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ABSTRACT

Recently, it was shown that it is possible to sample classes of sig-
nals with finite rate of innovation [7]. These sampling schemes,
however, use kernels with infinite support and this leads to com-
plex and instable reconstruction algorithms.

In this paper, we show that many signals with finite rate of in-
novation can be sampled and perfectly reconstructed using kernels
of compact support and a local reconstruction algorithm. The class
of kernels that we can use is very rich and includes any function
satisfying Strang-Fix conditions, Exponential Splines and func-
tions with rational Fourier transforms.

1. INTRODUCTION

Sampling theory plays a central role in modern signal processing
and communications, and has experienced a recent revival thanks,
in part, to the recent advances in wavelet theory [5, 4]. In the
typical sampling setup, the original continuous-time signalx(t) is
filtered before being (uniformly) sampled with sampling periodT .
If we call y(t) = h(t) ∗ x(t) the filtered version ofx(t), then
the samplesyn are given byyn = 〈x(t), ϕ(t/T − n)〉 where the
sampling kernelϕ(t) is the time-reversed version ofh(t).

Recently, it was shown that it is possible to develop sampling
schemes for classes of signals that are neither bandlimited nor be-
long to a fixed sub-space [7]. For instance, it was shown that it
is possible to sample streams of Diracs or piecewise polynomial
signals using a sinc or a Gaussian kernel. The common feature
of such signals is that they have a parametric representation with
a finite number of degrees of freedom and are, therefore, called
signals with finite rate of innovation (FRI) [7]. The reconstruc-
tion process is based on the use of a locator or annihilating filter,
a tool widely used in spectral estimation [2] and error correction
coding [1].

The fundamental limit of the above method, as well as of the
classical Shannon reconstruction scheme, is that they use kernels
of infinite support. As a consequence, the reconstruction algorithm
is usually physically non-realizable (e.g., realization of an ideal
low-pass filter) or, in the case of FRI signals, becomes immediately
complex and instable (the complexity is in fact influenced by the
global rate of innovation ofx(t)).

In this paper we show that many signals with a local finite rate
of innovation can be sampled and perfectly reconstructed using a
wide range of sampling kernels and a local reconstruction algo-
rithm. In particular, we show that the main property the kernel has

to satisfy is to be of compact support and able to reproduce poly-
nomials or exponentials. More precisely, ifϕ(t) is the kernel, we
need it to satisfy

∑
n

cm,nϕ(t− n) = tm m = 0, 1, ..., N (1)

or
∑

n

cm,nϕ(t−n) = eamt m = 0, 1, ..., N, andam = α0+mλ

(2)
for a proper choice of the coefficientscm,n. Interesting enough,
the reconstruction algorithm proposed in this paper is also based
on the annihilating filter method. We also show, with a simple ex-
ample, that in some cases it is possible to relax the hypothesis of
compactly supported kernels and that, for instance, many kernels
with rational transfer functions can be used to sample FRI signals.
Despite the fact that these kernels have infinite support, the recon-
struction algorithm remains local and its complexity still depends
on the local, rather than global, rate of innovation ofx(t).

The paper is organized as follows: in the next section, we
briefly review the notion of FRI signals and the annihilating fil-
ter method. Section 3 presents new sampling theorems for classes
of FRI signals using kernels that can reproduce polynomials. In
Section 4, we review the notion of Exponential Splines [6] and
extend our sampling schemes to the case of kernels that can repro-
duce exponentials. Further extensions are discussed in Section 5
where we also show how to estimate FRI signals at the output of
anRC circuit. We conclude in Section 6.

2. PRELIMINARIES

In this section, we give a brief review of signals with finite rate of
innovation and of the annihilating filter method. The notion of FRI
signals was introduced in [7]. For a more detailed treatment of the
annihilating filter method, we refer to [2].

2.1. Signals with Finite Rate of Innovation

Consider a signal of the form

x(t) =
∑

n∈Z

K∑

k=0

λn,kϕk

(
t− tn

T

)
. (3)

Clearly, if the set of functions{ϕk(t)}k=0,1,...,K is known, the
only free parameters in the signalx(t) are the coefficientsλn,k and



the time shiftstn. It is therefore natural to introduce a counting
function Cx(ta, tb) that counts the number of free parameters in
x(t) over an interval[ta, tb]. The rate of innovation ofx(t) is then
defined as [7]

ρ = lim
τ→∞

1

τ
Cx

(
−τ

2
,
τ

2

)
. (4)

Definition 1 ([7]) A signal with a finite rate of innovation is a sig-
nal whose parametric representation is given in (3) and with a
finiteρ as defined in (4).

