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ABSTRACT

Recently, it was shown that it is possible to sample classes of signals with finite rate of innovation.18 These
sampling schemes, however, use kernels with infinite support and this leads to complex and instable reconstruction
algorithms.

In this paper, we show that many signals with finite rate of innovation can be sampled and perfectly recon-
structed using kernels of compact support and a local reconstruction algorithm. The class of kernels that we can
use is very rich and includes any function satisfying Strang-Fix conditions, Exponential Splines and functions
with rational Fourier transforms. Our sampling schemes can be used for either 1-D or 2-D signals with finite
rate of innovation.

1. INTRODUCTION

Sampling theory plays a central role in modern signal processing and communications, and has experienced a
recent revival thanks, in part, to the recent advances in wavelet theory.14, 15 In the typical sampling setup, the
original continuous-time signal x(t) is filtered before being (uniformly) sampled with sampling period T . If we
call y(t) = h(t) ∗ x(t) the filtered version of x(t), the samples yn are given by yn = 〈x(t), ϕ(t/T − n)〉 where the
sampling kernel ϕ(t) is the scaled and time-reversed version of h(t).

Recently, it was shown that it is possible to develop sampling schemes for classes of signals that are neither
bandlimited nor belong to a fixed sub-space.18 For instance, it was shown that it is possible to sample streams
of Diracs or piecewise polynomial signals using a sinc or a Gaussian kernel. The common feature of such signals
is that they have a parametric representation with a finite number of degrees of freedom and are, therefore,
called signals with finite rate of innovation (FRI).18 The reconstruction process is based on the use of a locator
or annihilating filter, a tool widely used in spectral estimation11 and error correction coding.1

The fundamental limit of the above method, as well as of the classical Shannon reconstruction scheme, is
that they use kernels of infinite support. As a consequence, the reconstruction algorithm is usually physically
non-realizable (e.g., realization of an ideal low-pass filter) or, in the case of FRI signals, becomes immediately
complex and instable (the complexity is in fact influenced by the global rate of innovation of x(t)).

In this paper we show that many signals with a local finite rate of innovation can be sampled and perfectly
reconstructed using a wide range of sampling kernels and a local reconstruction algorithm. In particular, we
show that the main property the kernel has to satisfy is to be able to reproduce polynomials or exponentials.
More precisely, if ϕ(t) is the kernel, we need it to satisfy

∑
n

cm,nϕ(t− n) = tm m = 0, 1, ..., N (1)

or ∑
n

cm,nϕ(t− n) = eαmt αm = α0 + mλ and m = 0, 1, ..., N, (2)
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for a proper choice of the coefficients cm,n. Interesting enough, the reconstruction algorithm proposed in this
paper is also based on the annihilating filter method. It is also possible to show that many kernels with rational
transfer functions can be used to sample FRI signals as well. Despite the fact that these kernels have infinite
support, the reconstruction algorithm remains local and its complexity still depends on the local, rather than
global, rate of innovation of x(t).

These sampling schemes can be used for 2-D signals with finite rate of innovation as well. In particular, sets
of 2-D Diracs and polygonal images can be reconstructed exactly using complex moments.

The paper is organized as follows: In the next section we review the notion of signals with finite rate of
innovation, and present the families of sampling kernels that are used in our sampling schemes. Section 3
presents our main sampling results for the case of kernels reproducing polynomials. In particular, we show how
to sample and perfectly reconstruct streams of Diracs, streams of differentiated Diracs and piecewise polynomial
signals. The following section extend the previous results to the case in which the sampling kernel reproduces
exponentials. In Section 5 we show how to estimate FRI signals at the output of an RC circuit. Section 6 studies
the 2-D case and Section 7 concludes the paper.

2. SIGNALS AND KERNELS

In this section we introduce the notion of signals with finite rate of innovation18 and present the families of
sampling kernels that will be used for the rest of the paper.

2.1. Signals with Finite Rate of Innovation

Consider a signal of the form

x(t) =
∑

n∈Z

K∑

k=0

λn,kϕk

(
t− tn

T

)
. (3)

Clearly, if the set of functions {ϕk(t)}k=0,1,...,K is known, the only free parameters in the signal x(t) are the
coefficients λn,k and the time shifts tn. It is therefore natural to introduce a counting function Cx(ta, tb) that
counts the number of free parameters in x(t) over an interval [ta, tb]. The rate of innovation of x(t) is then
defined as18

ρ = lim
τ→∞

1
τ

Cx

(
−τ

2
,
τ

2

)
. (4)

Definition 1 (Vetterli, Marziliano, Blu18). A signal with a finite rate of innovation is a signal whose
parametric representation is given in (3) and with a finite ρ as defined in (4).

