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ABSTRACT

In the last few years, several new methods have been developed for the sampling and the exact reconstruction of
specific classes of non-bandlimited signals known as signals with finite rate of innovation (FRI). This is achieved
by using adequate sampling kernels and reconstruction schemes. An important class of such kernels is the one
made of functions able to reproduce exponentials.

In this paper we review a new strategy for sampling these signals which is universal in that it works with
any kernel. We do so by noting that meeting the exact exponential reproduction condition is too stringent
a constraint, we thus allow for a controlled error in the reproduction formula in order to use the exponential
reproduction idea with any kernel and develop a reconstruction method which is more robust to noise.

We also present a novel method that is able to reconstruct infinite streams of Diracs, even in high noise
scenarios. We sequentially process the discrete samples and output locations and amplitudes of the Diracs in
real-time. In this context we also show that we can achieve a high reconstruction accuracy of 1000 Diracs for
SNRs as low as 5dB.

1. INTRODUCTION

Sampling theory provides the bridge between the continuous and discrete-time domains and thus plays a central
role in modern signal processing and communications. In the typical sampling setup, the original continuous-time
signal x(t) is filtered before being (uniformly) sampled with sampling period T . If we call y(t) = h(t) ∗ x(t) the
filtered version of x(t), the samples yn are given by yn = 〈x(t), ϕ(t/T − n)〉 where the sampling kernel ϕ(t) is
the scaled and time-reversed version of h(t). This typical sampling set-up is shown in Fig. 1
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Figure 1. Sampling set-up. Here, x(t) is the continous-time signal, h(t) the impulse response of the acquisition device and
T the sampling period. The measured samples are yn = 〈x(t), ϕ(t/T − n)〉.

Recently, it has been shown that it is possible to develop sampling schemes for classes of signals that are
neither bandlimited nor belong to a fixed sub-space,24 these signals are completely specified by a finite number
of free parameters per unit of time and are called signals with finite rate of innovation (FRI).24

Signals that can be perfectly reconstructed using this framework include: stream of Diracs and piecewise
polynomial signals,9,24 piecewise sinusoidal signals3 and classes of 2-D signals.7,12,14,17,20 The sampling kernels
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considered in the original work by Vetterli et al.24 were the Gaussian and the sinc functions. In8,9 these were
extended to include any polynomial reproducing kernel such as B-splines or exponential reproducing kernels such
as E-splines. Multichannel set-ups have been considered in1,19 and robust algorithms for the retrieval of FRI
signals from noisy samples were presented in.4,15

FRI sampling theory has also had impact in specific applications such as image super-resolution,2 for depth
sensing,13 for calcium transient detection16 and in compression.6,11

In this paper, we present a new framework for the sampling of FRI signals using arbitrary kernels and also
present a local algorithm for the robust reconstruction of infinite streams of Diracs. The paper is organised as
follows: in the next section we provide an overview of the theory of sampling signals with FRI, we present the
local reconstruction algorithm in Sec. 3 and the approximate FRI framework in Sec. 4. Simulation results are
shown in Sec. 5 and we finally conclude in Sec. 6.

2. OVERVIEW OF FRI SAMPLING THEORY

Given the sampling set-up of Fig. 1, we want to retrieve x(t) from the samples yn. The acquisition device or
sampling kernel plays a central role in this context and a family of kernels that has been successfully used in the
past is the family of exponential reproducing functions. A function ϕ(t) is an exponential reproducing function
of order P , if together with its shifted versions, it is able to reproduce exponentials:∑

n∈Z
cm,nϕ(t− n) = eαmt, (1)

for proper coefficients cm,n, with m = 0, . . . , P and αm ∈ C. It is possible to show that a function satisfies (1) if
and only if it meets the generalised Strang-Fix conditions:23

ϕ̂(αm) 6= 0 and ϕ̂(αm + j2πl) = 0 l ∈ Z \ {0}

where ϕ̂(s) is the bilateral Laplace transform of ϕ(t).

Exponential reproducing kernels are important because they allow us to map the samples yn with the Laplace
or Fourier transform of x(t) at αm m = 0, 1, .., P and this independently of the property of the incoming
signal. For the sake of clarity, assume that the signal x(t) has compact support such that it is characterised by
only N non-zero samples. Moreover, assume that T = 1. We thus have that the N samples are of the form
yn = 〈x(t), ϕ(t− n)〉, n = 0, 1, .., N − 1.