It is of interest to note that shift-invariant signals, including ban-
dlimited signals, are included in Definition 3. For instance, if we
call fmax the maximum non-zero frequency in a bandlimited real
signal, thenρ = 2fmax.

In some cases it is more convenient to consider a local rate of
innovation with respect to a moving window of sizeτ . The local
rate of innovation at timet is thus given by [7]

ρτ (t) =
1

τ
Cx

(
t− τ

2
, t +

τ

2

)
. (5)

Clearlyρτ (t) tends toρ asτ →∞.

2.2. The annihilating filter method

Assume that we observe a signal

s[m] =

K−1∑

k=0

akum
k m ∈ Z (6)

and that we want to find the weightsak and the locationsuk of
s[m]. Call h[m] m = 0, 1, ..., K a filter withz-transform

H(z) =

K∑
m=0

h[m]z−m =

K−1∏

k=0

(1− ukz−1). (7)

That is, the roots ofH(z) correspond to the locationsuk. It clearly
follows that

h[m] ∗ s[m] =

K∑
i=0

h[i]s[m− i] = 0. (8)

The filterh[m] is thus called annihilating filter since it annihilates
the observed signals[m]. Notice thath[m] is unique for the ob-
served signal since the locationsuk are distinct.

The knowledge ofh[m] is sufficient to retrieve the locations
u0, u1, ..., uK−1, since these locations are the roots of the poly-
nomial in (7). The filter coefficientsh[m] must be such that (8)
is satisfied. Since there areK unknown coefficients (recall that
h[0] = 1), we need at leastK linear equations. The identity in (8)
leads to a Yule-Walker system of equations involving2K consec-
utive values ofs[m] and, in this case, it has a unique solution since
h[m] is unique for the given signal. Given the filter coefficients
h[m] and therefore the locationsu0, u1, ..., uk; the weightsak are
obtained by solvingK consecutive equations in (6). These equa-
tions form a Vandermonde system which yields a unique solution
for the weightsak given that theuks are distinct.

In the following sections, we will show that our sampling prob-
lem can always be reduced to that of finding the weights and the
shifts of a signal likes[m].

3. RECONSTRUCTION OF FRI SIGNALS USING LOCAL
KERNELS THAT REPRODUCE POLYNOMIALS

We assume that the sampling kernelϕ(t) is of compact supportL,
that is,ϕ(t) 6= 0 for t ∈ [−L/2, L/2] and thatϕ(t) satisfies the
Strang-Fix conditions [3], that is, a linear combination of shifted
versions ofϕ(t) can reproduce polynomials of maximum degree
N (see Equation (1)). We consider the case of streams of Diracs
first and derive the other results directly from this case.

3.1. Streams of Diracs

Theorem 1 Given is a sampling kernelϕ(t) that can reproduce
polynomials of maximum degreeN ≥ 2K−1 and of compact sup-
port L. An infinite-length stream of Diracsx(t) =

∑
n∈Z anδ(t−

tn) is uniquely determined from the samples defined byyn =
〈ϕ(t/T −n), x(t)〉 if and only if there are at mostK Diracs in an
interval of lengthKLT .

Proof: Assume for simplicity thatT = 1 and assume for now
thatx(t) contains onlyK Diracs, that is,x(t) =

∑K−1
k=0 akδ(t −

tk) and t ∈ R. Call s[m] =
∑

n cm,nyn, m = 0, 1, ..., N
the weighted sum of the observed (non-zero) samples, where the
weightscm,n are those in Equation (1). We have that

s[m] =
∑

n cm,nyn

(a)
= 〈x(t),

∑
n cm,nϕ(t− n)〉

(b)
=

∫∞
−∞ x(t)tmdt

(c)
=

∑K−1
k=0 aktm

k m = 0, 1, ..., N

(9)

where (a) follows from the linearity of the inner product, (b) from
the polynomial reproduction formula in (1), and (c) from the fact
thatx(t) =

∑K−1
k=0 akδ(t−tk). Hence by opportunely combining

the samplesyn, we end-up observing a signals[m] of the form
s[m] =

∑K−1
k=0 aktm

k , m = 0, 1, ..., N which is equivalent to the
signal in (6). It is thus possible to retrieve the amplitudesak and
the locationstk of the Diracs using the annihilating filter method.