It is of interest to note that shift-invariant signals, including bandlimited signals, are included in Definition 3.
For instance, if we call fmax the maximum non-zero frequency in a bandlimited real signal, then ρ = 2fmax.
Therefore, one possible interpretation is that it is possible to sample bandlimited signals because they have finite
rate of innovation and not because they are bandlimited.

In some cases it is more convenient to consider a local rate of innovation with respect to a moving window of
size τ . The local rate of innovation at time t is thus given by18

ρτ (t) =
1
τ

Cx

(
t− τ

2
, t +

τ

2

)
. (5)

Clearly ρτ (t) tends to ρ as τ →∞.



2.2. Sampling Kernels
As mentioned in the introduction, the signal x(t) is usually filtered before being (uniformly) sampled. The
samples yn of x(t) are given by yn = 〈x(t), ϕ(t/T − n)〉, where the sampling kernel ϕ(t) is the time reversed
version of filter’s impulse response. In some cases, one is free to choose or design the sampling kernel. However,
in most realistic situations, this kernel depends on the physical properties of the acquisition device and cannot be
modified. It is therefore important to develop sampling schemes that do not require the use of very particular or
even physically non-realizable kernels. The classical Shannon sampling theorem is very restrictive in this respect,
since it requires an ideal low-pass filter to reconstruct a bandlimited signal from its samples.

In our formulation we can use a wide range of different kernels. For the sake of clarity, we divide them into
three different families:

1. Any kernel ϕ(t) that together with its shifted versions can reproduce polynomials:
∑

n

cm,nϕ(t− n) = tm m = 0, 1, ..., N (6)

2. Any kernel ϕ(t) that together with its shifted versions can reproduce exponentials:
∑

n

cm,nϕ(t− n) = eαmt αm = α0 + mλ and m = 0, 1, ..., N, (7)

3. Any kernel with rational Fourier transform. That is, any kernel of the form

ϕ̂(ω) =
∏

i(jω − bi)∏
m(jω − αm)

am = α0 + mλ and m = 0, 1, ..., N. (8)

where ϕ̂(ω) is the Fourier transform of ϕ(t).

In all cases, the choice of N depends on the local rate of innovation of the original signal x(t) as it will become
clear later on.

The first family of kernels includes any function satisfying the so called Strang-Fix conditions.12 Namely,
ϕ(t) satisfies Eq. (6) if and only if

ϕ̂(0) 6= 0 and ϕ̂(m)(2nπ) = 0 for





n 6= 0

m = 0, 1, ..., N

where ϕ̂(ω) is the Fourier transform of ϕ(t). These conditions were originally valid for functions with compact
support only, more recently they have been extended to non-compactly supported functions.2, 3, 6 It is also of
interest to note that this class of kernels contains also any scaling functions that generate wavelets with N + 1
vanishing moments.4, 8, 13, 17

The theory related to the reproduction of exponentials is somewhat more recent and relies on the notion of
Exponential Splines (E-Splines).16 A function βα(t) with Fourier transform

β̂α(ω) =
1− eα−jω

jω − α

is called E-Spline of first order. Notice that α does not have to be real, but can be any complex number.
Moreover, notice that βα(t) reduces to the classical zero-order B-Spline when α = 0. The function βα(t) satisfies
several interesting properties, in particular, it is of compact support and a linear combination of shifted versions
of βα(t) reproduces eαt. As in the classical case, higher order E-Splines are obtained by successive convolutions
of lower-order ones or

β̂~α(ω) =
N∏

n=0

1− eαn−jω

jω − αn



where ~α = (α0, α1, ..., αN ). The higher-order Spline is again of compact support and it is possible to show
that it can reproduce any exponential in the subspace spanned by {eα0t, eα1t, ..., eαN t}.16 Moreover, since
the exponential reproduction formula is preserved through convolution,16 any composite function of the form
ϕ(t)∗β~α(t) is also able to reproduce exponentials. Therefore, the second group of kernels contains any composite
function of the form ϕ(t) ∗ β~α(t) with β~α(t) = βα0(t) ∗ βα1(t) ∗ ... ∗ βαN

(t), αm = α0 + mλ and m = 0, 1, ..., N .

