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Optimal Filter Banks for Multiple Description
Coding: Analysis and Synthesis
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Abstract— Multiple Description (MD) coding is a source
coding technique for information transmission over unreli-
able networks. In MD coding, the coder generates several
different descriptions of the same signal and the decoder can
produce a useful reconstruction of the source with any re-
ceived subset of these descriptions. In this paper we study
the problem of MD coding of stationary Gaussian sources
with memory. First, we compute an approximate MD rate
distortion region for these sources, which we prove to be
asymptotically tight at high rates. This region general-
izes the MD rate distortion region of El Gamal, Cover and
Ozarow for memoryless Gaussian sources. Then, we de-
velop an algorithm for the design of optimal two-channel
biorthogonal filter banks for MD coding of Gaussian sources.
We show that optimal filters are obtained by allocating the
redundancy over frequency with a reverse “water-filling”
strategy. Finally, we present experimental results which
show the effectiveness of our filter banks in the low com-
plexity, low rate regime.

Keywords: filter bank design, interger-to-integer trans-
forms, multiple description coding, rate distortion func-
tions, robust source coding.

I. INTRODUCTION
A. The Problem of Multiple Description Source Coding

Recently the problem of transmitting data over heteroge-
neous packet switched networks has received considerable
attention. Packet losses can be due to transmission errors
or congestion. If the network is able to provide preferential
treatment to some packets, then the use of multiresolution
or layered source coding systems is the obvious solution.
But if the network cannot differentiate among packets, and
if retransmissions are not allowed (e.g., due to real-time de-
lay constraints or in multicast scenarios), then the source
coding strategy should be different. Multiple Description
(MD) coding offers a potentially attractive framework in
which to develop coding algorithms for such scenarios. A
MD coder represents an information source using multi-
ple bit streams (descriptions). Each individual description
provides an approximation to the original message, and
multiple descriptions can refine each other, to produce a
better approximation than that attainable by any single
one alone.

The simplest formulation of the MD problem is illus-
trated in Fig.1 and involves only two descriptions. This is
the so called case of two channels and three receivers. If
both descriptions are received then the decoder can recon-
struct the source at some small distortion value Dy (the
central distortion), but if either one is lost, the decoder can
still reconstruct the source at some higher distortion Dy or
D, (the side distortions).
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Fig. 1. The multiple description problem.

B. Information Theoretic Performance Bounds

In a way analogous to classical rate-distortion problems
in source coding theory, in MD source coding one is also in-
terested in finding a suitable MD rate-distortion region, de-
fined as the set of quintuples (R, R2, Do, D1, D5) for which
there exist codes of rates R; and R» achieving average dis-
tortions Do, Dy and D,. Clearly, we can state that the
rate R; necessary to achieve the distortion D; cannot be
smaller than R(D;) (R(-) is the rate-distortion function
for the source); similar arguments apply for the other two
cases, so we can state that a first bound for the MD rate
region is:

Ri > R(Dy), (1)
R2 Z R(D2)7 (2)
Ri+Ry > R(Do). (3)

In general, it is not possible to achieve equality simulta-
neously in the three equations since two individually good
descriptions tend to be similar to each other. Thus, the
second description will contribute very little to improve
the quality of the first one. On the other hand two de-
scriptions which are complementary cannot be individually
good. Since in general Ry + Ry > R(Dy) the resulting
excess rate is usually called redundancy p. One possible
formulation of the problem of MD coding then consists in
minimizing the side distortion, given some allowed redun-
dancy p.

Early papers on MD Coding are information theoretic
in nature and try to find the set of achievable values for
the quintuple (Ri, Rs, Do, D1, D). El Gamal and Cover
determined an achievable rate region for general memo-
ryless sources [10], while Ozarow showed that this region
is tight for the case of memoryless Gaussian sources and
squared error distortions [23]. Ahlswede [1] studied the case
of no excess rate (when there is equality in (3)), and Zhang
and Berger [39] considered the no excess marginal rate case
(when there is equality in (1,2)). Zhang and Berger also
showed by counterexample that in the excess rate case the
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achievable region of El Gamal and Cover is not tight [38].
More recently, Linder et al. [20] found a rate region for
memoryless sources and locally quadratic distortion mea-
sure which is tight in the limit of small distortions (high
bit rate). Finally Zamir [35], [36] extended the Shannon
bounds [3] to the MD case and showed that for a Gaussian
source the outer bounds are asymptotically tight.

C. Code Constructions

Several efforts have also been made to design practi-
cal MD coding systems. In [27], a design procedure for
the construction of fixed-rate scalar quantizers was pre-
sented. In [29], that design procedure was extended to the
entropy-constrained case. It is shown in [28] that at high
rates, for the case of balanced descriptions (R; = R2 = R)
and Gaussian sources, the distortion product DgD; of the
entropy-constrained MD scalar quantizer takes the form:
1(38)2274R_ At the same time, the MD rate distortion
bound (when put in distortion product form) becomes
127*E_ This is an important result because it shows that
for the multiple description scalar quantizer (MDSQ) both
the side and the central distortion attain the optimal expo-
nential rate of decay (Do ~ 2728 Dy ~ 272E). The only
sub-optimality of MDSQ at high rates is due to the use
of a scalar quantizer which partitions the space into cubic
regions instead of an ideal vector quantizer that would op-
timally partition the space into spheres. Various construc-
tions of MD vector quantizers have been proposed [9], [11],
[19], [30] and the MD lattice quantizers of [30] do effectively
close the gap between the performance of the entropy con-
strained MD scalar quantizer and the MD rate-distortion
bound.

A rather different approach pioneered by Wang et al.
[22], [33] and then extended by Goyal and Kovacevié¢ [13]
consists of applying a suitable blockwise transform to the
input vector before coding to obtain the MD property. This
approach is usually called MD Transform Coding. The ba-
sic idea is to decorrelate the vector components and then
to introduce again correlation between coefficients, but in
a known and controlled manner, so that erased coefficients
can be statistically estimated from those received. Tech-
niques based on overcomplete frame expansions have been
proposed in [6], [15], [21].

Most of the previous work on MD coding focuses on the
case of memoryless sources or sources with finite mem-
ory. In [18], Ingle et al. consider the problem of designing
DPCM systems for MD coding of sources with memory.
Batllo et al. considered a similar problem and proposed
a solution that combines the use of an orthogonal block
transform and of the MDSQ [2]. As in the memoryless
case, this system has some good asymptotic properties. At
low rates, however, except for some practical results ob-
tained in the context of still image coding [24], much less is
known. Note that Batllo and Vaishampayan use the term
Multiple Description Transform Coder (MDTC) to refer to
this system. From now on, we will also use that name to
refer to their system.

