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ABSTRACT

Recently, it has been shown that it is possible to sample non-bandlimited
signals that possess a limited number of degrees of freedom and
uniquely reconstruct them from a finite number of uniform samples.
These signals include, amongst others, streams of Diracs. In this
paper, we investigate the problem of estimating the innovation para-
meters of a stream of Diracs from its noisy samples taken withpoly-
nomial or exponential reproducing kernels. For the one-Dirac case,
we provide exact expressions for the Cramér- Rao bounds of this es-
timation problem. Furthermore, we propose methods to reconstruct
the location of a single Dirac that reach the optimal performance
given by the unbiased Cramér-Rao bounds down to noise levels of
5dB.

Index Terms— Signal sampling, spline functions, spectral analy-
sis, Cramér-Rao Bounds.

1. INTRODUCTION

Recently it was shown that it is possible to sample and perfectly
reconstruct parametric non-bandlimited signals [6, 2]. Such signals
are called signal with finite rate of innovation (FRI) since they are
completely described by a finite number of free parameters.

The acquisition model used in these papers is the one depicted in
Fig. 1, where the smoothing functionϕ(t) is called the sampling ker-
nel and normally models the distortion due to the acquisition device.
The sampling kernel used in [6] is the sinc function, while the work
in [2] uses compactly supported functions like for example polyno-
mial splines (B-splines) [4] or exponential splines (E-splines) [5]. In
both works it is shown that perfect reconstruction of classes of FRI
signals from the measurementsyn is achievable by using a variation
of Prony’s method also known as annihilating filter method [3].
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Fig. 1. Sampling setup. Here,x(t) is the continous-time signal,h(t)
the impulse response of the acquisition device andT the sampling
period. The measured samples areyn = 〈x(t), ϕ(t/T − n)〉.

It is now natural to ask whether these reconstruction algorithms
are effective when the measurements are corrupted by noise and

which architecture is the most resilient to this form of distortion.
Since the reconstruction of FRI signals is equivalent to a parametric
estimation problem, one can compute the Cramér-Rao (CR) bounds
to calculate the best possible achievable performance. A first analy-
sis along these lines was done in [1]. That paper only considers the
sinc kernel and an interesting conclusion is that the best CRbounds
are achieved when the sinc with the maximum possible bandwidth
is chosen. Constructive algorithms that reach these boundsare then
proposed.

In this paper we extend the results of [1] to the family of kernels
introduced in [2]. We compute the CR bounds for these architectures
and demonstrate that the kernels with the shortest support have the
tightest bounds. We then present a simple reconstruction strategy
that achieves these bounds.

The paper is organized as follows: In the next section we review
the sampling results of [2] and recall the main properties ofthe sam-
pling kernels considered. In Sections 3 and 4 we evaluate theCR
bounds for the case of a signal made ofK Diracs and spline kernels.
A comparison between the different architectures is also presented.
In the following section, we discuss possible denoising strategies and
present simulation results. We finally conclude in Section 6.

2. SAMPLING SIGNALS WITH FINITE RATE OF
INNOVATION

For the sake of clarity we restrict our analysis to the case where
the acquired signalx(t) is a τ -periodic stream ofK Diracs with
amplitudesak located at distinct instantstk ∈ [0, τ [:

x(t) =
X
l∈Z

K−1X
k=0

akδ(t − tk − lτ ). (1)

Furthermore, we assume the sampling period isT = τ/N . Conse-
quently, the measurements are

yn = 〈x(t), ϕ(t/T − n)〉

=
P
l∈Z

K−1P
k=0

akϕ(tk/T − n − lN), n, = 0, 1, ...N − 1.

In [2], it was shown that with a proper choice of the acquisition ker-
nel, it is possible to reconstructx(t) from the samplesyn exactly.
The kernels used in [2] include:

• Polynomial reproducing kernels: Any kernel that satisfiesX
n∈Z

cm,nϕ(t − n) = tm m = 0, 1, ..., P (2)

for a proper choice of coefficientscm,n.



• Exponential reproducing kernels: Any kernel that satisfiesX
n∈Z

cm,nϕ(t − n) = eαmt with αm = α0 + mλ
andm = 0, 1, ..., P

(3)

for a proper choice of coefficientscm,n.

B-splines belong to the family of kernels that can reproducepoly-
nomials. A B-spline of orderP is a function of compact support
L = P + 1 and can reproduce polynomials up to degreeP . It is
obtained by the(P + 1)-fold convolution of the zero order B-spline
and has the following Fourier transform

β̂P (ω) =

�
1 − ejω

jω

�P+1

.