Notice that the exponential case reduces to that of reproduction of polynomials when αm = 0 for m =
0, 1, ..., N . For this reason we could study our sampling schemes in the exponential case only and then particu-
larize it to the polynomial case. However, we prefer to keep the two cases separated for the sake of simplicity.

The last group of kernels includes any linear differential acquisition device. That is, any linear device or
system for which the input and output are related by linear differential equations. This includes most of the
commonly used electrical, mechanical or acoustic systems.

The reason why we can sample signals with finite rate of innovation using such kernels is that we can convert a
kernel ϕ(t) with rational Fourier transform as in (8) into a kernel that reproduces exponentials. This is achieved
by filtering the samples yn = 〈x(t), ϕ(t− n)〉 with an FIR filter of form H(z) =

∏N
m=0(1− eαmz).

For example, assume that ϕ̂(ω) = 1
jω−α and yn = 〈x(t), ϕ(t− n)〉. Then

zn = hn ∗ yn = yn − eαyn+1 = 〈x(t), ϕ(t− n)− eαϕ(t− n− 1)〉

= 1
2π 〈X(ω), e−jωn (1−eα−jω)

(jω−α) = 〈x(t), βα(t− n)〉.

Therefore, by filtering the samples yn with the filter H(z) = (1 − eαz) we get a new set of samples zn that are
equivalent to those that would have been obtained by sampling the original signal x(t) with the E-Spline βα(t).

Likewise, when the original kernel has N poles at locations ~α = (α0, α1, ..., αN ), by filtering the samples
yn = 〈x(t), ϕ(t− n)〉 with the filter H(z) =

∏N
m=0(1− eαmz) we have that

zn = hn ∗ yn = 〈x(t), β~α(t− n)〉.

and the new kernel is of compact support and reproduces the exponentials {eα0t, eα1t, ..., eαN t}.
In Section 5, we use this result to estimate FRI signals at the output of an RC circuit.

3. RECONSTRUCTION OF FRI SIGNALS USING KERNELS THAT REPRODUCE
POLYNOMIALS

In this section, we assume that the sampling kernel ϕ(t) satisfies the Strang-Fix conditions,12 that is, a linear
combination of shifted versions of ϕ(t) can reproduce polynomials of maximum degree N (see Equation (6)). We
consider the case of streams of Diracs first and derive the other results directly from this case.

3.1. Streams of Diracs

Consider a stream of Diracs x(t). Call yn the observed samples, that is, yn = 〈ϕ(t−n), x(t)〉 where, for simplicity,
we have assumed T = 1. Assume for now that the signal contains only K Diracs that is, x(t) =

∑K−1
k=0 akδ(t−tk),

t ∈ R, and assume that the sampling kernel ϕ(t) is able to reproduce polynomials of maximum degree N ≥ 2K−1.
Under these hypotheses, it is possible to retrieve the locations tk and the amplitudes ak of x(t) from its samples
yn. The reconstruction algorithm operates in three steps. First, the first N moments of the signal x(t) are found.
Second, the Diracs’ locations are retrieved using an annihilating filter. Third, the amplitudes ak are obtained
solving a Vandermonde system.

For a more detailed description of the annihilating filter method we refer to.11, 18 Here, we only highlight
the main steps of our algorithm where the key innovation is in our ability to estimate the moments of x(t) from
its samples yn.



1. Retrieve the first N moments of the signal x(t).
Call τm =

∑
n cm,nyn, m = 0, 1, ..., N the weighted sum of the observed (non-zero) samples, where the

weights cm,n are those in Equation (6). We have that

τm =
∑

n cm,nyn

(a)
= 〈x(t),

∑
n cm,nϕ(t− n)〉

(b)
=

∫∞
−∞ x(t)tmdt

(c)
=

∑K−1
k=0 aktmk m = 0, 1, ..., N

(9)

where (a) follows from the linearity of the inner product, (b) from the polynomial reproduction formula
in (6), and (c) from the fact that x(t) =

∑K−1
k=0 akδ(t− tk). Hence by opportunely combining the samples

yn, we end-up observing the first N moments τm of the signal x(t). From these moments it is then possible
to retrieve the amplitudes and locations of the Diracs using the annihilating filter method.