Call h[m] m = 0, 1, ..., K the filter that annihilatess[m].
This filter is unique since the locations of the Diracs are distinct
and we are assumingh[0] = 1. We observes[0], s[1], ..., s[N ],
therefore theK unknown coefficients ofh[m] are the solution of
the Yule-Walker system produced by the identity in (8). Notice
that, since we need at least2K values ofs[m], it is crucial that the
sampling kernelϕ(t) be able to reproduce polynomials of degree
N ≥ 2K−1. Once the filter coefficients are found, the Diracs’ lo-
cations are the roots of the polynomialp(z) =

∑K
k=0 h[m]z−m.

Finally the amplitudes of the Diracs are obtained by solving the
firstK equations in (9). These equations form a Vandermonde sys-
tem which has a unique solution since thetks are distinct. Hence,
the annihilating filter methods allows us to retrieve the original
signal from its samples.

In general,x(t) may contains more thanK Diracs. However,
since the kernel is of compact support, only a finite number of sam-
ples is influenced by a certain set of Diracs. Thus, if we are sure
that the samples generated by different sets ofK Diracs do not in-
fluence each other, we can still use the above method sequentially.
It is easy to see that this happens when there are no more theK



Diracs in an interval of sizeKLT or, using the terminology in-
troduced in the previous section, when the local rate of innovation
ρKLT (t) ≤ 2/LT . 2

Notice that the complexity of the algorithm does not depend
on the total number of Diracs present in the signal, but only on the
maximum number of Diracs that we can have in a certain interval.
That is the complexity of the algorithm depends only on the local
rate of innovation ofx(t).

We conclude this section be highlighting that, with an ap-
proach similar to the one presented above, one can sample streams
of differentiated Diracs as well. However, we omit the proof due
to lack of space.

Theorem 2 Given is a sampling kernelϕ(t) that can reproduce
polynomials of maximum degreeN ≥ 2KM − 1 and of com-
pact supportL. An infinite-length stream of differentiated Diracs
x(t) =

∑
n=Z

∑M−1
m=0 an,mδ(m)(t − tn) is uniquely determined

by the samplesyn = 〈ϕ(t/T −n), x(t)〉 if and only if there are at
mostK differentiated Diracs in an interval of lengthKLT .

3.2. Piecewise polynomial signals

A signalx(t) is piecewise polynomial with pieces of maximum de-
greeM if and only if its(M +1) derivative is a stream of differen-
tiated Diracs orx(t)(M+1)(t) =

∑
n∈Z

∑M
m=0 an,mδ(m)(t−tn).

This means that if we are able to relate the samples ofx(t) to those
of x(M+1)(t), we can use Theorem 2 to reconstructx(t). This is
indeed possible by recalling the link existing between discrete dif-
ferentiation and derivation in continuous domain.

Consider the samplesyn = 〈x(t), ϕ(t − n)〉 whereϕ(t) is
a generic sampling kernel. Letz(1)

n denote the finite difference
yn+1 − yn. It follows that

z
(1)
n = 〈x(t), ϕ(t− n− 1)− ϕ(t− n)〉

= 1
2π
〈X(ω), ϕ̂(ω)e−jωn(e−jω − 1)〉

= 1
2π
〈X(ω),−jωϕ̂(ω)e−jωn

(
1−e−jω

jω

)
〉

= 〈 dx(t)
dt

, ϕ(t− n) ∗ β0(t− n)〉

whereβ0(t) is the B-Spline of order zero. This means that the
coefficientsz(1)

n represent the samples given by the inner products
of the derivative ofx(t) with the new kernelϕ(t) ∗ β0(t). In the
same way, it is straight-forward to show that the(M + 1)th finite
differencesz(M+1)

n represent the samples obtained by sampling
x(M+1)(t) with the kernelϕ(t) ∗ βM (t), whereβM (t) is the B-
Spline of degreeM .

