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ABSTRACT
In this paper, we propose a novel deep neural network ar-
chitecture for multi-modal image super-resolution (MISR).
The architecture is based on a new joint multi-modal dic-
tionary learning (JMDL) algorithm to model cross-modality
dependency and to map them to a high-resolution version of
one modality. In JMDL, we learn three dictionaries and two
transform matrices to combine the modalities. By using the
learned model, we then design the network architecture by a
coupled unfolding of the iterative shrinkage and thresholding
algorithm (ISTA). We finally initialize the parameters of our
network with a new optimization strategy. The initialized pa-
rameters are demonstrated to effectively decrease the training
loss and increase the reconstruction accuracy. The numerical
results show that our method outperforms other state-of-the-
art methods quantitatively and qualitatively for MISR.

Index Terms— multi-modal image super-resolution,
ISTA, dictionary learning, neural network.

1. INTRODUCTION
Single image super-resolution (SISR) is a typical problem

in computer vision and image processing, which aims to in-
fer a high-resolution (HR) image from a single low-resolution
(LR) image. Many methods have been proposed to tackle this
problem, including the methods based on dictionary learning
[1, 2], and the more recent approaches based on deep net-
works [3, 4]. However, these methods only focus on the uni-
modal scenario, i.e., the LR and HR images are from the same
modality.

Often, one scene is captured by multiple sensors, because
information fused by different sensors can represent the scene
more comprehensively. For example, in 3D model repre-
sentation, both RGB and depth images are captured [5]. In
remote sensing, multiple images are captured with different
spectral bands. However, due to the limitations of storage ca-
pacity and the sensor mechanism, some images are captured
with very low resolution, e.g., the depth images. Multi-modal
image super-resolution (MISR) aims to improve the resolu-
tion of these images with the guidance of another HR image
from a different modality. Some works [6, 7, 8] use multi-
modal/joint dictionary learning to address this problem, but
the requirement of computing the sparse codes makes these
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algorithms time-consuming. Other papers use deep neural
networks to achieve the upscaling of one modality with the aid
of another modality [9, 10, 11]. However, they use fully con-
nected convolutional neural networks (CNN) which are not
specifically designed for the multimodal scenario, and these
deep networks might be difficult to interpret and train.

In this paper, we use a model-based approach to derive
the architecture of a deep network for MISR. We first intro-
duce a novel joint multi-modal dictionary learning (JMDL)
algorithm to model the cross-modality dependencies. Then,
based on the JMDL model, we design a new coupled deep
network by unfolding the iterative shrinkage and threshold-
ing algorithm (ISTA). Leveraging results in JMDL and the
specific structure of the network, we devise an optimization
strategy to initialize the parameters of the network before run-
ning the traditional back-propagation strategy. The end result
is a simpler architecture easier to train but that outperforms
state-of-the-art methods for MISR.

2. RELATED WORK
MISR. The MISR approaches can be broadly classified

into two categories: joint image filtering based methods [12,
13, 14] and deep learning based methods [9, 10, 11]. The
basic idea of joint image filtering is to transfer the salient
structures in the guidance image, e.g., edges and textures, to
the target image through constructing some joint filters. Ac-
cording to the filter type, joint image filtering methods can be
further classified into two categories: static filtering [12] and
dynamic filtering [14]. Recent works [9, 10, 11] proposed to
use deep neural networks to solve this problem. Specifically,
Li et.al [10] proposed to use CNN to achieve the upscaling of
a LR image with a guided HR image from a different modal-
ity. The two works [9] and [11] proposed to super-resolve the
depth image with the aid of the RGB image. However, these
networks have the same disadvantages, i.e., their network ar-
chitectures are designed empirically and what is happening
inside is difficult to interpret. Moreover, their network pa-
rameters are all initialized randomly.

Iterative unfolding strategy. The iteration of many
model-based parameter estimation algorithms usually con-
sists of a linear operation followed by a non-linear thresh-
olding, which is similar to the layer in a deep neural net-
work. These iterative algorithms include, for example, ISTA
[15] for sparse estimation, the approximate message passing
(AMP) [16] for compressive sensing, the alternating direc-



tion method of multipliers (ADMM) [17] for generic inverse
problem. Intuitively, we can turn the traditional iterative al-
gorithms into interpretable deep networks by unfolding each
iteration. Some works that use this unfolding perspective
have appeared recently. For example, for the task of sparse
codes estimation, the papers [18, 19] unroll the ISTA algo-
rithm to be a deep network and [20] turns the AMP algorithm
to be a deep network. Recently, Yang et.al [21] proposed
to unfold the ADMM algorithm for compressive sensing
magnetic resonance imaging (MRI), and Bertocchi et.al [22]
proposed to unfold a proximal interior point method to a deep
network for solving image deblurring problem.