2. Find the coefficients hm m = 0, 1, ...,K of the annihilating filter.
Call hm m = 0, 1, ...,K the filter with z-transform

H(z) =
K∑

m=0

hmz−m =
K−1∏

k=0

(1− tkz−1). (10)

That is, the roots of H(z) correspond to the locations tk. It clearly follows that

hm ∗ τm =
K∑

i=0

hiτm−i = 0. (11)

The filter hm is thus called annihilating filter since it annihilates the observed signal τm. The zeros of
this filter uniquely define the set of locations tk since the locations are distinct. The filter coefficients hm

are found from the system of equations in (11). Since h0 = 1, the identity in (11) leads to a Yule-Walker
system of equations involving 2K consecutive values of τm and, in this case, it has a unique solution since
hm is unique for the given signal. Given the filter coefficients hm, the locations of the Diracs are the
roots of polynomial in (10). Notice that, since we need at least 2K consecutive values of τm to solve the
Yule-Walker system, we need the sampling kernel to be able to reproduce polynomial of maximum degree
N ≥ 2K − 1.

3. Find the weight ak.
Given the locations t0, t1, ..., tk, the weights ak are obtained by solving, for instance, the first K consecutive
equations in (9). These equations form a Vandermonde system which yields a unique solution for the weights
ak given that the tks are distinct.

So far, we have not made any assumption about the support of the sampling kernel. However, it is reasonable
to assume that ϕ(t) has compact support L. If this is the case, it is clearly possible to reconstruct signals
containing more than K Diracs. More precisely, since the kernel is of compact support, only a finite number of
samples is influenced by a certain set of Diracs. Thus, if we are sure that the samples generated by different
sets of K Diracs do not influence each other, we can still use the above method sequentially. It is easy to see
that this happens when there are no more than K Diracs in an interval of size KLT or, using the terminology
introduced in the previous section, when the local rate of innovation ρKLT (t) ≤ 2/LT .

Thus from the above discussion it follows that:
Theorem 1. Given is a sampling kernel ϕ(t) that can reproduce polynomials of maximum degree N ≥ 2K − 1
and of compact support L. An infinite-length stream of Diracs x(t) =

∑
n∈Z anδ(t − tn) is uniquely determined

from the samples defined by yn = 〈ϕ(t/T − n), x(t)〉 if and only if there are at most K Diracs in an interval of
length KLT .



3.2. Stream of Differentiated Diracs

Consider a stream of differentiated Diracs:

x(t) =
K−1∑

k=0

Mk−1∑
m=0

ak,mδ(m)(t− tk).

Note that this signal has K Diracs and K̂ =
∑K−1

k=0 Mk weights. Moreover, recall that the rth derivative of a
Dirac is a function that satisfies the property

∫
f(t)δ(r)(t− t0)dt = (−1)rf (r)(t0).

Assume that x(t) is sampled with a kernel that can reproduce polynomial of maximum degree N ≥ 2K̂ − 1.
As shown previously, we can compute the first N moments of x(t) from its samples yn. This leads to the following
system of polynomial equations

a0,0 + a1,0 + ... + aK−1,0 = τ0

a0,0t0 + ... + aK−1,0tK−1 − a0,1 − ...− aK−1,1 = τ1

a0,0t
2
0 + ... + aK−1,0t

2
K−1 − 2a0,1t0 − ...− 2aK−1,1tK−1 + 2a0,2 + ... + 2aK−1,2 = τ2

... =
...

∑K−1
k=0

∑Mk
m=0(−1)mak,m(N)(N − 1) · · · (N −m + 1)tN−m

k = τN .

(12)

where we have used the fact that
∫

tnδ(r)(t− t0)dt = (−1)rn(n− 1) · · · (n− r + 1)tn−r
0 . Therefore, we can say

that what we observe is

τn =
K−1∑

k=0

Mk−1∑
m=0

(−1)mak,mn(n− 1) · · · (n−m + 1)tn−m
k .

It can be shown that the filter (1 − tkz−1)M annihilates the signal nrtnk , with r ≤ M − 1. Therefore the filter
hm with z-transform

H(z) =
K−1∏

k=0

(1− tkz−1)Mk

annihilates τn. The K̂ unknown coefficients of hm can be found solving a Yule-Walker system similar to the
one in the previous section. We need at least K̂ equations to find these coefficients, therefore, we need to know
at least 2K̂ consecutive values of τn (this is why N ≥ 2K̂ − 1). From the annihilating filter we obtain the
locations t0, t1, ..., tK−1. We then need to solve the first K̂ equations in (12) to obtain the weights ak,m. This is
a generalized Vandermonde system which has again a unique solution given that the tks are distinct.