We now linearly combine the samples yn using the coefficients cn,m of Eq. (1) to obtain:

sm =
∑N−1
n=0 cm,nyn

(a)
= 〈x(t),

∑N−1
n=0 cm,nϕ(t− n)〉

(b)
=

∫∞
−∞ x(t)eαmtdt, m = 0, 1, .., P,

where (a) follows from the linearity of the inner product and (b) is due to Eq. (1) and to the fact that x(t) has
compact support.

We note that
∫∞
−∞ x(t)eαmtdt = x̂(αm) is precisely the bilateral Laplace transform of x(t) evaluated at αm,

m = 0, 1, .., P . Moreover, when αm is purely imaginary, i.e. αm = jωm, then the Laplace transform reduces to
the Fourier transform. We can write the above equation in matrix/vector form as follows:

s = Cy,

where s is the column vector whose (P + 1) entries correspond to the Fourier or Laplace transform of x(t) at
αm, m = 0, 1, .., P ; y is the vector with the N samples and C is the matrix of size (P + 1)×N whose entry at
location (n,m) corresponds to the coefficient cn,m in (1).



When x(t) is a specific class of signals with FRI and αm = α0 +mλ, it is then possible to establish a one-to-
one mapping between x̂(αm) and x(t). For example, we may assume that x(t) =

∑K−1
k=0 xkδ(t− tk) is a stream

of K Diracs located at tk ∈ [0, N) then we have that

sm =
∑N−1
n=0 cm,nyn

=
∫∞
−∞ x(t)eαmtdt,

=
∑K−1
k=0 xke

αmtk

=
∑K−1
k=0 x̂ke

λmtk =
∑K−1
k=0 x̂ku

m
k , m = 0, 1, .., P,

where we have used the fact that αm = α0 +mλ and set x̂k = xke
α0tk , uk = eλtk .

The quantity

sm =
K−1∑
k=0

x̂ku
m
k , m = 0, 1, ..P

is a sum of exponentials and retrieving the locations uk and the amplitudes x̂k from {sm}Pm=0 is a classical
problem in spectral estimation and was first solved by Gaspard de Prony in 1795.18 Prony’s method allows the
exact retrieval of {xk, uk}K−1

k=0 using only 2K consecutive values sm. This means that the parameters of a stream
of K Diracs can be retrieved when P ≥ 2K − 1. This condition therefore links the number of free parameters
in the FRI signals to the order of the exponential reproducing kernels. Specifically, in this example, the signals
is completely determined by 2K free parameters -the amplitudes and locations of the Diracs - and this dictates
the condition on the order P .

We also note that, while the basic Prony’s method requires only 2K values sm, in the case of noisy samples,
it is better to use more measurements. This is because when P > 2K − 1, it is then possible to use variations
of Prony’s method which are more resilient to noise. Two of the most successful techniques used for noisy FRI
retrieval are Cadzow method5 and matrix pencil (e.g.,10). For an overview of spectral estimation methods we
refer to the book.21

We also highlight the fact that while in the noiseless settings any exponential reproducing kernel can be used
to retrieve the FRI signal, the behaviour of such kernels changes in the presence of noise. In,22,23 it was shown
that functions reproducing exponentials with purely imaginary exponents (i.e., αm = jωm) are more resilient
to noise. Moreover, within this group of functions a subset called exponentials-MOMS (e-MOMS) are the best
performing.22,23 An example of e-MOMS kernels is shown in Fig. 2.
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Figure 2. Examples of e-MOMS of different order.

3. SEQUENTIAL LOCAL FRI SAMPLING OF INFINITE STREAMS OF DIRACS
We now consider the case where we have an infinite train of Diracs:

x(t) =
∑
k∈Z

xkδ(t− tk). (2)



The signal x(t) is assumed to have a finite local rate of innovation 2K/τ . This means that, if we consider a
sliding window of size τ , the number of Diracs that we see inside the window is always at most K. We assume
that this signal is sampled using e-MOMS and propose a sequential algorithm that estimates the locations of the
Diracs in (2) by using a sliding window that sequentially covers intervals of size τ . The sliding window stepsize
corresponds to the sampling period T . For consistency with the previous section we also assume that τ = N and
that T = 1.