3. PROPOSED METHOD
3.1. Joint multi-modal dictionary learning (JMDL)

The MISR task aims to find the HR patch zzz from the LR
patch xxx with the guidance of HR patch yyy, where zzz and xxx are
from the same modality and yyy is from a different modality. We
assume that xxx, yyy and zzz are sparse in dictionaries DDDx, DDDy and
DDDz, respectively, and their sparse representations are corre-
lated by two transform matrices WWW x and WWW y. Then, the JMDL
problem can be formulated as follows:

min
{

DDDx ,DDDy ,DDDz ,
ΛΛΛx ,ΛΛΛy ,ΛΛΛz ,
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where XXX , YYY and ZZZ ∈ Rn×t are the matrices related to the
gathered training samples, and λx, λy and λz are the regular-
ization parameters for the sparse representations ΛΛΛ x, ΛΛΛ y and
ΛΛΛ z, respectively. Moreover, µx and µy are the regularization
parameters for the transform matrices, and γ is the regular-
ization parameter for the sparse representation mapping error.
Finally, dddx,i, dddy,i and dddz,i are the i-th atom of dictionaries DDDx,
DDDy, and DDDz, respectively. The two most related models with
Eq. (1) are the SCDL model in [23] and the SliM2 model in
[24]. However, the SCDL model only correlate two modal-
ities and the SliM2 model only establishes the single map-
ping from one modality to another. In contrast, our JMDL
model establish the joint mapping from two modalities to a
third modality.

This problem in Eq. (1) is not convex with regard to DDDx,
DDDy, DDDz, ΛΛΛ x, ΛΛΛ y, ΛΛΛ z, WWW x and WWW z. However, it is convex to one
variable when the others are fixed. Thus, we can solve this
problem using an alternating method. We first fix the dictio-
naries and transform matrices to update the sparse represen-
tations, then we fix the sparse representations and the trans-
form matrices to update the dictionaries, and finally we fix the
dictionaries and sparse representations to learn the transform
matrices.
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⋯

⋯

⋯
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Fig. 1: The architecture of the proposed coupled ISTA net-
work.

3.2. Coupled ISTA network

In the synthesis phase, given a LR patch xxx and a guided
HR patch yyy, we first need to find the sparse coefficients with
the learned dictionaries DDDx and DDDy through solving:

min
{aaa,bbb}

1
2
‖xxx−DDDxaaa‖2

2 +
1
2

∥∥yyy−DDDybbb
∥∥2

2 +λx ‖aaa‖1 +λy ‖bbb‖1 . (2)

In Eq. (2), the updating of aaa and bbb is independent of each
other, which are both LASSO problems. After obtaining aaa
and bbb, we can have sparse representation ccc = WWW xaaa+WWW ybbb.
Finally, the HR patch zzz can be calculated by multiplying ccc by
the dictionary DDDz.

The aforementioned algorithm has two drawbacks. Firstly,
the calculation of sparse representations aaa and bbb relies on an
iterative algorithm, e.g., ISTA or FISTA, which is time-
consuming. Secondly, the synthesis and training phases are
not fully correlated with each other, i.e., the ground-truth HR
patch is not accessible in the synthesis phase, which may
decrease the reconstruction accuracy. To overcome these
drawbacks, we propose a coupled ISTA network by unfold-
ing the ISTA algorithm. The architecture of the network is
shown in Fig. 1. Specifically, the network is composed of two
branches: the upper branch aims to infer the sparse represen-
tation aaa for the LR input patch, while the lower branch aims
to infer the sparse representation bbb for the guided HR patch.
Take the upper branch for example, the ISTA algorithms
works in iterations to obtain aaa as follows:

aaak = Sλk
(aaak−1 +DDDT

x (xxx−DDDxaaak−1)), (3)

where aaak is the value of aaa at the k-th iteration. Through
unfolding the Eq. (3), we can have the upper branch in Fig.
1. In order to make the network more flexible, we make
three relaxations about the original ISTA algorithm. Firstly,
the dictionary DDDx is not required to be the same across dif-
ferent layers, i.e., we have a set of synthesis dictionaries
{DDD1(x), · · · ,DDDk(x)}. Secondly, the relationship between DDDT

x
and DDDx is broken, instead we have another set of analysis
dictionaries {PPP1(x), · · · ,PPPk(x)} as shown in Fig. 1. Thirdly,
the soft threshold is allowed to change across layers, and we
use a vector threshold instead of a constant scalar. We have
different vector thresholds {λλλ 1(x), · · · ,λλλ k(x)} for each layer.