The above analysis can be summarized in the following theorem:

Theorem 2. Given is a sampling kernel ϕ(t) that can reproduce polynomials of maximum degree N ≥ 2K̂−1 and
of compact support L. An infinite-length stream of differentiated Diracs x(t) =

∑
n=Z

∑Mn−1
m=0 an,mδ(m)(t − tn)

is uniquely determined by the samples yn = 〈ϕ(t/T − n), x(t)〉 if and only if there are at most K differentiated
Diracs with K̂ weights in an interval of length KLT .

3.3. Piecewise polynomial signals

A signal x(t) is piecewise polynomial with pieces of maximum degree M if and only if its (M + 1) derivative is a
stream of differentiated Diracs or x(t)(M+1)(t) =

∑
n∈Z

∑M
m=0 an,mδ(m)(t − tn). This means that if we are able

to relate the samples of x(t) to those of x(M+1)(t), we can use Theorem 2 to reconstruct x(t). This is indeed
possible by recalling the link existing between discrete differentiation and derivation in continuous domain.



Consider the samples yn = 〈x(t), ϕ(t− n)〉 where ϕ(t) is a generic sampling kernel. Let z
(1)
n denote the finite

difference yn+1 − yn. It follows that

z
(1)
n = 〈x(t), ϕ(t− n− 1)− ϕ(t− n)〉

= 1
2π 〈X(ω), ϕ̂(ω)e−jωn(e−jω − 1)〉

= 1
2π 〈X(ω),−jωϕ̂(ω)e−jωn

(
1−e−jω

jω

)
〉

= 〈dx(t)
dt , ϕ(t− n) ∗ β0(t− n)〉

where β0(t) is the B-Spline of order zero. This means that the coefficients z
(1)
n represent the samples given by the

inner products of the derivative of x(t) with the new kernel ϕ(t) ∗ β0(t). In the same way, it is straight-forward
to show that the (M + 1)th finite differences z

(M+1)
n represent the samples obtained by sampling x(M+1)(t) with

the kernel ϕ(t) ∗ βM (t), where βM (t) is the B-Spline of degree M .

Now, assume that ϕ(t) is of compact support L and that it can reproduce polynomials of maximum degree
N . Then ϕ(t) ∗ βM (t) has support L + M + 1 and can reproduce polynomials of maximum degree N + M + 1.
Thus, if the new kernel satisfies the hypotheses of Theorem 2, the samples z

(M+1)
n are a sufficient representation

of x(M+1)(t) and, therefore, of x(t). This leads to the following theorem

Theorem 3. Given is a sampling kernel ϕ(t) of compact support L and that can reproduce polynomials of
maximum degree N . An infinite-length piecewise polynomial signal with pieces of maximum degree M − 1 is
uniquely defined by the samples yn = 〈ϕ(t/T − n), x(t)〉 if and only if there are at most K + 1 polynomials in an
interval of size (L + M)KT and 2KM − 1 ≤ (M + N).

Proof: Assume again T = 1. Given the samples yn, compute the Mth finite difference z
(M)
n . As shown

before, z
(M)
n = 〈x(M)(t), ϕ(t − n) ∗ βM−1(t − n)〉 and x(t)(M)(t) =

∑
n∈Z

∑M−1
m=0 an,mδ(m)(t − tn). The new

kernel ϕ(t) ∗ βM−1(t) has support L + M and can reproduce polynomials of maximum degree N + M . Since for
hypothesis x(t) has at most K + 1 polynomial in an interval of size (L + M)K, x(M)(t) has at most K Diracs
in that interval with a total number of weights K̂ = KM . Since we are assuming 2KM − 1 ≤ N + M , the
hypotheses of Theorem 2 are satisfied, thus, the samples z

(M)
n are sufficient to reconstruct x(M)(t) and therefore

x(t).†

¤

4. THE EXPONENTIAL CASE
In the previous section we have used the property that ϕ(t) can reproduce polynomials to reduce our sampling
problem to that of finding the coefficients ak and tk of the discrete signal τm =

∑K−1
k=0 aktmk , m = 0, 1, ..., N

and this is achieved using the annihilating filter method. The interesting point is that the annihilating filter
method can be used also in the case the observed signal is of the form sm =

∑K−1
k=0 akeλmt and αm = α0 + mλ.