D. Contributions and Paper Organization

In this work we consider sources with infinite memory,
specifically wide sense stationary Gaussian sources and
consider the classical MD scenario of two channels and
three receivers. We present two new results: a MD rate-
distortion region for stationary Gaussian sources which is
asymptotically tight at high rates (Theorem 1 of Section 2)
and an algorithm for the design of optimal two-channel fil-
ter banks for MD coding of Gaussian sources (Theorem 2 of
Section 3). The filter banks are designed using an approach
similar to the one proposed in the case of block transforms:
we construct a first filter bank to decorrelate the two input
sequences and then we use a second filter bank to efficiently
recorrelate them. The frequency responses of this second
filter bank depend on the total amount of available redun-
dancy and on the allocation strategy of the redundancy
over frequency. In Theorem 2, it is shown that the optimal
allocation of the redundancy over frequency is obtained us-
ing a reverse water-filling strategy.

In a recent paper [34], Yang and Ramchandran have in-
dependently worked on the same problem of designing filter
banks for MD Coding. The main difference between their
work and the one presented here in Section 3 is that we have
moved the quantization step before the transform and ap-
proximated the continuous transform with a discrete one.
In practical applications it is very important to put the
quantization before a non-orthogonal transform so that the
square partition cells are maintained (see for instance [12],
[14], [22], [32])- This different approach leads to a different
formulation of the optimization problem and, in our case,
to the analytical solution presented in Theorem 2, which is
not present in [34].

In Section 4 we assess the performance of our system. We
compare it against the ideal bounds, the MDTC [2] and the
MD-DPCM system [18]. For this comparison we consider
two possible scenarios. The first one is high rates and infi-
nite delay/complexity. This first comparison is interesting
because it is under these hypotheses that the optimization
problem is stated and solved both in [2] and in this paper.
The second scenario is based on practical requirements of
low rates and finite delay/complexity. In this regime, per-
formance of the systems considered will not be predicted
well by the theory, and there is much to be learned by
means of numerical simulations. We conclude in Section 5.

II. ASYMPTOTIC MULTIPLE DESCRIPTION RATE
REGION

For a memoryless Gaussian source with variance o2,
Ozarow [23] gave an explicit characterization of the set of
achievable distortions (Dg, Dy, D) for a given pair of rates

Rl,R2:

Dy > o?.27%R (4)

D2 Z 0'2 ° 2_2R27 (5)
2, 2—2(R1+R2)

D, > = (6)

1—- (VI - VA)?
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where
Il =(1-D;/o®)(1 - Dy/5?)

and
A = (DyDy/o*) — 27 2(FrtR2)

The inverse of these functions are the following [20], [23]:

1 o?
> = R
Rl = 9 IOg <D1> ) (7)
1 o?
> = R
R2 = 9 IOg <D2> ’ (8)

Ri+Ry >

¢ is defined by:

1 1 max
5= { $1o8(22). Do<Ds (10)
0, Do > D=
where:
D.1D>
Dy = 11
0 D1 + Dg - (D1D2/0'2) ( )
and

A/ HOe+y—+/TId
p_ - (1—60),/6162 ’
v =(1-¢o)[(€1 — €0)(€2 — €0) + €o€r1€2 — €3],
M= (1—¢€)(1—e2),

eiZDi/(fQ (i=0,1,2).

Notice that ¢ depends on the three distortion (Dg, Dy, D3)
and on the variance o (Eq. (10)). However, by rearranging
equation (9), one can see the relationship between § and the
rates R; and Ry and interpret ¢ as the excess rate that is
used to reduce the central distortion given the two side dis-
tortions or: § = Ry — 3 log (5—21) +Ry—31log (B—Z) . Now, if
§ =0then Ry = 1/2log(c?/D1) and Ry = 1/2log(c?/D>).
This means that all the rate is used to minimize the side
distortions and in this case Dy equals its maximum value
(Dgre=). If § > 0 it means that part of the rate is used to
reduce the central distortion which becomes smaller than
Dge*. In particular, Dy decreases from DF**® to zero as §
increases from zero to infinity. This is why ¢ is also called
the excess marginal rate [35], [39].

Consider now the high rate situation, namely the case
where the three distortions (Dg, D, D) are very small
compared to the variance ¢2 or, in other words, the case
where the three ratios Do /0%, D1 /02, D2/0? go to zero. In
this situation, the excess marginal rate ¢ (Eq. (10)) and the
maximum central distortion Dg** (Eq. (11)) do not depend
on the variance of the source anymore. In particular, we

have [20]:

A
dur(Do,D1,D3) = lim,_y00 8(0?, Do, D1, D2)

1>

lim,\_,g (5(0’2, )\Do, )\Dl, )\Dz)

— 1 1
= dles()

(12)
where:
P _(V/D1/Do = 1)(y/D2/Do - 1) — 1
/D1 D,/ D2
and DD
. max __ 142
A D6 = 5Dy

Now, based on these preliminary results we can state the
following theorem:

Theorem 1: In the limit of small distortions (i.e.,
Dy, D1, D> — 0), the asymptotic multiple description rate

region for a stationary Gaussian source and MSE distor-
tions is given by the following equations:

Ri > o [7 log (552) dw,

Ry > ﬁffwlog(%‘;))dw,
Ri+Ry > ﬁ(ffwlog(%‘:))dw—kffrlog(%‘:))dw—|—2(5HR),

where S(w) is the power spectral density of the Gaussian
source.

Proof: Let {X;, t = 0,%£1,..} be a discrete time station-
ary Gaussian source. We begin by considering N successive
elements of this source and by calculating the asymptotic
MD rate region of this N-sequence. Call &5 the N x N
correlation matrix related to any IV successive components
of {X;}. Since the source is stationary, &y is a symmet-
ric Toeplitz matrix. Apply a Karhunen-Loeve Transform
(KLT) to the N-sequence to get uncorrelated (and so in-
dependent) components. Because the KLT is unitary and
invertible and we are considering MSE as our distortion
measure, the problem of finding the MD rate region in the
new coordinates is identical to that in the original ones,
except that the new components are statistically indepen-
dent. Call Y = (y1,ys2,..,yn) the N-dimensional vector
with independent components obtained after applying the
KLT to the original N-sequence and call Yy, Y7, Y> the ap-
propriate reproducing vectors at the three receivers. More-
over, §Jx; will represent the i-th component of the reproduc-
ing vector Yy, k =0,1,2 and Y is a vector with the first i
elements of Y. Extending the El-Gamal-Cover results [10]
to the vector case, we have that the MD rate region is given
by:

