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ABSTRACT which architecture is the most resilient to this form of ditbon.
Since the reconstruction of FRI signals is equivalent toramatric
Recently, it has been shown that itis possible to sampleamaiimited otimation problem, one can comgute the gramér-Rao (Cmm)dm
signals that possess a limited number of degrees of freedin a, ¢5|cyate the best possible achievable performance stdfiraly-
unlquely. recongtruct them from a finite number of unlform ptﬂg. sis along these lines was done in [1]. That paper only corsitie
These signals include, amongst others, streams of Diratshid  gjnc kernel and an interesting conclusion is that the besb@Rds
paper, we investigate the problem of estimating the innomgiara- 516 achieved when the sinc with the maximum possible barttiwid
meters of a stream of Diracs from its noisy samples takenpeithr 5 chosen. Constructive algorithms that reach these boaredthen
nomial or exponential reproducing kernels. For the onex®aase, proposed.
we provide exact expressions for the Cramér- Rao boundsés- In this paper we extend the results of [1] to the family of kesn
timation problem. Furthermore, we propose methods to SH00Ct 44y ced in [2]. We compute the CR bounds for these archites
the location of a single Dirac that reach the optimal pertmme 5.4 jemonstrate that the kernels with the shortest suppoet the
given by the unbiased Cramér-Rao bounds down to noiseslefel tightest bounds. We then present a simple reconstructiatesly
5dB. that achieves these bounds.

Index Terms— Signal sampling, spline functions, spectral analy- ~ The paper is organized as follows: In the next section weevevi
sis, Cramér-Rao Bounds. the sampling results of [2] and recall the main propertiethefsam-
pling kernels considered. In Sections 3 and 4 we evaluat€e
bounds for the case of a signal maddoDiracs and spline kernels.
A comparison between the different architectures is alssemted.
In the following section, we discuss possible denoisingtsgies and
present simulation results. We finally conclude in Section 6

1. INTRODUCTION

Recently it was shown that it is possible to sample and piyfec
reconstruct parametric non-bandlimited signals [6, 2]ciSsignals
are called signal with finite rate of innovation (FRI) sinbey are
completely described by a finite number of free parameters. 2. SAMPLING SIGNALS WITH FINITE RATE OF
The acquisition model used in these papers is the one ddjicte INNOVATION
Fig. 1, where the smoothing functigs(¢) is called the sampling ker-
nel and normally models the distortion due to the acquisitievice.
The sampling kernel used in [6] is the sinc function, while tork
in [2] uses compactly supported functions like for exampé/po-

For the sake of clarity we restrict our analysis to the caserarh
the acquired signat(t) is a r-periodic stream ofK’ Diracs with
amplitudeszy, located at distinct instantg € [0, 7]:

mial splines (B-splines) [4] or exponential splines (Exsgs) [5]. In K—1
both works it is shown that perfect reconstruction of classieFRI z(t) = Z Z ard(t —tx — I7). 1)
signals from the measurementsis achievable by using a variation 1€Z k=0

of Prony’s method also known as annihilating filter method [3 Furthermore, we assume the sampling peric#l i ~/N. Conse-

guently, the measurements are
x© - h®)=0¢(-tT) yo 7< Yr=<X(0),$ (VT-n)> <:E(t), (p(t/T _ n))

T Yn =

K-1
= Y > ape(ty/T—n—IN), n,=0,1,..N —1.
IEZ k=0

In [2], it was shown that with a proper choice of the acquisitker-
nel, it is possible to reconstruet(t) from the sampleg,, exactly.
Fig. 1. Sampling setup. Here;(t) is the continous-time signal(z) ~ The kernels used in [2] include:
the impulse response of the acquisition device @nithe sampling e Polynomial reproducing kernels: Any kernel that satisfies
period. The measured samples gre= (x(t), p(¢t/T — n)).
Zcm7n¢(t—n) =t" m=0,1,..,P (2

nez

Acquisition Device

It is now natural to ask whether these reconstruction algos
are effective when the measurements are corrupted by noie a for a proper choice of coefficients,, .