The family of E-splines represents an extension of the polynomial
splines and the Fourier transform of theP -th order E-spline is:

β̂~α(ω) =
PY

m=0

�
1 − eαm−jω

jω − αm

�
. (4)

The above spline is able to reproduce the exponentialseαmt, m =
0, 1, ..., P . Notice that the exponentαm in Eq. (4) can be complex
which indicates that E-splines are usually complex functions. How-
ever, this can be avoided by choosing complex conjugate exponents.
In Section 4.2, we use purely imaginary exponents equally spaced
around the origin leading to the so called trigonometric E-splines.
For example, forP even, we haveαm = −jω0P/2 + jmω0,
m = 0, 1, ..., P .

The reconstruction scheme of [2] operates as follows: Firstthe
samples are linearly combined with the coefficientscm,n of (2),(3)
to obtain the new measurements

sm =

NX
n=0

cm,nyn m = 0, 1, ..., P. (5)

Then, if the original signal is a stream of Diracs as the one in(1), one
can show thatsm =

PK−1
k=0 akum

k , whereuk = tk/T when poly-
nomial splines are used anduk = eλtk/T when exponential splines
are involved1. In either cases, the pairs of unknowns{ak, uk} can be
retrieved from the power seriessm =

PK−1
k=0 akum

k using the clas-
sical Prony’s method. The key ingredient of this method is the anni-
hilating filter. Callhm, m = 0, 1, ..., K the filter withz-transform
H(z) =

PK
m=0 hmz−m =

QK−1
k=0 (1 − ukz−1). That is, the roots

of H(z) correspond to the locationsuk. It clearly follows that

hm ∗ sm =
KX

i=0

hism−i =
KX

i=0

K−1X
k=0

akhiu
m−i
k = 0. (6)

The filterhm is thus called annihilating filter since it annihilates the
observed seriessm. Moreover, the zeros of this filter uniquely define
the set of locationsuk since the locations are distinct. The identity
in (6) can be written in matrix/vector form as follows:SH = 0
which reveals that the Toeplitz matrixS is rank deficient. By solving
the above system, we retrieve theuk ’s and therefore the locationstk.
Given the locations, the weightsak are then obtained by solving a
system of linear equations. Notice that the problem can be solved
only whenP ≥ 2K − 1.

We thus conclude that perfect reconstruction of a stream of Diracs
is possible with either B-splines or E-splines. The reconstruction

1For the sake of simplicity, we do not discuss the border effects here.

procedure is the same, the only difference is in the choice ofthe co-
efficientscn,m, which depends on the properties of the chosen ker-
nel. We now want to investigate whether these differences lead to
different performances when the samples are corrupted by noise.

3. DERIVATION OF THE CRAM ÉR-RAO BOUNDS

Any practical acquisition device introduces noise during the acqui-
sition process. We assume the noise is introduced after sampling,
consequently, the new measurements are

ŷn = 〈x(t), ϕ(t/T − n)〉 + ǫn, n = 0, 1, ..., N − 1,

whereǫn is assumed to be i.i.d. additive Gaussian noise with zero
mean and varianceσ2. We denote with

Θ = (a0, a1, ..., aK , t0, t1, ..., tK)T

the vector of the unknown parameters ofx(t) and our aim is to esti-
mateΘ as precisely as possible from the noisy measurements. The
performance of any unbiased estimatorΘ̂ is lower bounded by the
Cramér-Rao bound: var(Θ̂) ≥ I−1(θ), whereI(Θ) is the Fisher
Information Matrix (FIM) defined as

I(Θ) = E
�
∇l(Θ)∇l(Θ)T

�
andl(Θ) is the log-likelihood function. It is therefore of primary im-
portance to evaluate this bound in order to analyze the performance
of any reconstruction algorithm and to compare different architec-
tures.

For simplicity we denotêyn as follows:

ŷn = f(Θ, n) + ǫn, n, = 0, 1, ...N − 1.

Now notice that

pŷ(ŷn|Θ) = pǫ(ŷn − f(θ, n)).

Hence, using independency of the noise samples we have:

l(θ) = ln P (ŷ0, ŷ1, ..., ŷN−1|Θ)

=
PN−1

n=0 ln pǫ(ŷn − f(Θ, n)).