R > %minI(Y;Yi), (13)
Ry, > %minI(Y;YE), (14)
1 A s A A s
Bi+ Ry > Hmin(I(Y;Y,Y1,Y2) +I(Y1;Y2)),(15)
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where the minima are over all the probability density func-
tions p(Y, Yy, Y:,Ys) satisfying:

N
1 A
E[N > (i — 1)) < Di, k=0,1,2.

i=1

First notice that the term I(Y;Yy,Y1,Ys) + I(Y1;Vs) in
Eq. (15) can be equivalently expressed as:

I(Y;Y0,Y1,Y2) + I(Y1;Ya) (16)
= I(Y;Yo,Yl,Yg)—I—H(Yl)+H(Y2)—H(Yl,Yg) (17)
= I(Y;Y0,Y1,Ya) + I(Y;Y1) + I(Y;Y2) — H(Y1,Y2), (18)

where in the last equality we have used the fact that Yi ;. Ys

are deterministic function of Y and thus H(Yy) = I(Y; Y%),
k = 1,2. In the rest of the proof we will use Eq. (18) rather
than Eq. (16). Now, the first thing we want to show is that
the MD rate region of this N-vector reduces to the sum
of the MD rate region of each component of Y and that
the problem of minimizing (13-15) reduces to the problem
of finding the right allocation strategy of the rates Ri, R
to the different components. Consider, first, Eq. (13), it
results [7]:

I(Y;Y:) = WY)-h(Y|Y) (19)
N N
= Zh(yi)—Zh(yi|Yi_1,Y1) (20)
1;1 z;l
> Zh(yi)—zh(yi|yiz’) (21)
1;1 i=1
= ZI(yiQI‘ji) (22)
N 2
> > goe(5-). (23)

i=1

where (20) follows from the independence of the compo-
nents y; and from the chain rule for entropy. The in-
equality in (21) follows from the fact that conditioning
reduces entropy and we can achieve equality by choosing
pY Y1) = Hf;l p(yi|1i). The last inequality follows from
the expression of the rate distortion function of a Gaus-
sian source and equality can be achieved by choosing each
91i ~ N(0,\? — Dy;), where \? is the variance of the i-th
component and Dq; = E[(y; — §1;)?] is the distortion re-
lated to that component. Hence, from Eqns. (19-23), we
get that the minimization in equation (13) reduces to [7]:

N
1 1 A
> — mi -1 !
R, > lenizz12 og (Dli)’

where the minimum, now, is over all the possible distortions
D1; such that:

(24)

1 1 &
E[NZ (yi — 1:)°] = NZDM’ < Di.
i=1

i=1

Similar arguments apply to equation (14) and that mini-
mization reduces to:

N
1 1 A2
> — mi E =1 L
Rs > leni:1 5 og (D%)’

where the minimum is over all the distortions Ds; such that
~ Ef;l Dy; < D,. Consider, now, equation (15) and its
alternative representation in (18). Consider, first, the term
I(Y; Yo, Y1,Ys); following the same procedure as in (19-23)
we have:

(25)

I(Y;Y0,Y1,Y2) = h(Y)—h(Y|Yy,Y1,Ys) (26)

N N

= > h(wi) =D kYT, Yo, Y1, Ya) (27)
=1
N

A%

i=1
N
h(yi) = Y h(yildoi, 91, 92i)  (28)
i=1 i=1
N
= ZI(yi;@oi,@li;@m);

i=1

(29)

where inequality in (28) follows from the fact that
conditioning reduces entropy and equality is achieved if
p(Y|Y0,Y1,Ys) = Hfilp(yimm;?)u;ﬁzi)- For the second
term of (18), we obtain:

I(Y;Y1) + 1(Y;Y2) — H(Y1,Y2) (30)
N N
> Iyis91) + Y I(yis 2i) — H(Y1,Y2) (31)
i=1 i=1
N N N
> D Hyisgu) + 3 I(yiidei) = D HGrirg2:)s  (32)

Il
-

i i=1 i=1

where inequality in (31) follows from (19-22) and we can

achieve equality by choosing p(Y|}7k) = Hfil p(yi|gr:) for
k = 1,2. The last inequality follows from the fact that
H(Y1,Ys) < SN, H(§1:,§2) and equality is achieved if
p(Y1,Vs) = H?Ll p(41i, J2:)- Thus, combining the results
from (26-29) and (30-32), we have:

I(Y;Yo,Yl,Yg)—I—I(Y;Yl)+I(Y;Y2) —H(Yl,YQ) (33)
N
> (I(yi; oi> J1a» G2i) + I(yss 914) + I(yi; 92:) — H (G145, G263%)
i=1
N
1 A2 1 A2
> —1 v — 1 v 0; 35
ZQOg(Dli)+20g<D2i>+ ¢ (35)

where the last inequality comes from the Ozarow equa-
tions and equality can be achieved by a correct choice of
each triple (yo:,¥14,¥2:). This choice depends on the three
distortions Dyg;, D14, Do; and for an explicit characteriza-
tion refer to [23]. Eqns. (33-35) shows that minimization

n (15) reduces to:
1
) + N(si) )

(36)

1 X A2
Ri1 + Ry > min (Mglog (Di

1 & A2
z) * ﬁ;bg (Dm’
where the minimum, now, is over all the distortions
Dy;, D13, Dy; such that %Zil Dy < Dg, k = 0,1,2.
Now, combining (24), (25) and (36), we can see that the
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MD rate region of Y reduces, indeed, to the sum of the
MD rate region of each component and that the original
minimization problem reduces to:

R > log
o > Dh—Dl 2N * Z (Dlz)

Ry > 1 g( )
N i D21—D2 2N Z Da;

(QN D_log <Dh>
) k)

Thus, the problem now is to understand how each compo-

nent should contribute to the total distortion to minimize
the quantities in (37-39) or, stated in a different way, the
problem is to understand how the rates R;, R2 should be
allocated to the various components to minimize (37-39).
Using Lagrange multipliers we can construct the following
three functionals:

min
& ¥ Doi=Dg
% i D1;=D1
+ ¥; D2i=D2

Ri+Ry 2>

1 N
— 1
+Ngog(

J1 = LNi: (I))\u)—H/IZDM’ (40)

Jo = ;Vélog(é\h)—kuzzl)% (41)

5= gy ()« o e ()
+%(Sl—|—l/ozDoq,+V12D11+V22D21 42)

The problem of minimizing the first two functionals is
equivalent to the problem of finding the optimal allocation
strategy for the single description case. Differentiating with
respect to Dq; and D-; and setting equal to zero, we have:

;TJ - —%DLM-HAZO, (43)
;TJ; = —%Dim—km 0, (44)
and
Dy = Cy=D, (45)
Dy = Cy= Do, (46)

where C; and Cy are constants. Hence, the optimum al-
location of the rates to the various components results in
equal distortion for each component [3], [7]. This is due
to the fact that the slopes of the curves (40)-(41) are in-
dependent of the variances. This argument is not valid
for the third functional (42) since the slope of & depends
on the variance. However, in the limit of small distor-
tions d becomes independent of the variance (6§ — dmR)
and the minimization strategy for the third functional
becomes the same as for the first two functionals (i.e.
Dh' = Dl,Dgi = DQ,DOi = DO i = 1,2,..,N.). Then

the MD rate-region becomes:
)
i)

>+2NEZ 1108(

Ry Z QN Eq, 1103(

Ry

v

2N Ez 1log (

Ri+ Ry 2> QNEz llog( >+5HR
Notice that, since the Ozarow’s MD rate region is achiev-
able and tight [23], then also our MD rate region is (asymp-
totically) achievable and tight. Indeed, we have seen that
the MD rate-distortion functions (13-15) of the vector Y’
are lower bounded by the sum of the MD rate-distortion
functions of each component y; and this lower bound is
achieved by coding each component independently. Now,
since the direct and converse part of the Ozarow theorem
apply to each component, the minima in Eqns. (37-39), not
only represent an achievable region, but they also represent
a tight region.

ow, using the result of the Toeplitz Distribution The-
orem [3] [16] (see Appendix A-A), we can go to the limit
of infinite NV and find the MD rate region of the complete
source {X;}:

Ri > g [ tog (552)) dw,

)
Ry > o [7 og (552)

47r (ff log( (o

dw,

R1+ R2

A%

) dw + [T _log (5(“)) duw +25,W) .

O
A similar result in terms of the entropy rate power of the
Gaussian source can be found in [35], [36]. In these papers
Zamir extended the Shannon bounds [3] to the MD case
and then showed that the outer bound is asymptotically
tight. His results are valid either for a memoryless source
or for a source with memory.

Theorem 1 shows that at high rates the single description
allocation strategy is also optimal in the MD case. That is
because the slopes of the three functionals (40-42) are in-
dependent of the source. At low rates, this last assumption
is not valid. The functional (42) has a slope dependent on
the input source variance and in general, it is not mini-
mized with a single description allocation strategy. So we
can state the following corollary:

Corollary 1: Under a high rate assumption, and for sta-
tionary Gaussian sources, the single description rate allo-
cation strategy is also optimal in the Multiple Description
case. At low rates it is, in general, sub-optimal.

III. OPTIMAL TWO-CHANNEL FILTER BANKS FOR MD
CODING

A. Problem formulation and notation

Consider the classical two-channel filter bank scheme
shown in Fig. 2. Here the input z[n] is assumed to be
a stationary Gaussian random process with known statis-
tics and is fed through an analysis filter bank. The two
output sequences are then separately quantized and sent
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over two different erasure channels. We suppose that the
channels are independent, that they have the same erasure
probability and that R; = Ry.! For convenience we will
formulate our problem in the polyphase domain [26], [31].
In this case the analysis stage can be equivalently repre-
sented by the block scheme shown in Fig. 3.

Fig. 2. Two channel filter bank.

First we move the quantization step before the transform
and approximate our continuous polyphase transform with
a discrete one.? The discrete transform can be obtained
by factoring the continuous one into a product of lifting
steps and then sequentially rounding all these intermedi-
ate factors [4], [8]. It can be shown that the error due to
this approximation can be bounded and that it goes to zero
at high rates [12], [14]. The reason why we use this kind
of structure is that if the quantization is performed before
the transform, then the square partition cells are main-
tained. This enables the use of nonorthogonal transforms
without increasing the quantization error. The importance
of performing quantization before the transform in the MD
case was pointed out for the first time in [22] (See also
[32]). Since at high rates the difference between the dis-
crete and the continuous transforms is small, our analysis
will be based on properties of the continuous transform.

x[n] 2 x{[n] VAL
RO H@ | RO
Xz[n]

Fig. 3. The polyphase representation of the analysis stage.

Now consider again Fig. 3. The input-output relation
can be expressed in matrix notation introducing the anal-

ysis polyphase matrix H (w):
X1 (UJ)
Xz (UJ) :

()

Yo (w)

Call R,(w) the 2 x 2 polyphase power spectral density
(p.s.d.) matrix of the input process. Likewise R, (w) is the
p-s-d. matrix of the outputs. The system response has the
following form:

Hyi(w)
H21(UJ)

Hiz(w)

Hoa () (47)

Ry(w) = H(w)Ry (w)H* (w), (48)

where H(w) denotes the Hermitian transpose of H(w).
The synthesis part of the system can be analyzed in a sim-
ilar fashion. Recall that, given the analysis matrix, the

I This last hypothesis, although reasonable, is not strictly necessary;
but it simplifies the solution.

2By continuous transform we mean a generic linear operator in
12(Z). The discrete transform is a perfectly invertible operator that
converts quantized sequences into quantized sequences [4], [17], [37].

synthesis polyphase matrix G(w) is uniquely defined (up
to a phase factor). In fact G(w) must be such that the
condition G(w)H (w) = I is satisfied [31].

Now, assume that the target central distortion is Dy
and that both channels are coded independently. Since
y1[n], y2[n] are stationary Gaussian sources and quantiza-
tion is fine, the minimum bit rates necessary to scalar code
the two sequences is [3]:

Ri(Do) = & [ $log 2 di + Llog, (%¢)
T R (49)
Ry(Dg) = 5 [ 3log =3 dw + 5 log, (%)

In case we do not use any filter decomposition, the bit
rate necessary to get the same central distortion Dy is [3]:

vy L f1, 8@, 1 o7
R (Do) = 5 [ 3108 = de+ 3108, (),

—m

(50)

where S(w) is the p.s.d. of the input process. We call re-
dundancy the difference rate between these two cases:

p= _RI(DO);LRz(DO) — R*(Dy)

-

Note that Eq. (49) holds because the transform is per-
formed after the quantization. If the transform were per-
formed before the quantization, the shape of the quantiza-
tion cells would be affected and one should also consider
this effect to compute the correct rates. This is one of the
limitation of the approach taken in [34].

X,[n]

y,[n]

x[n] @ y, [n] | xi[n]
— Channel 1 ) @ )E[n]
H(w) H (w)
@‘) Channel 2 | @7
X,[n] ¥, [nl y,[n] X,[n]

Fig. 4. The complete MD system in the polyphase domain.