We thus develop a new strategy based on processing sets of N samples in sequential order. For each window
and each group of N samples, we retrieve K Diracs using the algorithm of the previous section. We then store all
the locations and amplitudes retrieved in that window. We then slide the window by one sample and repeat the
process. When the found locations correspond to real Diracs, they will be consistent among different positions of
the sliding window that capture these Diracs. Otherwise, we expect locations that are not correct and are due to
noise to be inconsistent amongst windows. For example, in Fig. 3(a) we plot the retrieved locations for different
windows. The horizontal axis represents the index of the window corresponding to a retrieved location, and the
vertical axis the Dirac location in time. Consistent locations appear as horizontal alignments of dots, overlapping
the blue lines. In order to detect consistency, in a second step we compute a histogram of detected locations.
Only the peaks of the histogram are assumed to correspond to real Diracs. For a peak in the histogram above a
certain threshold, the location of the corresponding Dirac is estimated averaging all the retrieved locations that
contributed to that peak. This is illustrated in Fig. 3(b).
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Figure 3. Local Reconstruction algorithm. Part (a) shows as red dots the Diracs retrieved at each window. Note that the
x-axis corresponds to the window index. Part (b) shows the histogram of the retrieved locations.

4. APPROXIMATE STRANG-FIX

In the previous sections, we have implicitly assumed that we had a complete control on the design of the
acquisition device and assumed that it was possible to have kernels behaving like e-MOMS. In this section we
are going to extend the theory of FRI sampling in order to be able to use it with any acquisition device.

4.1 Approximate Reproduction of Exponentials

As highlighted previously, we require the sampling kernel to be able to reproduce exponentials in order to be
able to map the samples yn to the Fourier or Laplace transform of x(t). Consider now an arbitrary kernel ϕ(t),
we want to find a linear combination of ϕ(t) with its shifted versions that provides the best approximation to a
specific exponential. More precisely, we want to find the coefficients cn such that:∑

n∈Z
cnϕ(t− n) ≈ eαt. (3)

This approximation is exact only when ϕ(t) satisfies the generalised Strang-Fix conditions, for any other function
it is of particular interest to find the coefficients cn that best fit (3). For the sake of clarity, we assume that



cn = c0e
αn and we can show that, for any choice of cn, the error in approximating f(t) = eαt with the function

s(t) =
∑
n∈Z cnϕ(t− n) is equal to:

ε(t) = f(t)− eαt = eαt
[

1− c0
∑
l∈Z

ϕ̂(α+ j2πl)ej2πlt
]
. (4)

Note that, if ϕ(t) satisfies the generalised Strang-Fix conditions, then the error is zero when c0 = ϕ̂(α)−1. If
ϕ(t) does not satisfy the conditions but its Laplace transform decays sufficiently quickly, very few terms of the
Fourier series expansion are needed to have an accurate bound for the error. Moreover, the error won’t be zero
but might be very small. We denote such kernels as approximate Strang-Fix kernels.

A natural choice of the coefficients cn = c0eαn is the one leading to the least-squares approximation which is
obtained by computing the orthogonal projection of f(t) onto the subspace spanned by ϕ(t− n).

The least-squares approximation has the disadvantage that it requires exact knowledge of ϕ(t). However, as we
stated before, if the Laplace transform of ϕ(t) decays sufficiently quickly, we can assume the terms ϕ̂(α+j2πl) are
close to zero for l ∈ Z\{0}. In this case we have that the error in (4) is easily minimised by choosing c0 = ϕ̂(α)−1.
We denote this second type of approximation constant least-squares. Besides its simplicity, a second advantage
of choosing cn = ϕ̂(α)−1eαn is that it requires only the knowledge of the Laplace transform of ϕ(t) at α.