e Exponential reproducing kernels: Any kernel that satisfies procedure is the same, the only difference is in the choi¢heoto-
) efficientsc,,,, which depends on the properties of the chosen ker-
Z Cmmp(t —n) = et with c, = o + mA (3)  nel. We now want to investigate whether these differencad te

ez andm =0,1,..., P different performances when the samples are corrupted isg.no

fora proper choice of coefficients,, . 3. DERIVATION OF THE CRAM ER-RAO BOUNDS
B-splines belong to the family of kernels that can reprodpcky-
nomials. A B-spline of order” is a function of compact support Any practical acquisition device introduces noise during acqui-
L = P + 1 and can reproduce polynomials up to degreelt is sition process. We assume the noise is introduced after|samp
obtained by thé P + 1)-fold convolution of the zero order B-spline consequently, the new measurements are
and has the following Fourier transform n = (@), 0(t/T 1)) + €0, m=0,1,.,N —1,

o\ P . .. . . . .
Bo(w) = 1-¢’ i wheree,, is assumed to be i.i.d. additive Gaussian noise with zero
PR = ‘ mean and variance®. We denote with

Jw
The family of E-splines represents an extension of the otyial © = (a0, a1, ..., arc, to, b, oy tic)©
splines and the Fourier transform of tReth order E-spline is: the vector of the unknown parameterszgt) and our aim is to esti-
P S mate® as precisely as possible from the noisy measurements. The
B&(w) - H <1 — ¢ ) . (4) performance of any unbiased estimatiis lower bounded by the
m=o0 \ JW T Qm Cramér-Rao bound: vé®) > I~'(0), whereI(©) is the Fisher

o Information Matrix (FIM) defined as
The above spline is able to reproduce the exponertials, m =

0,1, ..., P. Notice that the exponent,, in Eq. (4) can be complex I(©)=F (Vl(@)Vl(@)T)

which indicates that E-splines are usually complex fumstidHow-

ever, this can be avoided by choosing complex conjugaterexps. andl(©) is the log-likelihood function. It is therefore of primanyi
In Section 4.2, we use pure|y imaginary exponents equamm portance to evaluate this bound in order to analyze the p'BHDCe
around the origin leading to the so called trigonometricpings. ~ Of any reconstruction algorithm and to compare differeshiec-

For example, forP even, we havex,, = —jwoP/2 + jmuwo, tures.
m=0,1,..,P. For simplicity we denotég),, as follows:
The recon_struction sch_eme of [2] operate_s_as follows: Hiest In = £(©,7) + €n, —0.1...N—1.
samples are linearly combined with the coefficietis,, of (2),(3) _
to obtain the new measurements Now notice that
Pi(§n]©) = pe(in — £(0,1)).
Sm = Zocm’"y” m=0,1,..., P. ®) Hence, using independency of the noise samples we have:
Then, if the original signal is a stream of Diracs as the or{@jone {0) = I P(go,dr, . In-1[O)
can show that,, = S5 " ayuf, whereu, = t;/T when poly- _ .
o AT s = Yolo npe(gn — f(O,1)).

nomial splines are used ang = ¢ when exponential splines
are involved. In either cases, the pairs of unknowfes;, ux, } canbe  Next, we compute the partial derivatives of the log-likebl func-

retrieved from the power serigs, = ZkK;ol aruf’ using the clas-  tion with respect to the parametets It is easy to show that

sical Prony’s method. The key ingredient of this method ésahni- N—1
hilating filter. Callh,,, m = 0,1, ..., K the filter with z-transform ol®e) _ _1 Z af = ”) @)
H(z) =38 _hme™™ = HK (1 — upz~ ). That is, the roots 00, o2 0;

of H(z) correspond to the Iocatloma}c It clearly follows that | N1 ) ) )
HenceVi(0) = = Y, 2, €.V f(©,n) and the Fisher information

Z i K2:1 ) matrix is given by:
hm % $m =Y hiSm—i = arhsu, " =0.  (6)
i=0 k=0 e I1(0) = (Vl )

The filter h.,, is thus called annihilating filter since it annihilates the
observed series,,. Moreover, the zeros of this filter uniquely define
the set of locations,; since the locations are distinct. The identity
in (6) can be written in matrix/vector form as followsSH = 1
which reveals that the Toeplitz matrikis rank deficient. By solving = = Z V(©,n)Vf(O,n)", (8)
the above system, we retrieve thg's and therefore the locations.
Given the locations, the weights, are then obtained by solving a where we have used the linearity property of the expectatimhthe
system of linear equations. Notice that the problem can bedo fact the the noise is uncorrelated (independent). The Erdao
only whenP > 2K — 1. bound is thus given by:

We thus conclude that perfect reconstruction of a streanirat®
is possible with either B-splines or E-splines. The reawrsion

(%Zzenemvf @ n)vf(e m) )

CRB(©) = (ZVf@an(@ n) ) .