Now consider the case when one channel (i.e. channel 1)
is cut off and y;[n] must be estimated from the received
sequence ya[n]. The optimal estimation is obtained by
Wiener filtering:

¥ Ryu (w)

i) = F22 (o). 62)
Call n(w) the error in predicting Y3 (w) from Y3 (w):
N(w) =Yi(w) — Vi (). (53)

Since we have used a nonorthogonal transform, we must
return to the original space in order to compute the distor-
tion (mean square error distortion in our case); therefore
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(see also Fig. 4):

X1(w) _ Gu(w) Gia(w) Yi(w) + n(w)
( X’;(w) ) - ( G;(w) G;i(w) ) < ' Y2 (w) )

_ X1 (w) Gi1(w)n(w)

= (%) (@) o

54

and
5 G
IxX@) - K@ =1 ( g e e

Considering the fact that the error 7 is still a Gaussian
_ By (@)

process with p.s.d. Ry,, (w)— 5 ™)
Y22

and using Parseval’s
relation we obtain:

Dy = Bjz[n] - &[n]||”] =

27 Ryqo (W)

(56)

-

and, finally, using the biorthogonal relations, we can ex-
press the distortion as a function of the analysis filters:

Ds =L [ (Hz(W)H HE () Hopa () - (2etR2 @]y 4
2 = 4= [ (H3(W)H21(w) + H3y(w)Haz(w)) - ( Ry () )dw.
—m

(57)

Likewise, we can obtain an expression for the distortion
D, associated with the loss of ya[n]. Since the two channels
have the same erasure probability, the expected distortion
due to erasure (side distortion) is:

1
D = i(Dl + D5). (58)
Note that in our formulation we have only considered the
distortion due to erasure and have neglected the one due
to quantization, since at high rates, it is much smaller.

Our target is to find a perfect reconstruction filter
bank which minimizes the side distortion D. The per-
fect reconstruction condition is realized by the constraint:
det[H (w)] = 1.3 The design of the filter bank is also con-
strained by the redundancy through equations (48) and
(51). Thus, our optimization problem is to find a perfect
reconstruction filter bank which minimizes the side distor-
tion D for a given, fixed redundancy p.

B. Optimal solution

As a first step we decompose the matrix H(w) into the
product of two matrices M (w) and T'(w)

(59)

M (w) is a unitary decorrelating matrix that diagonal-
izes the input covariance matrix Ry;(w). Thus: R,(w) =

3Strictly speaking the perfect reconstruction condition is satisfied if
and only if det[H(w)] # 0 on the unit circle. However, a factorization
into lifting steps is possible only if det[H(w)] is a monomial [8]. Since
the side distortion (57) does not depend on the value of the determi-
nant, we can assume, without loss of generality, det[H(w)] = 1.

L [ 1G5 @)Ga1 @) + G ()G @) - (Ryyy (w) — Benz @),

M (w)A(w)M*(w) where A(w) is a diagonal matrix which
contains the spectral eigenvalues of R, (w).

AMw) 0
Aw) = (60)

0 Mw)

For a stationary input process, the decorrelating matrix
can be found analytically and has the following form [25]:

eJw/2 1

61
—1 e dw/2 (®1

the filter bank related to M (w) is usually called principal
component filter bank [25]. Now, this factorization does
not reduce the generality of the solution, since M (w) is
a unitary invertible matrix independent of p and we are
considering square error distortions. So it is enough to
solve the simpler problem of optimally designing the ma-
trix T'(w) for the two input sequences with p.s.d. matrix
A(w). Then the final solution will be represented by the
product between this matrix and the decorrelating matrix
M (w). From now on we will always assume that the two
sequences (z1[n], z2[n]) have already been decorrelated and
are represented by the diagonal p.s.d. matrix A(w). No-
tice that these two sequences are still a realization of a
stationary Gaussian process.

To develop our formulation we need to briefly review the
results presented in [13],[14]. Here Goyal et al. focus on
the problem of designing an optimal block transform to
transmit two Gaussian decorrelated variables over two in-
dependent erasure channels.* In the case the two channels
have the same erasure probability and the two components
are coded at the same rate (R; = Rz), they show that the
optimal MD transform, also called correlating transform,
is:

a 1
2a

T= , (62)
1
@ 2a

where the value of a depends on the redundancy p:
02
= ; 63
\/201(22/’ — /2% — 1) (63)

o? and o3 are the variances of the two Gaussian compo-
nents, with the usual assumption that o7 > o3. Finally
the side distortion is given by:3
2
o 1
D=~ (0f —03).  (64)

2 4.220(220 — /2% — 1)

4 Actually they consider also the case of larger vectors. For the two-
channel case their work is an extension of the results presented in
[22], [33].

5Tt is interesting to notice that if the Gaussian source has a circu-
larly symmetric probability density, i.e., 01 = 02, then the distortion
is independent of p. In this case the side distortion cannot be reduced
with the addition of redundancy, so the approach based on correlating
transforms is useless.



IEEE TRANSACTION ON INFORMATION THEORY, VOL. 48, NO.7. JULY 2002 8

We can now state the following theorem:

Theorem 2: Assume that p > 0 and that the two
p-s.d. A2(w), A2(w) of the two decorrelated input sequences
x1[n], z2[n] are such that &, > Ay where §; is the essen-
tial infimum of A\?(w) and A, is the essential supremum of
A2(w). Then the optimal analysis filters for MD Coding of
z1[n] and z»[n] are represented by the following polyphase
matrix:

T(w) = l o 7 ] ,
where:
a(w) = ()
V2 (W) (220() — V/2%0(0) ZT)
and:

™

1

) = pt 3 o8O @) N3 (0) - 5 [ 1084 @)~ (@)

8

-
Proof: Consider only N consecutive elements of the first
channel sequence z;[n], and N consecutive elements of the
second channel sequence z3[n] which are located at the
same temporal interval. Call ¢1n and ¢on the two N x N
corresponding correlation matrices. Apply a KLT to each
of the two N-sequences to get independent components and
name Yy and Yy the two N-sequences after the trans-
formation. Call A\2,, i = 1,..., N, the variances related
to the N-sequence Yin and A3;, i =1,...,N, the vari-
ances related to the second N-sequence (Ysn). Since ¢;n
and ¢on are Hermitian Toeplitz matrices it results (see
Appendix A-A) that:

6 <AL <Ay Vi (65)

and that:

52 < A3, <Ay Vi (66)
where A; and 65, j = 1,2, are the essential suprema
and the essential infima of the power spectral densities
A(w) and A3(w). Equations (65) and (66) imply that
A, >\, i=1,..,N,ssince we assumed J; > As.