In Fig. 4, we show an example where a linear spline is used to approximate four different exponentials. We
note that linear splines are able to reproduce exactly polynomials up to degree one as shown in Fig. 4 (a)(b). The
figures highlight the fact that the approximate reproduction of low-frequency exponential is very accurate and
the accuracy reduces when trying to approximate higher-frequency exponentials. We also note that, in theory,
the number of exponentials we reproduce using the approximate framework is arbitrary, this is in contrast with
the exact reproduction framework where the number of exponentials is fixed and depend on the order P of the
kernel.
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Figure 4. Example of approximate reproduction of exponentials using the linear spline.

4.2 Approximate FRI Recovery

We now go back to the problem of reconstructing a stream of K Diracs x(t) =
∑K−1
k=0 xkδ(t− tk) from samples

which are now taken with an arbitrary kernel ϕ(t). We thus observe: yn = 〈x(t), ϕ(t − n)〉, n = 0, 1, .., N − 1,
but now we make no assumption on the sampling kernel. We find proper coefficients for ϕ(t) to approximate
the exponentials eαmt, where m = 0, . . . , P , αm = α0 +mλ, and α0, λ ∈ C. From the previous section we know



that a good approximation is achieved if we choose cm,n = cm,0eαmn with cm,0 = ϕ̂(αm)−1. We thus only need
to know the Laplace transform of ϕ(t) at αm, m = 0, . . . , P . Also, note that P can be chosen arbitrarily.

We then operate as if we were in the exact exponential reproduction framework. We therefore linearly combine
the samples yn using the new coefficients cm,n to obtain:

sm =
∑N−1
n=0 cm,nyn =

〈
x(t),

N−1∑
n=0

cm,nϕ (t− n)︸ ︷︷ ︸
eαmt−εm(t)

〉

=
∑K−1
k=0 xku

m
k −

K−1∑
k=0

xkεm (tk)︸ ︷︷ ︸
ζm

(5)

where x̂k = xkeα0tk and uk = eλtk .

There is a model mismatch due to the approximation error εm(t) of (4). We treat it as noise and retrieve the
parameters of the signal using matrix pencil. The model mismatch depends on the quality of the approximation,
dictated by the coefficients cm,n, the parameters αm and P . The estimation of the Diracs can be refined using
the iterative algorithm shown in the box Algorithm 1. The basic idea of the algorithm is that, given an estimate
of the locations of the Diracs, we can compute an approximation of ζm and use it to refine the computation of
the values sm. In noisy scenarios, if ζm is negligible when compared to other forms of noise then the procedure
is sufficiently good.

Algorithm 1 Recovery of a train of K Diracs using approximation of exponentials

1: Calculate the approximation coefficients cm,n.
2: Compute the moments s0m =

∑
n cm,nyn, from the original data yn, n = 0, . . . , N − 1 and set sim = s0m,

m = 0, . . . , P . The iteration is i = 1.
3: Obtain the values {uik, xik}

K−1
k=0 by applying either total least-squares and Cadzow or matrix pencil to the

sequence sim. Determine the locations tik and amplitudes aik, for the ith iteration.
4: Recalculate the moments for the next iteration i + 1 by removing the model mismatch from s0m. This can

be done by using (5) as follows:

si+1
m = s0m +

K−1∑
k=0

aikεm

(
tik
T

)
, (6)

for m = 0, . . . , P and where εm(t) is the error of the approximation (4).
5: Repeat steps 3 and 4 until convergence of the values {tik, aik}

K−1
k=0 .

5. SIMULATION RESULTS

In Fig. 5, we show the reconstruction of an infinite stream of Diracs using the local reconstruction algorithm of
Sec. 3. Almost all Diracs can be retrieved up to noise levels of 5dBs.

The example in Fig. 6 shows the merits of the approximate Strang-Fix framework. In this example, K = 4
Diracs are sampled with a B-spline of order P = 5. This means that in the exact framework at most K = 3
Diracs can be reconstructed as shown in part (a). The approximate framework, instead, allows us to choose P
arbitrarily and consequently allows us to reconstruct the K = 4 Diracs almost perfectly.