For this reason, FRI signals can be sampled and reconstructed using kernels that reproduce exponentials. The
reconstruction scheme is the same as in the polynomial case. First, the signal sm =

∑K−1
k=0 akeλmt is estimated

from the samples yn, then locations and amplitudes of the Diracs are retrieved from sm.

Assume that our kernel is of compact support and that it is able to reproduce exponential of the form eαmt with
αm = α0 + mλ and m = 0, 1, ..., N . For instance, ϕ(t) might be an E-Spline β~α(t) with ~α = (α0, α1, ..., αN ) and
αm = α0+mλ or a composite function ϕ(t)∗β~α(t). Consider again a stream of K Diracs x(t) =

∑K−1
k=0 akδ(t−tk).

The samples yn are then given by yn = 〈x(t), ϕ(t− n)〉 and, using Eq. (7), it follows that

sm =
∑

n cm,nyn =
∫∞
−∞ x(t)eα0+mλtdt

=
∑K−1

k=0 akeα0+mλtk m = 0, 1, ..., N.

†Note that the mean of x(t) is obtained directly.



This means that, as in the polynomial case, by opportunely combining the samples yn we end-up observing a
signal sm of the form sm =

∑K−1
k=0 akeα0+mλtk . The amplitudes and locations of the Diracs are then retrieved

from sm using the annihilating filter method. Again, this reconstruction algorithm can be applied to any stream
of Diracs with local rate of innovation ρKLT (t) ≤ 2/LT . Thus, we can summarize the above analysis as follows

Theorem 4. Given is a sampling kernel ϕ(t) of compact support L and that can reproduce exponentials eα0+mλt

with m = 0, 1, ..., N and N ≥ 2K − 1. An infinite-length stream of Diracs x(t) =
∑

n∈Z anδ(t − tn) is uniquely
determined from the samples defined by yn = 〈x(t), ϕ(t/T − n)〉 if and only if there are at most K Diracs in an
interval of length KLT .

5. RECONSTRUCTION OF FRI SIGNALS AT THE OUTPUT OF AN ELECTRIC
CIRCUIT

The sampling schemes of the previous section are very important in practice since kernels with rational Fourier
transform can be turned into kernels that reproduce exponentials. As already mentioned, most of the commonly
used electric circuits fall into this category and thus can be used in our sampling context. As an illustrative
example, we show how to estimate a piecewise constant signal at the output of an RC circuit.

Consider the classical RC circuit shown in Figure 1 and call H(ω) = α/(α + jω) with α = 1/RC its transfer
function. Assume that the input voltage is x(t) = Au(t − t0). The output y(t) = h(t) ∗ x(t) is clearly given by
y(t) = Au(t−t0)−Ae−α(t−t0)u(t−t0). The output voltage is then uniformly sampled with sampling period T = 1
leading to the samples yn = Au(n−t0)−Ae−α(n−t0)u(n−t0). Alternatively, we can say that yn = 〈x(t), ϕ(t−n)〉
with ϕ(t) = h(−t).‡ Our aim is to retrieve x(t) from the samples yn.

First, compute the following difference

zn = eαyn+1 − yn = 〈x(t), eαϕ(t− n− 1)− ϕ(t− n)〉

= 1
2π 〈X(ω), αe−jωn (1−eα−jω)

(jω−α) = 〈x(t), αβα(t− n)〉.

Then compute the first order difference

z(1)
n = zn+1 − zn = 〈dx(t)

dt
, αβα(t− n) ∗ β0(t− n)〉.

Now, the signal dx(t)/dt is a Dirac centered at t0 and with amplitude A. The new kernel ϕα(t) = αβα(t) ∗ β0(t)
is of compact support L = 2, and can reproduce a constant function or the exponential eαt. More precisely

1
eα − 1

∑
n

ϕα(t− n) = 1

and
1

1− e−α

∑
n

eαnϕα(t− n) = eαt.

This means that
1

eα − 1

∑
n

z(1)
n = A

and that
1

1− e−α

∑
n

eαnz(1)
n = Aeαt0 .