1For the sake of simplicity, we do not discuss the border tffbere. n=0



4. EVALUATION OF THE CR BOUNDS

In order to evaluate the CR bounds we assume &hat 1. In this
case, the parametric space is reduced te (ao,to)” and the noisy
samples are given by:

(@(t), p(t/T = n)) + €n

Zaogo(to/T —n—IN)+en
=

Yn

We now evaluate and analyze the CR bounds for the case of B- ,,

splines and E-splines.

4.1. B-splines
Herey(t) is a B-spline of orde® > 0 whose analytical expression
is given by:
P+1 P
_ 1 P+1 } P+1
=gy (OF et e

where(t)} = t© whent > 0 and0 otherwise.

The expression of th2 x 2 FIM can be obtained by replacing
Eqg. (9) in (8). Unfortunately, the resulting equations aveensy to
simplify especially for large values d?. We therefore first evaluate
the bounds numerically. We assume thats uniformly distributed
over the period and, for a fair comparison, adjust the elesnefh
the FIM so that the kernels have unit norm for any choicéafnd
T. The results shown in Fig. 2 reveal that it is better to usetsho
splines to minimize the uncertainty on the location. On ttieo
hand, one can show that higher-order splines lead to a nadlsgin
more accurate evaluation of the amplitude of the Dirdn many
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The Cramér-Rao bound is obtained by inverting the FIM arah th
by taking the expected value of over [0, T'[. This leads to the
following expression:

2

_

0

Wi
o

0

CRB(6) = o”|lp(t) [T

0 2

The above bound yields the following uncertainty relatfops:

Aag > 2 /T 1/2
‘ao‘fzﬁ‘/N PSNR™ (,11)

(0]

T 2
> 2 /% PSNR /2,

where PSNR= a3 /o2,

T

4.2. E-splines

We now consider the case where the sampling kernel is anigespl
In order to have fair comparisons, however, we restrict ti@néion
to real-valued E-splines which are obtained when the caxgtpo-
nents are chosen to be complex conjugate. In our analysiantef
assume that the exponents are purely imaginary and equealted
around the origin. Fig. 3 shows the uncertainty on the locatvith
the trigonometric E-splines of order one to four. As in theBine
case, we observe that shorter E-splines lead to better tairders
on the location of the Dirac. It is also of interest to obsettvat
performance improves when, increases. Howeveg), cannot be
chosen arbitrarily. There are two major constraints thaeha be
considered. First, the difference between any two diseérponen-
tial coefficients cannot be a multiple g2, otherwise an E-spline
stops being a basis. Second, to avoid ambiguities in theattn of
the location of the Diracyo < 27T /7 for P evenwo < #«T'/7 for
P odd and the difference between two complex parameters cghoul
not exceedq2m.
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Fig. 2. Uncertainty on the location when sampling a single Dirac

with B-splines of different orders. Recall that héfe= /N and
7=1,PSNR = a3/o* = 100.

situations, it is more important to evaluate the locatiothef Dirac
precisely. Therefore, we focus on the linear-spline case it = 1,
which leads to the best uncertainty for the location. WitHoss of
generality, we assume that € [0, 7'[. The FIM reduces to:

2a2 ag (2t
1(©) 1 1 T T (TO - 1)
Cale@lPT |, 2
FER-1) PR

2The figure is omitted due to the lack of space.

Fig. 3. Uncertainty on the location of a single Dirac when sampling
with trigonometric E-splines of different orders.