Now, assume thatϕ(t) is of compact supportL and that it
can reproduce polynomials of maximum degreeN . Thenϕ(t) ∗
βM (t) has supportL + M + 1 and can reproduce polynomials of
maximum degreeN + M + 1. Thus, if the new kernel satisfies
the hypotheses of Theorem 2, the samplesz

(M+1)
n are a sufficient

representation ofx(M+1)(t) and, therefore, ofx(t). This leads to
the following theorem

Theorem 3 Given is a sampling kernelϕ(t) of compact support
L and that can reproduce polynomials of maximum degreeN . An
infinite-length piecewise polynomial signal with pieces of maxi-
mum degreeM − 1 is uniquely defined by the samplesyn =

〈ϕ(t/T−n), x(t)〉 if and only if there are at mostK+1 polynomi-
als in an interval of size(L+M)KT and2KM−1 ≤ (M +N).

Proof: Assume againT = 1. Given the samplesyn, compute the
M th finite differencez(M)

n . As shown before,z(M)
n = 〈x(M)(t), ϕ(t−

n)∗βM−1(t−n)〉 andx(t)(M)(t) =
∑

n∈Z
∑M−1

m=0 an,mδ(m)(t−
tn). The new kernelϕ(t) ∗ βM−1(t) has supportL + M and can
reproduce polynomials of maximum degreeN + M . Since for
hypothesisx(t) has at mostK + 1 polynomial in an interval of
size (L + M)K, x(M)(t) has at mostK Diracs in that interval
with a total number of weightŝK = KM . Since we are assuming
2KM − 1 ≤ N + M , the hypotheses of Theorem 2 are satisfied,
thus, the samplesz(M)

n are sufficient to reconstructx(M)(t) and
thereforex(t).1

2

4. THE EXPONENTIAL CASE

In the previous section we have used the property thatϕ(t) can
reproduce polynomials to reduce our sampling problem to that of
finding the coefficientsak and tk of the discrete signals[m] =∑K−1

k=0 aktm
k . Then these coefficients can be determined using a

classical annihilating filter method. The annihilating filter method,
however, can be used also ifs[m] is given bys[m] =

∑K−1
k=0 akeλmt.

This means that we can sample FRI signals also if the kernel is able
to reproduce exponentials.

The theory related to the reproduction of exponentials is some-
what more recent and relies on the notion of Exponential Splines
(E-Splines) [6]. A functionβα(t) with Fourier transform̂βα(ω) =
1−eα−jω

jω−α
is called E-Spline of first order. Notice thatα does not

have to be real, but can be any complex number. Moreover, no-
tice thatβα(t) reduces to the classical zero-order B-Spline when
α = 0. The functionβα(t) satisfies several interesting properties,
in particular, it is of compact support and a linear combination
of shifted versions ofβα(t) reproduceseαt. As in the classical
case, higher order E-Splines are obtained by successive convolu-
tions of lower-order ones or̂β~α(ω) =

∏N
n=0

1−eαn−jω

jω−αn
where

~α = (α0, α1, ..., αN ). The higher-order Spline is again of com-
pact support and it is possible to show that it can reproduce any
exponential in the subspace spanned by{ea0t, ea1t, ..., eaN t} [6].

Now assume that our kernel is of compact support and that
it is able to reproduce exponential of the formeαmt with αm =
α0 + mλ andm = 0, 1, ..., N . For instance,ϕ(t) might be an
E-Splineβ~α(t) with ~α = (α0, α1, ..., αN ) andαm = α0 + mλ
or a composite functionϕ(t) ∗ β~α(t) [6]. Consider again a stream
of K Diracsx(t) =

∑K−1
k=0 akδ(t− tk) The samplesyn are then

given byyn = 〈x(t), ϕ(t− n)〉 and, using Eq. (2), it follows that

s[m] =
∑

n cm,nyn =
∫∞
−∞ x(t)eα0+mλtdt

=
∑K−1

k=0 akeα0+mλtk m = 0, 1, ..., N.

This means that, as in the polynomial case, by opportunely com-
bining the samplesyn we end-up observing a signals[m] of the
form s[m] =

∑K−1
k=0 akeα0+mλtk . We can therefore reconstruct

x(t) using the annihilating filter method of Section 2. Again, this
reconstruction algorithm can be applied to any stream of Diracs
with local rate of innovationρKLT (t) ≤ 2/LT . Thus we have

1Note that the mean ofx(t) is obtained directly.