6. CONCLUSIONS

In this paper we have shown how to sample FRI signals with arbitrary kernels and that a novel local reconstruction
algorithm can be fast and very resilient to noise.
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Fig. 5: Sequential perfect reconstruction of a noiseless stream of
1000 Diracs with 10220 yn samples. Only a small section of the
stream is shown. Rate K “ 5 Diracs per τ “ 3.125 s. N “ 50,
T “ 1{16 and P “ 9.

retrieve K Diracs using the algorithm in Sec. 2 coupled with
matrix pencil. We then store all the locations and amplitude
retrieved in that window. We then slide the window by T and
repeat the process. When the found locations correspond to
real Diracs, they will be consistent among different positions
of the sliding window that capture these Diracs. Otherwise,
locations that are not correct and correspond to noise will nor-
mally be not consistent. For example, in Figure 4-(a) we plot
the retrieved locations for different windows. The horizontal
axis represents the index of the window corresponding to a
retrieved location, and the vertical axis the Dirac location in
time. Consistent locations appear as horizontal alignments of
dots, overlapping the blue lines.

In order to detect which locations are consistent, a second
step is to construct a histogram of detected locations. Only
the peaks of the histogram are assumed to correspond to real
Diracs. For a peak in the histogram above a certain threshold,
the location of the corresponding Dirac is estimated averaging
all the retrieved locations that contribute to this peak. This is
illustrated in Figure 4-(b).

4. SIMULATION RESULTS

We have tested both versions of the algorithm: the noise-
less case for which perfect reconstruction is possible; and the
noisy scenario, where locations are estimated from the his-
togram of the retrieved locations. In the noiseless case we
always perfectly reconstruct the streams of Diracs with ran-
domly generated locations and amplitudes. This is illustrated
in Figure 5. The stream of Diracs is generated to satisfy the
maximum rate of K Diracs per τ interval.

In the noisy scenario not all the Diracs are always re-
trieved, and false positives may also happen. Note also that
there is an uncertainty in the retrieved location. A retrieved
Dirac is considered to correspond to a true Dirac if the differ-
ence between the real location and the estimated location is
smaller than a threshold. Here we have set this threshold to
T {2. We randomly generate the locations of a stream of 1000
Diracs. We then take samples, contaminate them with noise
and apply the sequential reconstruction algorithm. Figure 6
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Fig. 6: Noisy samples with a SNR “ 10 dB and reconstructed
stream from the peaks of the histogram of the retrieved locations.
The temporal locations are very accurately estimated.

shows one realisation of the procedure explained before.
To further analyse the performance variation for different

levels of noise we run the algorithm over 100 different realisa-
tions of noise for various levels of SNR. Table 1 summarises
the obtained performances.

Table 1: Algorithm’s performance. Stream of 1000 Diracs (630
seconds) and 10220 samples, T “ 1{16 s, N “ 50, P ` 1 “ 23.
The detection rate is given in percentage of detected true Diracs. The
false positives are the average number of detected Diracs that do not
correspond to true Diracs. The precision is the standard deviation of
the retrieved locations with respect to the true locations.

SNR (dB) 5 10 15 20
Detection rate 97.69 % 99.97 % 100.00 % 100.00 %
False positives 351.7 37.8 0.5 0.3
Precision (s) 0.0086 0.0049 0.0028 0.0018

The algorithm has been implemented in MATLAB and
tested using a commercial laptop (2.5 GHz Intel Core i5
CPU). The average time required to process 10220 samples
corresponding to a stream of 630 seconds containing 1000
Diracs is about 105 seconds.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a fast sequential algorithm
to retrieve infinite streams of Diracs in noiseless and noisy
environments. In the noiseless case perfect reconstruction
is achieved. In the noisy scenario we propose to retrieve
groups of K Diracs sequentially and to retain only those
Diracs whose locations have been consistently estimated in
overlapping sliding windows.

We showed that the algorithm is able to process 10K sam-
ples in about 100 seconds and can retrieve with high accu-
racy 1000 Diracs even in very low SNR regimes. We are not
aware of any current FRI algorithm able to achieve such per-
formance for the same type of data.

Figure 5. Reconstruction of an infinite stream of Diracs using the local reconstruction algorithm of Sec. 5.

Numerical examples: “Approximate beats exact” III

Recovery of K = 4 random Diracs in the absence of noise sampled with a
B-Spline of order M + 1 = 6 < 2K . (a) Traditional scheme. (b)
Approximation of exponentials.
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Figure 6. Reconstruction of K = 4 Diracs using the default strategy, part (a), and the approximate framework, part (b).
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