The lower branch can be obtained in the same way. Then,
the outputs of these two branches are combined by the trans-
form matrices to obtain ccc which is further multiplied by the
reconstruction matrix to reconstruct the HR patch zzz.



3.3. Layer-wise initialization algorithm.
Before training the deep network, we propose a layer-wise

initialization algorithm to initialize all the network parame-
ters. Take the upper branch for example, we aim to minimize
the mean squared error (MSE) between the predicted sparse
codes by the upper branch and the target sparse codes ΛΛΛ x ob-
tained by solving (1). Since the parameters of the upper and
lower branches can be initialized using the same algorithm,
we just ignore the subscript x and y to make the notations
simpler. Specifically, in the k-th layer, we have the following
optimization target:

{PPPk,DDDk,λλλ k}= argmin
PPPk ,DDDk ,λλλ k

∥∥ΛΛΛ −Sλλλ k
(BBBk−1 +PPPk(XXX−DDDkBBBk−1))

∥∥2
F ,

(4)
where BBBk−1 is the predicted sparse code of the previous (k−

1)-th layer. Here, PPPk ∈ Rm×n(m > n) can be regarded as an
analysis dictionary and DDDk ∈ Rn×m is a synthesis dictionary.
λλλ k ∈Rm is a threshold vector of the k-th layer. We initialize
BBB0 by minimizing the reconstruction error of training samples
XXX using the original dictionary DDD (equal to DDDx for the upper
branch and DDDy for the lower branch):

BBB0 = argmin
BBB0

‖XXX−DDDBBB0‖2
F +µ ‖BBB0‖2

F , (5)

which can be solved by ridge regression to get solution as
BBB0 = (DDDT DDD+ µIII)−1DDDT XXX , where III is the identity matrix. To
make the network structure simple, we define a mapping ma-
trix MMMe ∈Rm×n which directly maps XXX to be BBB0, and we ini-
tialize MMMe as (DDDT DDD+ µIII)−1DDDT . Next, we focus on solving
the optimization problem in (4). Since we have three vari-
ables to be optimized, we use an alternating way to update
them iteratively.

Step 1. We fix DDDk and λλλ k to update the analysis dictionary
PPPk. In this case, since (XXX −DDDkBBBk−1) does not change, we
denote it by UUU , and then PPPk can be obtained through solving
the following optimization:

PPPk = argmin
PPPk

∥∥ΛΛΛ −Sλλλ k
(BBBk−1 +PPPkUUU)

∥∥2
F . (6)

We update the atoms of PPPk row by row. When updating the
j-th atom, the other atoms remain fixed. Specifically, the j-th
atom of PPPk is updated by

pppT
j = argmin

pppT
j

∥∥∥gggT
j −S

λ
j

k
(bbbT

j + pppT
j UUU)

∥∥∥2

2
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where gggT
j , bbbT

j , pppT
j are the j-th (0 < j ≤ m) row of ΛΛΛ , BBBk−1,

and PPPk, respectively. λ
j

k is the j-th element in vector λλλ k. The
difficulty here is that the soft-thresholding operator is non-
linear. Inspired by [25], we divide the non-linear operation
into two linear operations. Actually, the soft-thresholding op-
erator splits the signals (bbbT

j + pppT
j UUU) into two sets: one set

with all zeros after soft-thresholding and the other set with
non-zero values. Suppose JJJ denotes the indices of the non-
zero samples and ĴJJ denotes the indices of samples that are set
to zero, we can split UUU into UUUJ and UUU Ĵ . Likewise, we can

split gggT
j into gggJ

j and gggĴ
j , bbbT

j into bbbJ
j and bbbĴ

j . Then, (7) can be
written as follows,

pppT
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j
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j
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Here, we assume that
∥∥∥gggĴ

j
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2
is constant when the threshold

is fixed, and we can simplify (8) to be

pppT
j = argmin
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k
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which can be solved through least square fitting, and we can
calculate pppT

j by

pppT
j = (gggJ

j −bbbJ
j ±λ

j
k )(UUU

J)T (UUUJ(UUUJ)T +µIII)−1, (10)

where µ is a regularization parameter applied when UUUJ is not
full rank.