Now, consider the generic i-th couple of element
(y14,92:)- We can apply the results of [13] to this pair
and say that if we are allowed to use a redundancy p; then

the optimal correlating transform for that pair is:

1
a; 2—
T; = i’i , (67)
—a; 2_%
where a; is given by:
A2i
a; = , 68
\/2)\“’(229" — m) ( )
and that the side distortion is:
A2, 1
D; ==t — ()‘%z - Agz) (69)

2 4220 (2200 — /240 — 1)

However, we want to minimize the global side distortion:

1
D=~ Z D;, (70)
given a global redundancy budget
=1 Z . (71)
p - N - pl‘

This is a typical problem of constrained minimization, so
we define a new cost function L which combines the dis-
tortion and the redundancy through a positive Lagrange
multiplier v:

L=D+vp,
(72)

L;=D;+vp;, 1=1,2,..,N.

Finding a minimum of L amounts to finding minima for
each L; (because the costs are additive). Writing distor-
tion as a function of the redundancy, D;(p;), and taking
the derivative we get:

oL, oD,
dpi  Op;

Thus, for a solution to be optimal, the set of chosen re-
dundancy p; has to correspond to constant-slope points on
their respective distortion-redundancy curves. Uniqueness
follows from the convexity of these curves and from the
use of the Kuhn-Tucker conditions when necessary [5]. A
constant-slope solution is obtained for any fixed value of p.
To enforce the constraint (71) exactly, one has to search
over all the values of v until the budget is met. However,
if we suppose that p; is sufficiently large then it is possible
to give a closed form for the allocation problem. In fact, it
follows that:

+v=0. (73)

ODi _ | 20V —Xs) 20 yovomin =y,
Ipi 4-220i (/2807 — 1) 4 i A

(74)
The constant-slope solution forces the redundancies to be
of the following form:

1 .
pi=o+7 log(Af; — A%:)- (75)

Using the redundancy constraint (71):
1
; pi=Na+t Z log(A\}; — A3;) = Np,  (76)
we find:
1 2 2
=PTIN zj:lOg(/\u =A%) (77)

and finally:

1 1 ;
pi=p+ 7log(N; — M) — = D log(Xf; — A3). (78)
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The approximation in Eq. (74) holds if p; is sufficiently
large. Its value depends on the total redundancy budget p
and on the difference A2, — A3,. The difference A2, — \3; in-
fluences the slope of the distortion-redundancy curves (74).
Now, the global distortion is minimized when the set of cho-
sen redundancy p; corresponds to constant slope points. If
A2, — A3, = 0, the slope of the ith curve is zero and the op-
timal solution is always found imposing the Kuhn-Tucker
condition: p; = 0. For this reason the approximation in
Eq. (74) holds only when both the conditions p > 0 and
81 > Ay are verified (6; > A, implies A2, > A2,  Vi). In
general we can say that the difference A}, — A3, influences
the allocation strategy of the redundancy. The redundancy
is mainly allocated in the region where this difference is
higher.

Now we can let N go to infinity and find, in this way,
the optimal spectral distribution of the redundancy:

™

) = p 3 ogO}@) M)~ 5 [ §10BOH@) -2 (w))d

2w
(79)
Once p(w) is known, we can obtain the expression of the
side distortion D:

D=iwaw,

o (80)
where:
D(w) =
2 (81)
Af(w) _ 1 2 _ )2
2 1.220() (220(w) —_/2%0(2) 1) (A (W) = A3 (W)
and the expression of the polyphase matrix T'(w):
1
a(w)
2a£w) ’ (82)
—a(w) 2a(w)
where:
A2(w)
a(w) = . 83
) \/2/\1 (w)(220(w) — 1/24p(w) — 1) (83)
O

When the approximation (74) is not verified, namely when
at least one of the the two hypotheses p > 0 and §; > A,
is not satisfied, the optimal allocation of the redundancy
over frequency can only be found numerically. This means
that, for any fixed v, one has to numerically solve Eq. (74)
and then has to search over all the values of v until the
constraint (71) is met.

Consider, now, equations (80) and (81). They express
the side distortion in function of the spectral distribution
of the redundancy p. The side distortion is maximum when
we are not allowed to allocate any redundancy over the

Ww.

frequency and its maximum value is:

D= % /W (A2(w) + A2 (w))do. (84)

-

Its mininum value occurs when we can allocate an infinite
amount of redundancy over the frequency and it is equal
to:
1 ™
D=—

2
y A5 (w)dw.

(85)
—T

This value represents the systematic error due to the esti-
mation of one sub-sequence with the other one and cannot
be eliminated even at infinite redundancy. The systematic
error typically occurs in MD systems based on correlating
transforms [14], [32]. This is in contrast with the perfor-
mance of other systems (i.e. MDTC), where at high rates
both side and central distortions decrease with the rate.
Thus, this result gives us a first insight about the perfor-
mance of the filter bank system:

Corollary 2: The filter bank system is not useful at high
rates since, independently of the amount of redundancy
allocated, the side distortion has a constant factor (the
systematic error) that cannot be eliminated.

C. Approximate FIR solutions

Usually the filters obtained with the optimization algo-
rithm of the previous section are of infinite length. How-
ever, in some applications it is important to approximate
them with FIR filters. Let us call H¢(w) the polyphase ma-
trix related to the FIR filter bank and Dy the correspond-
ing side distortion obtained with this set of filters. Clearly
D¢ > D, where D is the ideal side distortion given by (58),
since the best performance is usually achieved with infi-
nite length filters. Now, the problem is to design a perfect
reconstruction FIR filter bank that minimizes the perfor-
mance gap Dy — D for each fixed redundancy.

We solve this problem numerically by running a con-
strained minimization algorithm using a gradient descen-
dent approach. The convex function to minimize is
| D — Dy ||?, while the constraints are: the perfect re-
construction condition: det[H;(w)] =1 and the maximum
allowed redundancy p.

Recall that given an FIR analysis filter bank, perfect
reconstruction with FIR filters is possible if and only if
det[H (w)] is a monomial [31]. So, once we have designed
FIR analysis filters with the constraint det[H(w)] = 1, we
know that it is possible to reconstruct the signal with FIR
synthesis filters. These synthesis filters are obtained in the
usual way:

Go(w) = &/ Hy (w + ),
G1(w) = —e? Hy(w + 7).

Finally, recall that once the FIR filter bank is obtained,
it can always be factored into a finite number of lifting
steps. These steps can be sequentially rounded and, in this
way, one can obtain the discrete version of the continuous
transform.
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D. Application to a Gauss-Markov process

To conclude this section, we apply our filter design tech-
niques to a Gaussian source and analyze the filter re-
sponses.