Next, we compute the partial derivatives of the log-likelihood func-
tion with respect to the parametersθi. It is easy to show that

∂l(Θ)

∂θi
=

1

σ2

N−1X
n=0

ǫn
∂f(Θ, n)

∂θi
. (7)

Hence∇l(Θ) = 1
σ2

PN−1
n=0 ǫn∇f(Θ, n) and the Fisher information

matrix is given by:

I(Θ) = E
�
∇l(Θ)∇l(Θ)T

�
= E

 
1

σ4

X
n

X
m

ǫnǫm∇f(Θ, n)∇f(Θ, m)T

!
=

1

σ2

N−1X
n=0

∇f(Θ, n)∇f(Θ, n)T , (8)

where we have used the linearity property of the expectationand the
fact the the noise is uncorrelated (independent). The Cram´er-Rao
bound is thus given by:

CRB(Θ) = σ2

 
N−1X
n=0

∇f(Θ, n)∇f(Θ, n)T

!−1

.



4. EVALUATION OF THE CR BOUNDS

In order to evaluate the CR bounds we assume thatK = 1. In this
case, the parametric space is reduced toΘ = (a0, t0)

T and the noisy
samples are given by:

ŷn = 〈x(t), ϕ(t/T − n)〉 + ǫn

=
X
l∈Z

a0ϕ(t0/T − n − lN) + ǫn n = 0, 1, ..., N − 1.

We now evaluate and analyze the CR bounds for the case of B-
splines and E-splines.

4.1. B-splines

Hereϕ(t) is a B-spline of orderP > 0 whose analytical expression
is given by:

ϕ(t) =
1

P !

P+1X
l=0

�
P + 1

l

�
(−1)l

�
t − l +

P + 1

2

�P

+

, (9)

where(t)P
+ = tP whent ≥ 0 and0 otherwise.

The expression of the2 × 2 FIM can be obtained by replacing
Eq. (9) in (8). Unfortunately, the resulting equations are not easy to
simplify especially for large values ofP . We therefore first evaluate
the bounds numerically. We assume thatt0 is uniformly distributed
over the period and, for a fair comparison, adjust the elements of
the FIM so that the kernels have unit norm for any choice ofP and
T . The results shown in Fig. 2 reveal that it is better to use short
splines to minimize the uncertainty on the location. On the other
hand, one can show that higher-order splines lead to a marginally
more accurate evaluation of the amplitude of the Dirac2. In many
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Fig. 2. Uncertainty on the location when sampling a single Dirac
with B-splines of different orders. Recall that hereT = τ/N and
τ = 1, PSNR = a2

0/σ2 = 100.

situations, it is more important to evaluate the location ofthe Dirac
precisely. Therefore, we focus on the linear-spline case, i.e.,P = 1,
which leads to the best uncertainty for the location. Without loss of
generality, we assume thatt0 ∈ [0, T [. The FIM reduces to:

I(Θ) =
1

σ2

1

‖ϕ(t)‖2T

0B� 2a2

0

T2

a0

T

�
2t0
T

− 1
�

a0

T

�
2t0
T

− 1
� 2t2

0

T2 − 2t0
T

+ 1

1CA .

(10)

2The figure is omitted due to the lack of space.

The Cramér-Rao bound is obtained by inverting the FIM and then
by taking the expected value oft0 over [0, T [. This leads to the
following expression:

CRB(Θ) = σ2‖ϕ(t)‖2T

0B� 2
3

T2

a2

0

0

0 2

1CA .

The above bound yields the following uncertainty relationships:

∆t0
τ

≥ 2
3N

p
τ
N

· PSNR−1/2, ∆a0

|a0| ≥ 2√
3

p
τ
N

· PSNR−1/2,
(11)

where PSNR= a2
0/σ2.

4.2. E-splines

We now consider the case where the sampling kernel is an E-spline.
In order to have fair comparisons, however, we restrict our attention
to real-valued E-splines which are obtained when the complex expo-
nents are chosen to be complex conjugate. In our analysis we further
assume that the exponents are purely imaginary and equally spaced
around the origin. Fig. 3 shows the uncertainty on the location with
the trigonometric E-splines of order one to four. As in the B-spline
case, we observe that shorter E-splines lead to better uncertainties
on the location of the Dirac. It is also of interest to observethat
performance improves whenω0 increases. However,ω0 cannot be
chosen arbitrarily. There are two major constraints that have to be
considered. First, the difference between any two distinctexponen-
tial coefficients cannot be a multiple ofj2π, otherwise an E-spline
stops being a basis. Second, to avoid ambiguities in the estimation of
the location of the Dirac,ω0 ≤ 2πT/τ for P even,ω0 ≤ πT/τ for
P odd and the difference between two complex parameters should
not exceedj2π.
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Fig. 3. Uncertainty on the location of a single Dirac when sampling
with trigonometric E-splines of different orders.