Step 2. We fix PPPk and λλλ k to update DDDk, through solving
the following optimization:

DDDk = argmin
DDDk

∥∥ΛΛΛ −Sλλλ k
(BBBk−1 +PPPkXXX−PPPkDDDkBBBk−1))

∥∥2
F . (11)

To solve this problem, we first denote VVV k = PPPkDDDk and update
VVV k using the same procedure as in Step 1. Then, since we
already have the updated version of PPPk, we can further spilt
DDDk from VVV k and this yields

DDDk = (PPPT
k PPPk +µIII)−1PPPT

k VVV k. (12)

Step 3. We fix PPPk and DDDk to update the thresholds λλλ k. Here,
λλλ k is a vector, and we update each element of it indepen-
dently. The updating of the j-th element is through the fol-
lowing optimization:

λ
j

k = argmin
λ

j
k

∥∥∥gggT
j −S

λ
j

k
(bbbT

j + pppT
j UUU)

∥∥∥2

2
. (13)

Suppose that qqqT = bbbT
j + pppT

j UUU , and the elements in qqqT are
sorted such that |q1| ≤ |q2| ≤ . . . ≤ |qt |. The candidates for
λ

j
k can be selected from the list {|q1|/2,(|q1|+|q2|)/2,(|q2|+
|q3|)/2, . . . ,(|qt |+1)/2}. The value which minimizes the loss
in (13) is the new updated value of λ

j
k .

These three steps are iterated until reaching the maximum
iteration. After we obtain PPPk, DDDk, and λλλ k, we can update the
new sparse codes BBBk through:

BBBk = Sλλλ k
(BBBk−1 +PPPk(XXX−DDDkBBBk−1)). (14)

Then, the parameter initialization of the next layer can be
launched. Finally, after K layer initialization, we obtain the
final predicted sparse codes BBBK(x) for the upper branch and
BBBK(y) for the lower branch. Then, the two transform matrices
can be initialized by:

WWW ′x = WWW xΛΛΛ xBBBT
K(x)(BBBK(x)BBBT

K(x)+µIII)−1, (15)

WWW ′y = WWW yΛΛΛ yBBBT
K(y)(BBBK(y)BBBT

K(y)+µIII)−1, (16)



Table 1: Effectiveness of the JMDL algorithm

Methods Bicubic CDL JMDL
RMSE 6.10 4.95 4.86
SSIM 0.9536 0.9688 0.9702

where WWW x, WWW y, ΛΛΛ x, and ΛΛΛ y are obtained by solving (1). By
denoting BBBK(z) =WWW ′xBBBK(x)+WWW ′yBBBK(y), we can initialize the
reconstruction matrix DDD′z as:

DDD′z = ZZZBBBT
K(z)(BBBK(z)BBBT

K(z)+µIII)−1. (17)

After initialization, we train the network in Fig. 1 using the
standard back-propagation algorithm.

4. NUMERICAL RESULTS
The experiments are performed in the RGB and depth

multi-modal scenario1, including the Middlebury2 and Sintel3

datasets, for 4× upscaling. For training, we extract 2,000,000
patches with size 8×8 from the training dataset provided by
[26]. The number of layers K is 2 and the dictionary size m is
256. The Adam optimizer is used to train the network for 200
epochs with basic learning rate as 0.0001.

4.1. Effectiveness of JMDL algorithm
Table 1 compares the root mean squared error (RMSE)

and structural similarity (SSIM) results of the JMDL algo-
rithm with a recently proposed coupled dictionary learning
(CDL) algorithm [8] for MISR task. The results are aver-
aged among all testing images. We can see that our algorithm
outperforms CDL in both RMSE and SSIM, validating the
effectiveness of the new multi-modal model.

4.2. The role of initialization
We compare in Fig. 2 (a) the training loss curves with ran-

dom initialization and our initialization algorithms. It can be
seen that our algorithm yields a lower training loss. Moreover,
we have a much lower loss start than the random one, since
the parameters have already been optimized by our initial-
ization algorithm. We also compare the RMSE performance
in Fig. 2 (b) with these two initializations, and we can see
that our algorithm constantly outperforms the random initial-
ization in the reconstruction accuracy, independently of the
number of epochs.

4.3. Comparison against other methods
We compare our method with the following approaches

for depth image super-resolution: Ferstl et al. [27], Xie et al.
[28], Park et al. [29], Lu et al. [30], Gu et al. [31], Wang et al.
[3], Kim et al. [4], and Song et al. [32]. The numerical results
are compared by two measurements: RMSE and SSIM. Table
2 presents the RMSE and SSIM results for the Middlebury
and Sintel datasets. In this table, our results are obtained by

1Our method can provide state-of-the-art results in other multi-modal
cases, but we only provide the results in RGB/depth case due to space limit.