Thus, we retrieve the amplitude A from the first sum and the location t0 from the second one.
‡Recall that, since h(t) is real, ϕ(t) = h(−t) implies that ϕ̂(ω) = H(−ω).
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Figure 1. A typical RC circuit. In our example the input voltage is x(t) = Au(t− t0) and the output y(t) is uniformly
sampled. The samples yn are sufficient to reconstruct x(t) exactly.

Let us verify the above analysis for our specific example. Recall that in our case yn = Au(n − t0) −
Ae−α(n−t0)u(n− t0) and assume for simplicity that t0 ∈ [0, 1], then

zn = eαyn+1 − yn =





0 for n < 0

A(eα − eαt0) for n = 0

A(eα − 1) for n > 0

and

z(1)
n = zn+1 − zn =





A(eα − eαt0) for n = −1

A(eαt0 − 1) for n = 0

0 otherwise

Therefore, it is clearly true that 1/(eα − 1)
∑

n z
(1)
n = A and that 1/(1− e−α)

∑
n eαnz

(1)
n = Aeαt0 .

Notice that with this RC circuit we can sample any piecewise constant signal that has at most one discon-
tinuity in an interval of length 2T . To sample signals with higher local rate of innovation, we need an electrical
circuit with more than one pole. For instance, we can use a properly designed cascade of RC circuits.

6. SAMPLING SCHEMES FOR 2-D SIGNALS WITH FINITE RATE OF
INNOVATION

In this section we concentrate only on kernels that reproduce polynomials. In particular, we assume that the 2-D
sampling kernel ϕxy(x, y) is given by the tensor product of a 1-D function ϕ(x) that reproduces polynomials.
That is, ϕx,y(xy) = ϕ(x)ϕ(y) and ϕ(x) satisfies Eq (6).

The sampling schemes of Section 3 are based on the fact that a stream of K Diracs is uniquely determined
by its first 2K moments. Since it is possible to retrieve these moments from the samples yn, it is possible to
reconstruct the original signal. The situation in 2-D is very similar, but complex rather than real moments are
needed in this context.

Consider first a set of K 2-D Diracs. That is, f(x, y) =
∑K

k=0 akδ(x − xk, y − yk). The samples are yn,m =
〈f(x, y), ϕxy(x − n, y −m)〉 and, by construction, the kernel ϕxy(x, y) is able to reproduce polynomials of the
form xnyl, n = 0, 1, ..., N , l = 0, 1, ..., N . It is easy to show that with the right linear combination of the samples
yn,m, we can estimate the complex moments of f(x, y) in much the same way as we estimated the real moments
in the 1-D case. Thus, we end-up observing

τm =
∫ ∫

f(x, y)(x + jy)mdxdy m = 0, 1, ..., N.



Since f(x, y) is a set of K Diracs, the complex moments of f(x, y) have the following form

τm =
K−1∑

k=0

akzm
k

where the zks represent the locations of the K Diracs in complex form: zk = xk + jyk. As in the 1-D case, the
complex locations of the Diracs and their amplitudes are found using the annihilating filter method. Therefore,
as in the 1-D case, the reconstruction algorithm in 2-D operates in three steps:

1. Estimate the first N ≥ (2K − 1) complex moments τm of f(x, y) from the samples yn,m.

2. Find the filter hm that annihilates τm. The roots of the filter represents the locations of the Diracs in
complex form.

3. Estimate the amplitudes of the Diracs by solving a Vandermonde system.

If the kernel has compact support, it is possible to sample sets of Diracs with more than K Diracs. We just need
group of at most K Diracs to be separated enough so that they can be reconstructed independently.

Bi-level polygonal images are also uniquely determined by their complex moments.5, 9 Consider a simply
connected convex polygon with K vertices, it is possible to show that5, 9

τ̂m = m(m− 1)
∫ ∞

−∞

∫ ∞

−∞
f(x, y)zm−2dxdy =

K−1∑

k=0

ρkzm
k ,

where the zks represent the locations of the vertices of the polygon in complex coordinates. Therefore, as in the
previous case, by estimating the complex moments from the samples yn,m and by using the annihilating filter,
we can retrieve the locations of the vertices of the polygons and, therefore, the original signal. An example of
this sampling scheme is shown in Figure 2.

7. CONCLUSIONS

In this paper we have shown that it is possible to sample FRI signals with kernels that can reproduce polyno-
mials or exponentials and with a local reconstruction algorithm. Applications of these sampling theorems can
potentially be found in image super-resolution, communication systems and biological systems.
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