < 2/LT. O
Notice that the complexity of the algorithm does not depend

on the total number of Diracs present in the signal, but only on the

maximum number of Diracs that we can have in a certain interval.
That is the complexity of the algorithm depends only on the local
rate of innovation of ().

We conclude this section be highlighting that, with an ap-

(p(t/T—n),z(t)) if and only if there are at mogk +1 polynomi-
alsinaninterval of sizé L+ M)KT and2KM —1 < (M +N).

Proof: Assume agaiff’ = 1. Given the sampleg,,, compute the
Mth finite difference="". As shown beforez (™ = (x™) (¢), p(t—
n)xBr 1 (t=n)) andze () M0 (1) = 32, ¢ 30 an,md ™ (6=
tn). The new kernep(t) * Bar—1(t) has supporL + M and can
reproduce polynomials of maximum degrée+ M. Since for
hypothesisz(t) has at mos# + 1 polynomial in an interval of

proach similar to the one presented above, one can sample streansize (L + M) K, z*)(t) has at mos# Diracs in that interval

of differentiated Diracs as well. However, we omit the proof due
to lack of space.

Theorem 2 Given is a sampling kerneb(¢) that can reproduce
polynomials of maximum degreé > 2K M — 1 and of com-
pact supportL. An infinite-length stream of differentiated Diracs
z(t) = 3, My 6™ (¢ — t,) is uniquely determined
by the samplegn = (p(t/T —n), z(t)) if and only if there are at
mostK differentiated Diracs in an interval of lengtk LT .

3.2. Piecewise polynomial signals

A signalz(t) is piecewise polynomial with pieces of maximum de-
greeM if and only if its (M + 1) derivative is a stream of differen-
tiated Diracs or(t) M (1) =3, oM an md ™ (t—tn).
This means that if we are able to relate the sampleg®fto those
of 2™+ (¢), we can use Theorem 2 to reconstru¢t). This is
indeed possible by recalling the link existing between discrete dif-
ferentiation and derivation in continuous domain.

Consider the sampleg, = (z(t), ¢(t — n)) wherep(t) is
a generic sampling kernel. Lef.” denote the finite difference

Yn+1 — Yn. It follows that
2 = (a(t)e(t—n—1) — @t —n))
= (X(W),gwe " (e 1)
= X (@) —up@)e (7))
= (et —n) = Bo(t —n))
where 5y (t) is the B-Spline of order zero. This means that the

coefficientsz\ represent the samples given by the inner products
of the derivative ofc(¢) with the new kernelp(¢) x Bo(t). In the
same way, it is straight-forward to show that (e + 1)th finite

differencesz " represent the samples obtained by sampling

M+ (1) with the kernelp(t) * Bar(t), whereBay () is the B-
Spline of degreé/.

Now, assume thap(t) is of compact supporL and that it

can reproduce polynomials of maximum degrée Theny(t) *
B (t) has supporL + M + 1 and can reproduce polynomials of
maximum degreeV + M + 1. Thus, if the new kernel satisfies
the hypotheses of Theorem 2, the samrzlfévéﬂ) are a sufficient
representation of M%) (¢) and, therefore, af:(t). This leads to
the following theorem

Theorem 3 Given is a sampling kerneb(¢) of compact support

L and that can reproduce polynomials of maximum degveeAn
infinite-length piecewise polynomial signal with pieces of maxi-
mum degreeM — 1 is uniquely defined by the samplgs

with a total number of weight& = K M. Since we are assuming
2KM — 1 < N + M, the hypotheses of Theorem 2 are satisfied,
thus, the samples, (M) are sufficient to reconstruat™ (¢) and

thereforex(t).!
]

4. THE EXPONENTIAL CASE

In the previous section we have used the property ¢{aj can
reproduce polynomials to reduce our sampling problem to that of
finding the coefficientsi, andt, of the discrete signad[m] =
S raxty. Then these coefficients can be determined using a
classical annihilating filter method. The annihilating filter method,
however, can be used alsa{in] is given bys[m] = 3", " are™.
This means that we can sample FRI signals also if the kernel is able
to reproduce exponentials.

The theory related to the reproduction of exponentials is some-
what more recent and relies on the notion of Exponential Splines
(E- Splines) [6]. A functions, (t) with Fourier transfornB,, (w) =

1= Z —— is called E-Spline of first order. Notice thatdoes not
have to be real, but can be any complex number. Moreover, no-
tice that3. (¢t) reduces to the classical zero-order B-Spline when
a = 0. The functiong, (t) satisfies several interesting properties,
in particular, it is of compact support and a linear combination
of shifted versions of3. (t) reproduces®‘. As in the classical

case, higher order E-Splines are obtained by successive convolu-
tions of lower-order ones ofiz(w) = [],_, ‘55—~ where
a = (ao,a1,...,an). The higher-order Spline is again of com-
pact support and it is possible to show that it can reproduce any
exponential in the subspace spanned 8%°*, e*1t, ..., e*~N*} [6].