We consider a Gauss-Markov source z[n] = az[n — 1] +
w(n], where the regression coefficient @ has magnitude less
than 1 and where w[n] is a zero mean, unit variance, i.i.d.
Gaussian source. The p.s.d. of this process is:

_ 1
1 —aeiw|2”

Sz (w) (86)

Now, the polyphase matrix H(w) of the optimal filter bank
is given by the product of the matrix T'(w) with the matrix
M (w). This second one is known and is given by (61). To
design T'(w) we need to compute the spectral eigenvalues
of the input p.s.d. matrix. First notice that the two sub-
sequences obtained by downsampling z[n] are still Gauss-
Markov processes, but with the regression coefficient « re-
placed by o? and the i.i.d. original Gaussian source w[n]
replaced by a new i.i.d. Gaussian source with zero mean
and variance 1+ a?. Hence the power spectral densities for
these two processes are given by:

1+ a2

Bon (@) = Ron2(w) = o5 (87)
The cross p.s.d. Rg12(w) is given by:
a(l + el=7)

Rle(w) = Q zll(w)7 (88)

1+ a?

with me(w) = R;m(w).
decorrelation is:

Finally the p.s.d. matrix after

o) 1+ 25242 :
Alw) =

0 Ro11 () (1 20 cos(w/2))

(1+a?)
(89)

Observe that the two spectral eigenvalues are equal only
at m (and of course at —m). As previously stated, at the
points closest to the frequency values where \? (w) = A\2(w)
it is not possible to use the closed-form (79) even in the
high redundancy hypothesis. So, for the Gauss-Markov
source, a(w) (and consequently T'(w)) can only be found
numerically.

In Figure 5, we show the frequency responses of the two
analysis filters as a function of the redundancy for the case
a = 0.9. It is interesting to notice that the amplitude of
the two frequency responses is exactly the same, the two
filters differ only for the phase response. This is due to the
presence of the principal component filter bank given by
M (w) and to the constraint Ry = Ry which forces the ma-
trix T'(w) to have the shape given by Eq. (82). Moreover,
notice that at high redundancies the two filters tend to be
low-pass. In the case of a = 0.9, the Gauss-Markov process
is a low-pass process, thus the frequency responses of the
two filters tend to preserve the frequency region where the
p.s.d. of the input process is mostly concentrated. This

is valid in general, that is at high redundancies the anal-
ysis filters better preserve the region where most of the
p.s.d. of the input process is concentrated. It is also of
interest to note that, at low redundancies, the two filter
responses do not tend to be that of a principal component
filter bank, that is an ideal low pass and an ideal high
pass filter. This is because, if quantization is performed
before the transform, the principal component filter bank
does not represent the only solution that gives minimum
coding rates. The same phenomenon happens in the block
transform case, where the KLT does not represent the only
transform that gives minimum rates if quantization is per-
formed before the transform [12], [13]. Thus, this addi-
tional degree of freedom makes it possible to have a filter
bank (or a block transform [13]) that achieves, at the same
time, minimum coding rates and balanced rates. This is
the solution that we have at low redundancies.

Finally, in Fig. 6 we show the frequency response of the
two FIR analysis filters obtained with the minimization al-
gorithm presented in Section 3.3. The filter are all of length
6. It is interesting to compare these frequency responses
with the ones in Fig. 5. In the FIR case, the amplitude
responses of the two filters are not equal, but they tend to
be close to each others at high redundancies. Moreover,
in the high redundancy region the two frequency responses
tend to be low-pass as in the ideal case.

IV. PERFORMANCE ANALYSIS

In order to assess the performance of the filter bank
proposed in the previous section, we compare it with the
asymptotic ideal bounds found in Section 2 and with other
two systems: the MD Transform Coder [2] and the MD-
DPCM system [18]. In the next section, we briefly review
these two systems. In the simulations, we consider two dif-

©

4[] y[n]

_ =

G(w)

X,[n]

Fig. 7. A low-pass Gaussian source. G(w) is an ideal low-pass filter
and z1[n], z2[n] are two i.i.d. Gaussian sources.

ferent Gaussian input sources: a classical Gauss-Markov
source and a low-pass Gaussian source obtained as illus-
trated in Fig. 7, where z1[n] and z»[n] are two i.i.d. Gaus-
sian sources with variances 07,02 and G(w) is an ideal low-
pass filter. Moreover, we consider two different scenarios:
high rate, infinite delay/complexity and low rate, finite de-
lay/complexity. In the first scenario, the analysis and the
results presented in the first part of this paper are valid.
The second more realistic simulation is important, because
we do not have clear theoretical answers on the behaviour
of the considered systems in this particular context.
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Fig. 5. Frequency response of the analysis filters in function of the redundancy p.
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A. Other MD coding systems

The Multiple Description Transform Coder [2] is illus-
trated in Fig. 8. It is represented by two main elements:
a linear transform which turns out to be a KLT and a set
of Entropy Constrained MDSQ. Recall that a MDSQ pro-
duces a pair of indices for each input scalar sample. The

* | ecvp

e o

o KLT X ECMDSQ

N ) L Channel 2 _
X8 .| ECMDSQ

Fig. 8. The Multiple Description Transform Coder.

behaviour of a MDSQ is characterized by two elements: the
rate at which it operates and the strategy in the assignment
of the two output indices. This second element defines the
trade-off between side and central distortion. That is, it de-
fines if the indices are assigned in a way to mainly minimize
the central or the side distortion. The system works in the
following way: it takes a block of NV consecutive elements of
the input sequence z[n] and applies a KLT to them. Then
each of the decorrelated component is encoded with a dif-
ferent Entropy Constrained MDSQ and the pair of indices
produced by the MDSQ are transmitted over two separate
channels. It results that in case of Gaussian input sources
and at high rates optimal performance is achieved if the
index assignment strategy is the same for each MDSQ and
bits are allocated to each component according to a single
description allocation strategy [2]. Finally letting N to go
to infinity and in the case of high rates, the performance
of this system is given by [2]:

1
DoD; = y2 " exp (—/
T

-

™

In S(w)dw) , (90)

where Dy is the central distortion, D; is the side distortion,
R is the average rate per sample per channel, S(w) is the

input power spectral density and vy = (7£)2.

Binary Channel 1
oder

inary
| Encoder |

Fig. 9. The MD-DPCM system.

