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Abstract

This paper introduces novel wavelet-based semi-parametric centralized and distributed compression

methods for a class of 1-D piecewise smooth functions. Classical centralized compression schemes are

based on a relatively complex, nonlinear encoder and a simple, linear decoder. Recently, a new paradigm

in compression called distributed source coding has emerged. This setup involves multiple encoders,

where each one partially observes the source, and a centralized decoder. First, we focus on the dual

situation of the centralized compression with a simple encoder and a complex decoder. We show that,

by incorporating parametric estimation into the decoding procedure, it is possible to achieve the same

rate-distortion performance as that of a conventional wavelet-based compression scheme. Second, we

consider the distributed compression scenario, where each independent encoder partially observes the 1-

D piecewise smooth function. We propose a new wavelet-based distributed compression scheme that uses

parametric estimation to perform joint decoding. Our analysis shows that it is possible for the proposed

scheme to achieve the same compression performance as that of a joint encoding scheme.
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I. INTRODUCTION

Over the last two decades, transform coding has emerged as the dominating compression strategy due

to its high efficiency and low complexity. Given an observed source f ∈ L2(R), where L2(R) indicates

the space of square integrable function, the linear transform decomposes f over the basis B = {gm} of

L2(R). The transform coefficients are then quantized and entropy coded. This process is simply reversed

at the decoder. The key problem then is to minimize the mean-squared error (MSE) distortion given

by D = E
[
∥f − f̂∥2

]
= E

[∫∞
−∞(f(t)− f̂(t))2dt

]
for a given rate R. Many important results and

optimality conditions of transform coding have been derived (see [2]). For example, when the source is

Gaussian, it is well known that the Karhunen-Loève Transform (KLT) is the optimal transform [2], [3].

Recently, a new paradigm in compression called distributed source coding (DSC) (see [4]–[10]) has

started to emerge. In contrast to the centralized scenario, the source is partially observed by a number

of independent encoders. The observations, however, can be jointly decoded. Such scenario imposes a

new set of requirements for compression, which typically includes low-complexity encoders, robustness

and high compression efficiency [4]. It is then natural to wonder how the classical centralized transform

coding strategy is going to change under this new scenario. Recent research has provided us with some

precise answers. For example, the KLT has been shown to be the best transform for Gaussian sources [11]

and the optimality conditions for transforms in high bit-rate regimes are given in [12], [13]. If, however,

the Gaussian and high bit rate assumptions are relaxed then the problem of distributed transform coding

remains largely open. It is also of interest to note that the shift in complexity from the encoder to the

decoder is also central to a set of new sampling theories such as compressed sensing (CS) [14], [15] and

sampling signals with finite rate of innovation (FRI) [16], [17]. Compressed sensing has also led to new

DSC results [18], [19]. The work in this paper has been inspired by these recent sampling results; it is

however closer to FRI theory since the signals considered here are closer to those studied in [17].

In this paper, we will focus on the wavelet transform, which has had a profound impact on modern

signal processing theory (see [20]). In particular, we focus on the theoretical study of the performance of

wavelets in compression schemes with simple encoders and a complex decoder. Our study is based on

the compression of a class of piecewise smooth functions, which is usually used as a simplified model

of a row (or a column) of an image [21]. For a conventional centralized transform coding setting, it

has been shown that a wavelet-based compression strategy that employs a nonlinear encoder produces

the best R-D performance [21]. The problem of finding the best strategy for a wavelet-based distributed

compression, however, is still open.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 3

In order to investigate the impact of the structural change in complexity, we first focus on the centralized

scenario with a simple encoder and a non-linear decoder. By including a form of nonlinear parametric

estimation technique in the decoding process, we will show that it is indeed possible to achieve a

comparable R-D performance to that of the traditional scheme. We then investigate how the concept

of nonlinear decoding can be applied in the DSC setting. In particular, we focus on the case where the

disparity between each observed signal can be described by a form of geometric transformation. This is,

in spirit, similar to the use of motion compensated prediction algorithm in video compression. We will

also propose a distributed compression scheme that uses the FRI-based parametric estimation technique.

Finally, we briefly discuss how the theoretical results in this paper can be extended to real images.

The paper is organized as follows. In the next section, we review the notion of piecewise smooth

functions including their wavelet-based approximation and compression results. Section III presents our

proposed semi-parametric compression algorithm for the centralized case, where a detailed R-D analysis

is given. The concept of semi-parametric compression is then extended to the distributed compression

scenario in Section IV. A constructive parametric estimation algorithm based on the sampling theory

of signals with finite rate of innovation is presented in Section V. We give our simulation results in

Section VI. A brief discussion on application to real images is then presented in Section VII. Finally,

the conclusion is given in Section VIII.