Now assume that our kernel is of compact support and that
it is able to reproduce exponential of the foefi* with o, =
a0 +mAandm = 0,1,..., N. For instance(t) might be an
E-Splinesz(t) with & = (ao, a1, ...,an) anda., = ao + mA
or a composite functiom;( ) * Bz (t) [6]. Consider again a stream
of K Diracsz(t) = k o axd(t — ti) The samples,, are then
given byy,, = (z(t), ¢(t — n)) and, using Eq. (2), it follows that

Zn CononYn = ffooo I(t)eao+m)\tdt

ag+mAty
Zk o k€

sm]

m=20,1,...,N.

This means that, as in the polynomial case, by opportunely com-
bining the sampleg.,, we end-up observing a signajm] of the
form s[m] = 31" are® ™ e We can therefore reconstruct
z(t) using the annihilating filter method of Section 2. Again, this
reconstruction algorithm can be applied to any stream of Diracs
with local rate of innovatiowx 7 (t) < 2/LT. Thus we have

INote that the mean af(t) is obtained directly.



Theorem 4 Given is a sampling kernel(¢) of compact suppotk
and that can reproduce exponential® ™™ withm = 0,1, ..., N
and N > 2K — 1. An infinite-length stream of Diracs(t) =

Y nez and(t — tn) is uniquely determined from the samples de-
fined byy., = (z(t), ¢(t/T — n)) if and only if there are at most
K Diracs in an interval of length LT'.

5. RECONSTRUCTION OF FRI SIGNALS AT THE
OUTPUT OF AN ELECTRIC CIRCUIT

We conclude this paper by showing how to estimate a piecewise

constant signal at the output of an electrical circuit. This recon-

struction algorithm relies on the results of the previous sections, x(t) =

but also on the fact that it is possible to convert any kernel with

Fourier transformps (w) = ﬁ into the composite ker-

nelo(t) = B5(t). This is done by filtering the samplgs with an
FIR filter h[n] with z-transformH (z) = [[0_,(1 — e®m271).

Consider the classicdC' circuit shown in Figure 1 and call
H(w) = a/(a + jw) with a = 1/RC its transfer function. As-
sume that the input voltage is(t) = Au(t — to). The output
y(t) h(t) = x(t) is clearly given byy(t) = Au(t — to) —
Ae~*(tt0)y (¢t — t5). The output voltage is then uniformly sam-
pled with sampling period” = 1 leading to the sampleg, =
Au(n — to) — Ae~*("=t0)y(n — t,). Alternatively, we can say
thaty, = (z(t), o(t — n)) with o(t) = h(—t).2 Our aim is to
retrievez(t) from the sampleg.,.

First, compute the following difference

Zn € Yn+1 — Yo = (2(t), €%t —n — 1) = p(t —n))

a Jw)

- 1
%(X(w),oze ]w"((;ia) —

(x(t), aBa(t — n)).

Then compute the first order difference

dz(t)
7 ,afBa(t —n) x Bo(t —n)).

Now, the signaliz(t)/dt is a Dirac centered &t and with ampli-
tude A. The new kernelp, (t) = aBa(t) * Bo(t) is of compact
supportl, = 2, and can reproduce a constant function or the expo-
nentiale®*. More precisely

Y alt

1
2 = zpg1 — 20 = (

e* —1

and .

Thls means that (see Theorem 49% Yon? (1) = A and that

Yo e m (' = Ae™ . Thus, we retrieve the amplitudé
from the first sum and the locatign from the second one.

Let us verify the above analysis for our specific example. Re-
call that in our casg, = Au(n — to) — Ae ("t y(n — tg)
and assume for simplicity thag € [0, 1], then

e—o

0 forn <0
Zn = € Ynt1 — Yn = Ae® —e®0)  forn =0
A(e® —1) forn >0

2Recall that, sincéw(t) is real, ¢(t)
H(—w).

= h(—t) implies thatgp(w) =

d

B3

-—
-—

Fig. 1. A typical RC circuit. In our example the input voltage is
Au(t — to) and the outpuy(¢) is uniformly sampled. The
samplesy,, are sufficient to reconstruef(t) exactly.

and
Ae® —e®0)  forn = -1
2V =z — 2 = A — 1) forn=0
0 otherwise
Therefore, itis clearly true that/(e* — 1) Y 2\ = Aandthat

1/1—e %)%, ez = Aeto.

Notice that with thisRC' circuit we can sample any piecewise
constant signal that has at most one discontinuity in an interval of
length2T". To sample signals with higher local rate of innovation,
we need an electrical circuit with more than one pole. For instance,
we can use a properly designed cascadB@fcircuits.

6. CONCLUSIONS

In this paper we have shown that it is possible to sample FRI sig-
nals with kernels that can reproduce polynomials or exponentials
and with a local reconstruction algorithm. Applications of these

sampling theorems can potentially be found in signal processing,
communication systems and biological systems.
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