Given that we are more interested in the estimation of the lo-
cation of the Dirac, we now concentrate on the shortest real-valued
E-spline. Namely a spline of orderP = 1 with exponentsα1 = jω0

andα−1 = −jω0. Its analytical expression is given by:

βjω0
(t) =

8<: sin ω0t
ω0

0 ≤ t < 1,

− sin ω0(t−2)
ω0

1 ≤ t < 2.

By replacing the above expression in Eq. (8), we obtain the corre-
sponding FIM. The CR bound is obtained by inverting the FIM and



by taking the expected value oft0 over[0, τ [. In this way, we obtain
the following uncertainty relationships:

∆t0
τ

≥
ω0 − sin ω0 cos ω0

ω2
0 sin ω0

1

N

r
τ

N
· PSNR−1/2,

∆a0

|a|
≥

p
ω2

0 − cos2 ω0 + cos4 ω0

ω0 sin ω0

r
τ

N
· PSNR−1/2.

There are several elements in these uncertainty relationships that are
worth mentioning. First, one can easily see that both uncertainties
converge to those in Eq. (11) whenω0 = 0. This is expected since
the E-spline converges to the corresponding linear B-Spline when
ω0 = 0. Second, both uncertainties obtain a minimum atω0 = π/2
and, in the interval[0, π/2], both factors decrease monotonically
with ω0. This is consistent with the plots shown in Fig. 3 where
the CRB had been calculated numerically.

Since as discussed beforeω0 ≤ πT = πτ/N , the exponential
coefficient of the spline tends to zero when the sampling period de-
creases. In Fig. 4, we show the best bounds for the two different sam-
pling kernels considered, together with the bound for the sinc kernel
derived in [1]. All bounds scale in the same way with regard tothe
sampling period. However, as anticipated, the E-spline bounds con-
verge to the ones computed for the B-splines asT decreases, since
ω0 tends to zero.
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Fig. 4. The performances of the different sampling kernels are very
similar and decay in the same way withN . Recall thatT = τ/N .

As a consequence of the fact that splines have compact support
L, the above analysis can be extended to the caseK > 1 if we as-
sume that the minimum distance between the two closest Diracs is
larger thanLT . In fact in this case we are guaranteed that each Dirac
influences a different set of samples and for this reason the uncertain-
ties derived for a single Dirac hold exactly. The more complicated
case of closely spaced Diracs is under investigation.

5. SIMULATION RESULTS

If the sampling kernel is a B-spline or an E-spline, we can usethe fact
that the kernel has compact support to reduce the noise in thesignal.
As mentioned before, if we sample a single Dirac, we get exactly
L non-zero samples whereL is the support of the kernel. Our hard
thresholding variant exploits this fact to remove part of the noise
in the sense that we first detect the indices of the non-zero signal
samples and then set to zero all other non-zero samples as they are
assumed to be entirely due to additive noise. More precisely, given

the noisy samples we compute the moving sum of L consecutive
samples wrapping around to the beginning of the array if necessary.
We compute the absolute value of the elements of the resulting array
and determine its maximum. Since the kernel is non-negative, the
maximum corresponds to the element that is the sum of allL nonzero
signal samples for moderate noise levels. Once the locationof the
maximum is found we keep theL − 1 samples in the immediate
neighborhood of the maximum and set to zero the others.

WhenP > 1 we also use Cadzow’s method [1] to further de-
noise the momentssm. In Fig. 5 we show the results for the case of
a real-valued E-spline andP = 1, 2. As revealed by the plots the
caseP = 1 leads to the best performance and achieves the CRB.
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Fig. 5. Sampling a single Dirac with E-splines of order one and two.
Hard-thresholding the samples obtained with a first order E-spline
leads to optimal performance up to 5dB of SNR.

6. CONCLUSIONS

In this paper, we have analyzed the sampling of FRI signals inthe
presence of noise. For the case of a single Dirac, we have derived
exact expressions for the CR bounds and showed that kernels with
the shortest support lead to the best uncertainties. Then wehave
showed that a simple algorithm based on hard thresholding achieves
the bound for a wide range of SNRs. In future, we aim to perform
a precise analysis of the CR bounds when more than one Dirac is
present in the signal.
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