Theorem 4 Given is a sampling kernelϕ(t) of compact supportL
and that can reproduce exponentialseα0+mλt withm = 0, 1, ..., N
and N ≥ 2K − 1. An infinite-length stream of Diracsx(t) =∑

n∈Z anδ(t − tn) is uniquely determined from the samples de-
fined byyn = 〈x(t), ϕ(t/T − n)〉 if and only if there are at most
K Diracs in an interval of lengthKLT .

5. RECONSTRUCTION OF FRI SIGNALS AT THE
OUTPUT OF AN ELECTRIC CIRCUIT

We conclude this paper by showing how to estimate a piecewise
constant signal at the output of an electrical circuit. This recon-
struction algorithm relies on the results of the previous sections,
but also on the fact that it is possible to convert any kernel with
Fourier transformϕ̂~α(ω) = ϕ̂(ω)∏N

n=0 jω−αn
into the composite ker-

nelϕ(t) ∗ β~α(t). This is done by filtering the samplesyn with an
FIR filter h[n] with z-transformH(z) =

∏N
n=0(1− eαnz−1).

Consider the classicalRC circuit shown in Figure 1 and call
H(ω) = α/(α + jω) with α = 1/RC its transfer function. As-
sume that the input voltage isx(t) = Au(t − t0). The output
y(t) = h(t) ∗ x(t) is clearly given byy(t) = Au(t − t0) −
Ae−α(t−t0)u(t − t0). The output voltage is then uniformly sam-
pled with sampling periodT = 1 leading to the samplesyn =
Au(n − t0) − Ae−α(n−t0)u(n − t0). Alternatively, we can say
thatyn = 〈x(t), ϕ(t − n)〉 with ϕ(t) = h(−t).2 Our aim is to
retrievex(t) from the samplesyn.

First, compute the following difference

zn = eαyn+1 − yn = 〈x(t), eαϕ(t− n− 1)− ϕ(t− n)〉

= 1
2π
〈X(ω), αe−jωn (1−eα−jω)

(jω−α)
= 〈x(t), αβα(t− n)〉.

Then compute the first order difference

z(1)
n = zn+1 − zn = 〈dx(t)

dt
, αβα(t− n) ∗ β0(t− n)〉.

Now, the signaldx(t)/dt is a Dirac centered att0 and with ampli-
tudeA. The new kernelϕα(t) = αβα(t) ∗ β0(t) is of compact
supportL = 2, and can reproduce a constant function or the expo-
nentialeαt. More precisely

1

eα − 1

∑
n

ϕα(t− n) = 1

and
1

1− e−α

∑
n

eαnϕα(t− n) = eαt.

This means that (see Theorem 4)1
eα−1

∑
n z

(1)
n = A and that

1
1−e−α

∑
n eαnz

(1)
n = Aeαt0 . Thus, we retrieve the amplitudeA

from the first sum and the locationt0 from the second one.
Let us verify the above analysis for our specific example. Re-

call that in our caseyn = Au(n − t0) − Ae−α(n−t0)u(n − t0)
and assume for simplicity thatt0 ∈ [0, 1], then

zn = eαyn+1 − yn =





0 for n < 0

A(eα − eαt0) for n = 0

A(eα − 1) for n > 0

2Recall that, sinceh(t) is real,ϕ(t) = h(−t) implies thatϕ̂(ω) =
H(−ω).

x(t)
   y(t)


R


     C


+


-


+


-


Fig. 1. A typical RC circuit. In our example the input voltage is
x(t) = Au(t− t0) and the outputy(t) is uniformly sampled. The
samplesyn are sufficient to reconstructx(t) exactly.

and

z(1)
n = zn+1 − zn =





A(eα − eαt0) for n = −1

A(eαt0 − 1) for n = 0

0 otherwise

Therefore, it is clearly true that1/(eα − 1)
∑

n z
(1)
n = A and that

1/(1− e−α)
∑

n eαnz
(1)
n = Aeαt0 .

Notice that with thisRC circuit we can sample any piecewise
constant signal that has at most one discontinuity in an interval of
length2T . To sample signals with higher local rate of innovation,
we need an electrical circuit with more than one pole. For instance,
we can use a properly designed cascade ofRC circuits.

6. CONCLUSIONS

In this paper we have shown that it is possible to sample FRI sig-
nals with kernels that can reproduce polynomials or exponentials
and with a local reconstruction algorithm. Applications of these
sampling theorems can potentially be found in signal processing,
communication systems and biological systems.
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