Given that we are more interested in the estimation of the lo-
cation of the Dirac, we now concentrate on the shortestvalaled
E-spline. Namely a spline of ordét = 1 with exponentsy; = jwo
anda_1 = —jwo. Its analytical expression is given by:

sinwqt 0<t<1
wo - ’
ﬂjwo(t): i
_sinwo(t=2) | <y 9
wo -

By replacing the above expression in Eqg. (8), we obtain threeeo
sponding FIM. The CR bound is obtained by inverting the FIM an



by taking the expected value &f over[0, 7[. In this way, we obtain
the following uncertainty relationships:

Ato wo — sinwg coswo 1 T 1/2
2l W07 SMW0oswo © [T pgNR
T = w2 sin wo NV N ’
A w2 — cos? wg + cost w
Bao , Vi = %/~ - PSNR /2,
lal wo sin wo N

There are several elements in these uncertainty relaijpgtat are
worth mentioning. First, one can easily see that both uaireies
converge to those in Eq. (11) whe = 0. This is expected since
the E-spline converges to the corresponding linear B-8plihen
wo = 0. Second, both uncertainties obtain a minimurvat= 7 /2
and, in the interval0, 7/2], both factors decrease monotonically
with wo. This is consistent with the plots shown in Fig. 3 where
the CRB had been calculated numerically.

Since as discussed befarg < 7#T° = 77 /N, the exponential
coefficient of the spline tends to zero when the samplingopledlie-
creases. In Fig. 4, we show the best bounds for the two diffegm-
pling kernels considered, together with the bound for the kernel
derived in [1]. All bounds scale in the same way with regarth®
sampling period. However, as anticipated, the E-splinenlisicon-
verge to the ones computed for the B-spline§ adecreases, since
wo tends to zero.

w =TTl
10t

1st order real E-spline
Linear B-spline
— — = Sinc kernel
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Fig. 4. The performances of the different sampling kernels arg ver
similar and decay in the same way with Recall thatl’ = 7/N.

the noisy samples we compute the moving sum of L consecutive
samples wrapping around to the beginning of the array if s&ag.
We compute the absolute value of the elements of the regutiray
and determine its maximum. Since the kernel is non-negaiie
maximum corresponds to the element that is the sum @fatinzero
signal samples for moderate noise levels. Once the locafitine
maximum is found we keep the — 1 samples in the immediate
neighborhood of the maximum and set to zero the others.
When P > 1 we also use Cadzow’s method [1] to further de-
noise the moments,,. In Fig. 5 we show the results for the case of
a real-valued E-spline anBt = 1,2. As revealed by the plots the
caseP = 1 leads to the best performance and achieves the CRB.

Single Dirac / 21 Noisy Samples with W, = 0.1496
10

T T
= = = CRB Sinc

CRB E-spline
= Observed g for P = 1
Observed o for P = 2|4
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Fig. 5. Sampling a single Dirac with E-splines of order one and two.
Hard-thresholding the samples obtained with a first ordsplite
leads to optimal performance up to 5dB of SNR.

6. CONCLUSIONS

In this paper, we have analyzed the sampling of FRI signatken
presence of noise. For the case of a single Dirac, we haveederi
exact expressions for the CR bounds and showed that keritbls w
the shortest support lead to the best uncertainties. Thehave
showed that a simple algorithm based on hard thresholdinig\aes

the bound for a wide range of SNRs. In future, we aim to perform
a precise analysis of the CR bounds when more than one Dirac is
present in the signal.

As a consequence of the fact that splines have compact suppor

L, the above analysis can be extended to the éase 1 if we as-
sume that the minimum distance between the two closest ®isac

e oL
larger thanLT. In fact in this case we are guaranteed that each Dlraé ]

influences a different set of samples and for this reasonrtbertain-
ties derived for a single Dirac hold exactly. The more congitd
case of closely spaced Diracs is under investigation.

5. SIMULATION RESULTS

If the sampling kernel is a B-spline or an E-spline, we carthsdact
that the kernel has compact support to reduce the noise Bighal.
As mentioned before, if we sample a single Dirac, we get &xact
L non-zero samples wheikis the support of the kernel. Our hard
thresholding variant exploits this fact to remove part of tivise
in the sense that we first detect the indices of the non-zgmaki
samples and then set to zero all other non-zero samplesyaarthe
assumed to be entirely due to additive noise. More pregigélgn
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