II. SIGNAL MODEL, APPROXIMATION AND COMPRESSION

A. Signal Model

Throughout this paper, we will assume that the support of the continuous function f(t) is normalized

to t ∈ [0, 1[ where t ∈ [a, b[ denotes a ≤ t < b. We define the regularity of a function with the Lipschitz

exponent [22]. Recall that a function f(t) restricted to [a, b] is said to be uniformly α-Lipschitz over

[a, b], with α ≥ 0, if it can be written as f(t) = p(t) + ϵ(t), where p(t) is a polynomial of degree

m = ⌊α⌋ and there exists a constant K > 0 such that ∀t ∈ (a, b) and ∀ν ∈ [a, b], |ϵ(t)| ≤ K|t− ν|α. A

piecewise smooth function f(t), t ∈ [0, 1[ with K + 1 pieces is then defined as

f(t) =

K∑
i=0

fi(t)1[ti,ti+1[(t) with 1[a,b[(t) =

 1 ∀t ∈ [a, b[,

0 otherwise,
(1)

where t0 = 0, tK+1 = 1 and fi(t) is uniformly α-Lipschitz over [ti, ti+1].

Given a function f(t) as defined in (1), it was shown in [23] that f(t) can be decomposed into two

functions: a piecewise polynomial function fp(t) with pieces of maximum degree ⌊α⌋ and a globally
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α-Lipschitz smooth function fα(t). Hence, our piecewise smooth functions can be written as follows:

f(t) = fp(t) + fα(t). (2)

The piecewise polynomial signal can be written as follows:

fp(t) =

K∑
k=0

⌊α⌋∑
r=0

ar,k(t− tk)
r
+ (3)

with t+ = max(t, 0). This signal model will be used in our analysis in the forthcoming sections.

B. Wavelet Representation and Approximation

Let us recall that the wavelet decomposition of a continuous function f(t), t ∈ [0, 1[, is formally

expressed as

f(t) =

L−1∑
n=0

cJ,nφJ,n(t) +

J∑
j=−∞

2−j−1∑
n=0

dj,nψj,n(t), (4)

where J < 0, L = 2−J , φJ,n(t) = 2−J/2φ
(
2−J t− n

)
and ψj,n(t) = 2−j/2ψ

(
2−jt− n

)
. The low-pass

{cJ,n} and high-pass {dj,n} coefficients are given by the following inner products: cJ,n = ⟨f(t), φ̃J,n(t)⟩

and dj,n =
⟨
f(t), ψ̃j,n(t)

⟩
, where φ̃J,n and ψ̃j,n are the dual of φJ,n and ψj,n respectively such that

⟨φ̃j,m, φj,n⟩ = δm,n and similarly for ψ̃j,n.

One of the most well known properties of the wavelet transform is the vanishing moments property.

The wavelet transform is said to have (P + 1) vanishing moments if its analysis wavelet ψ̃(t) satisfies∫∞
−∞ tpψ̃(t)dt = 0, ∀p ∈ {0, 1, ..., P}. Moreover, given a function that is uniformly α-Lipschitz around v

and a wavelet with at least ⌊α+ 1⌋ vanishing moments, the standard result in wavelet theory states that

the wavelet coefficients in the cone of influence of v decays as dj,n ∼ A2j(α+1/2) across scales with a

constant A > 0. We refer to [20], [22], [24]–[26] for a detailed treatment on wavelet theory.

The N -term linear approximation of f(t) can then be obtained by representing f(t) with only N

coefficients where the choice of these coefficients is fixed a priori. Normally, the first N coefficients are

retained. If we assume that N ∼ 2JN then the following approximation can be obtained:

fN (t) =

L−1∑
n=0

cJ,nφJ,n(t) +

J∑
j=J−JN+1

2−j−1∑
n=0

dj,nψj,n(t), (5)

with JN ≥ 0 and J < 0. Note that this is also referred to as linear multiresolution approximation. Let us

denote the squared approximation error with εl(N, f) = ∥f(t) − fN (t)∥2. Given that f(t) is uniformly

α-Lipschitz over [0, 1] and the wavelet has at least ⌊α+1⌋ vanishing moments, it can be shown that the

error decays as εl(N, f) ∼ N−2α [22]. On the contrary, if f(t) is piecewise α-Lipschitz smooth with
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K pieces as given in (1) then εl(N, f) ∼ KN−1 [22]. If we now approximate f(t) with the N largest

amplitude coefficients instead, then the best approximation of f(t) is given by

fIN
(t) =

∑
n∈IN

cJ,nφJ,n(t) +
∑

(j,n)∈IN

dj,nψj,n(t),

where IN is the index set of the N largest amplitude coefficients. This is a form of nonlinear approxi-

mation since the index set IN depends on f(t). Given the same piecewise α-Lipschitz smooth function,

it now follows that εn(N, f) ∼ N−2α [22]. Therefore, nonlinear approximation is superior to linear

approximation when the function is piecewise smooth.