The analysis part of the MD-DPCM system [18] is illus-
trated in Fig. 9. P(z) = biz~! + byz~2 is a second order
predictor filter. The quantized predicted sequence é[n] is
separated into two subsequences containing the even and
the odd samples and these subsequences are sent over two
different channels. If one subsequence is lost, it is linearly
estimated using the received one. Now, if the input source

Fig. 10. Asymptotic performance for a Gauss-Markov input source.
Abscissa: central distortion, Ordinate: side distortion. Dotted:
ideal bounds, dashed-dotted: Multiple Description Transform Coder,
dashed: filter banks for MD coding, line: MD-DPCM.

is Gauss-Markov with regression coefficient «, it turns out
that the estimating filters present in the synthesis part of
the system are realizable filters. Moreover, in this case, the
side distortion is given by [18]:

1 )(1_(b§+2b2a2+a2)>7 (1)

Di=—
T a-a? 2(a2 + b2)

while the central distortion is [18]:

Do = (1 +b2/a%)e*272E, (92)
where €2 depends on the kind of quantizer used and by, bo
are related by the following equation: by /a + by/a? = 1,
0 < by < @?. The interesting element to note is that, as for
our system, the side distortion of the MD-DPCM system
does not go to zero even at infinite rate.

B. High rate, infinite complexity performance

We consider a first order Gauss-Markov source. In the
high rate and infinite complexity hypothesis, the perfor-
mance of the Multiple Description Transform Coder is
given by (90) where S(w) is given by (86). The side and
central distortions of the MD-DPCM are given by (91) and
(92). For the filter bank case, the filter responses are ob-
tained numerically as shown in Section 3.4. Given the fil-
ter responses, the side distortion at high rates is given by
Eqns. (57) and (58). The central distortion is obtained by
numerically inverting the equations in (49).

In Figure 10, we compare the four performances:
MD Transform Coder, MD-DPCM, MD filter bank and
ideal bounds, for the case of a = 0.9 and R = 6
bit/sample/channel. As we can see the MDTC outperforms
the other two systems. This is not astonishing since in the
MDTC both the central and the side distortions decrease
exponentially with the rate R. The side distortions of the
MD-DPCM system and of our system suffer of the system-
atic estimation error that becomes dominant at high rates
and that does not reduce with the rate. It is also interest-
ing to note that the gap between the ideal bounds and the
MDTC is constant and equal to 3.06dB. This confirms that
this system attains asymptotically optimal performance.
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C. Low rate, finite delay/complexity performance

In practical settings, we are more interested in low
rate behaviours and we have to deal with finite de-
lay/complexity constraints. That means that either the
KLT or the filters in the filter bank have finite length V.
The FIR filters are designed using the numerical optimiza-
tion presented in Section 3.3.° The Multiple Description
Transform Coder is the same shown previously except that
the KLT operates on blocks of finite length N. Bits are
still allocated according to a single description allocation
strategy and the MD scalar quantizers are designed such
that the index assignment strategy is the same for each
of the N components. The MD-DPCM system is made of
realizable filters and does not need to be approximated.

In the first simulation, we consider again a first order
Gauss-Markov process with memory a = 0.9. Numerical
results are shown in Fig. 11. Here, we consider two bit-rates
R = 2 and R = 3 bit/sample/channel and two different
length constraints: N = 6 and N = 8. The graphs show
the trade-off between side and central distortion for the
three systems. The first interesting thing to note is that,
in the low rate regime, the Multiple Description Transform
Coder, which is optimal at high rates, is generally outper-
formed by the other two systems. The MD-DPCM system
is the best system in this context. Moreover, comparing
the results of Fig. 10 and Fig. 11, one can conclude that,
in this case, our system can attain the same performance
of the MD-DPCM system only at the price of infinite de-
lay/complexity (i.e. with infinite length filters).

It seems that one of the reasons why the MD-DPCM
system is superior to the other two is because it has been
designed assuming that the input source is Gauss-Markov
and, thus, it well exploits the particular structure of this
source. The other two systems do not take particular ad-
vantage of the characteristics of the input source. For this
reason, it is of interest to run similar simulations with a
different Gaussian source. Numerical results are shown in
Fig. 12. In this case, the input source is a low-pass Gaus-
sian source obtained as illustrated in Fig. 7, where z1[n]
and za[n] are two ii.d. Gaussian sources with variances
o2 = 1.5 and 02 = 0.5 respectively. We consider two
bit-rates R = 1 and R = 2 bit/sample/channel and two
different length constraints: N = 6 and N = 8. We can
see that, in this context, our system is the best system in
the medium-low redundancy region. It is also of interest
to note that the performance gap between our system and
the MDTC reduces with the rate, in particular we have no-
ticed that for rates greater than R = 3 bit/sample/channel
the MDTC performs better also at low redundancies (See
Fig. 13). Finally, the performance of these two systems
slightly increases with the length N but, the length, does
not changes the performance gap between them.

In conclusion, this set of experiments indicate that, in the
low bit rate regime and at low and medium redundancies,
MD-DPCM and filter bank system perform better than the

8For simplicity, we did not decompose the filters into lifting steps.
Doing the decomposition would slightly improve the filter bank
scheme.
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Fig. 13. Comparison between Multiple Description Transform
Coder filter banks for MD coding and MD-DPCM system in the
case of R = 4 bits/sample/channel. Input source: low-pass Gaus-
sian source. Line: Multiple Description Transform Coder, dashed:
filter banks for MD coding, dashed-dotted: MD-DPCM.

MDTC. Moreover, in this regime and for some classes of
Gaussian sources, our system outperforms the other two.

V. CONCLUSIONS

In this work we have addressed the problem of MD cod-
ing in a subband framework. We have shown how to de-
sign perfect reconstruction filter banks that can minimize
the side distortion given a certain amount of redundancy.
Two other important contributions of this paper are: (a)
the characterization of a region which is asymptotically the
MD rate-distortion region for general stationary Gaussian
sources, and (b) experimental results showing conditions
under which our method outperforms other MD methods.
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APPENDIX
I. APPENDIX
A. Toeplitz Distribution Theorem

For a proof of this theorem refer to [16]:

Theorem 38 (Toeplitz Distribution Theorem ) Let ., be
an infinite Toeplitz matrix with entry ¢, on the kth diag-
onal. The eigenvalues of ®,, are contained in the interval
6 < XA < A where § and A are the essential infimum and
supremum,’ respectively, of the function:

@(w)z Z ¢ke—jkw‘

k=—o0
"The essential supremum of a function f(x) is the iIElf sup f(x) where
¢ E

E ranges over all sets of Lebesgue measure zero. Likewise, the essen-
tial infimum is sup inf f(z).
E ©¢E
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Moreover, if both § and A are finite and G()) is any con-
tinuous function of A € [§, A], then:

" Glo(w)lde,

n—oo N 27 —

lim 1 ZG(A%")) .
k=1

where the )\Sc") are the eigenvalues of the nth-order matrix
®,, centered about the main diagonal of ®.
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