2http://vision.middlebury.edu/stereo/data/scenes2005/
3http://sintel.is.tue.mpg.de/
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Fig. 2: (a) shows the training loss across 100 training epochs
with random initialization and our initialization methods, and
(b) compares the average RMSE value of testing images with
these two initialization methods.

(a) Bicubic (b) Ferstl (c) Xie (d) Gu (e) Wang (f) Ours

Fig. 3: Visual comparison of Art in Middlebury dataset with
upscaling factor = 4. The first row shows the reconstructed
depth images, and the second row shows the error maps. (a)
Bicubic. (b) Ferstl et al. [27]. (c) Xie et al. [28]. (d) Gu et
al.[31]. (e)Wang et al.[3]. (f) Our method.

cascading the network in Fig. 1. We can see that our method
outperforms the other state-of-the-art approaches.

Fig. 3 visualizes the 4× upscaling results of image Art
from the Middlebury dataset with different methods. As can
be seen from this figure, our method reconstructs clearer and
sharper edges than the other methods.

5. CONCLUSION
In this paper, we introduced a joint multi-modal dictionary

learning model for multi-modal image super-resolution task.
Based on this model, we further proposed a new deep neural
network through unfolding the ISTA algorithm. We also in-
troduced a novel way to initialize all the network parameters
by solving a multi-layer dictionary learning problem. Com-
pared with the random initialization, our new initialization
algorithm is demonstrated to achieve better performance in
both training and testing phases. Numerical results show that
our method improves significantly over other state-of-the-art
methods in RGB/depth image super-resolution.

Table 2: Results on the Middlebury and Sintel datasets for
4× upscaling, with the best results in bold.

Methods Ambush Bamboo Cave Market Art Books Moebius
RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

Bicubic 6.39 0.9685 14.09 0.8760 6.61 0.9503 8.83 0.9295 3.87 0.9687 1.60 0.9911 1.32 0.9908
Xie et al. [28] 8.79 0.9438 19.02 0.8301 9.14 0.9221 12.21 0.8869 3.79 0.9758 1.63 0.9917 1.33 0.9910
Park et al. [29] 6.03 0.9678 12.05 0.8910 7.13 0.9379 9.45 0.9067 3.76 0.9752 1.66 0.9912 1.42 0.9911
Ferstl et al. [27] 5.99 0.9701 11.54 0.8950 6.40 0.9563 8.01 0.9298 3.73 0.9771 1.65 0.9915 1.43 0.9909

Lu et al. [30] 5.53 0.9712 10.61 0.9028 6.10 0.9610 8.31 0.9266 4.10 0.9747 2.18 0.9896 1.56 0.9896
Gu et al.[31] 6.04 0.9766 13.35 0.9001 6.15 0.9613 8.10 0.9470 3.52 0.9779 1.57 0.9923 1.23 0.9930

Wang et al.[3] 4.29 0.9850 9.63 0.9389 4.37 0.9769 5.94 0.9664 2.59 0.9858 1.08 0.9951 0.93 0.9949
Kim et al.[4] 3.18 0.9913 9.18 0.9465 3.55 0.9839 5.52 0.9703 1.87 0.9926 0.75 0.9968 0.87 0.9952

Song et al.[32] - - - - - - - - 1.89 0.9889 0.92 0.9930 - -
Our 2.80 0.9928 8.13 0.9547 3.13 0.9861 4.85 0.9755 1.73 0.9936 0.70 0.9969 0.77 0.9959
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traleSupélec, Université Paris-Saclay, Gif-Sur-Yvette, France , 2018.

[23] Shenlong Wang, Lei Zhang, Yan Liang, and Quan Pan, “Semi-coupled
dictionary learning with applications to image super-resolution and
photo-sketch synthesis,” in Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 2216–2223.

[24] Yueting Zhuang, Yanfei Wang, Fei Wu, Yin Zhang, and Weiming
Lu, “Supervised coupled dictionary learning with group structures for
multi-modal retrieval.,” in AAAI, 2013, pp. 1070–1076.

[25] Ron Rubinstein and Michael Elad, “Dictionary learning for analysis-
synthesis thresholding,” IEEE Transactions on Signal Processing, vol.
62, no. 22, pp. 5962–5972, 2014.
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