C. Wavelet Compression

One can think of compression as a process of approximation followed by quantization. Suppose that

we are to compress a smooth α-Lipschitz function. Given that the wavelet has at least ⌊α+1⌋ vanishing

moments, the distortion-rate function D(R) of a compression scheme that allocates the bits to the first

N coefficients is D(R) ≤ c1R
−2α [21]. If, however, a function is piecewise smooth as described by (1),

the achieved D(R) becomes D(R) ≤ c2R
−2α + c3R

−1. On the other hand, a compression scheme that

allocates bits to the N largest coefficients achieves D(R) ≤ c4R
−2α + c5

√
R2−c6

√
R [21]. Thus, at high

rates, the distortion of a nonlinear compression scheme decays as R−2α whereas a scheme with a linear

approximation strategy has a slower decay of R−1.

III. CENTRALIZED SEMI-PARAMETRIC COMPRESSION

We now consider the setup where the encoder is based on linear approximation and the decoder is

nonlinear, which is the dual of the traditional compression.

A. Semi-Parametric Compression Strategy

Consider a piecewise smooth function f(t) given by the signal model in (2). Intuitively, one can recover

f(t) by reconstructing fp(t) and fα(t) separately. Since fα(t) is uniformly α-Lipschitz, a compression

method based on the linear approximation shown in (5) can be used to compress fα(t) with D(R) ∼

R−2α. On the other hand, we can reconstruct fp(t) by estimating the locations ti and the polynomial

coefficients ar,k, which is a parametric estimation problem.

First, consider the wavelet decomposition of f(t) as shown in (4) where we assume that the wavelet

has at least ⌊α + 1⌋ vanishing moments. We denote with Ip a set of indices such that Ip = {(j, n) ∈

Z : |⟨fp(t), ψj,n(t)⟩ > 0}. In other words, the coefficients {dj,n}(j,n)∈Ip
are in the cone of influence of
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Fig. 1. (a) A piecewise smooth function f(t) = fp(t) + fα(t); (b) the piecewise polynomial function fp(t); (c) the smooth

α-Lipschitz function fα(t); (d) coefficients of f(t); (e) coefficients of fp(t); (f) coefficients of fα(t). Note that, the boxes

represent the cone of influence of discontinuities as denoted by the index set Ip.

discontinuities of fp(t). In contrast, the coefficients in {dj,n}(j,n)/∈Ip
are outside the cone of influence

and decay as dj,n ∼ 2j(α+1/2) This is illustrated in Fig. 1.

Let us now address the linear approximation-based quantization strategy in details. From (5), fα(t) is

approximated with only the coefficients in decomposition level j = J − JN +1, ..., J . Since the wavelet

coefficients of fα(t) decays as dj,n ≤ A2j(α+1/2), this is equivalent to setting the quantizer step size to

∆ = A2(J−JN+1)(α+1/2). Therefore, the number of bits allocated to each coefficient at resolution 2−j is

given by Rj,α =
⌈
log2

(
A2j(α+1/2)/∆

)⌉
+ 1 = ⌈(JN − J + j)(α+ 1/2) + 1⌉, j = J − JN + 1, ..., J ,

where an extra bit is needed to code the sign. Hence, the total rate allocated to the high-pass coefficients

dj,n for the reconstruction of fα(t) is R1 =
∑J

j=J−JN+1 2
−jRj,α.

In reality, the encoder does not have a direct access to the smooth component fα(t). This is not a

problem for the coefficients {dj,n}(j,n)/∈Ip
outside the cone of influence of discontinuities as

dj,n = ⟨f(t), ψj,n(t)⟩ = ⟨fα(t), ψj,n(t)⟩+ ⟨fp(t), ψj,n(t)⟩︸ ︷︷ ︸
=0

= ⟨fα(t), ψj,n(t)⟩ , (j, n) /∈ Ip.
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Hence the above quantization strategy can be applied directly. For the coefficients {dj,n}(j,n)∈Ip
in the

cone of influence of discontinuities, it follows that

dj,n = ⟨fα(t), ψj,n(t)⟩+ ⟨fp(t), ψj,n(t)⟩ , (j, n) ∈ Ip.

Since {dj,n}(j,n)∈Ip
do not decay as 2j(α+1/2) across scales, the values of {dj,n}(j,n)∈Ip

are outside the

range of the quantizer i.e. for the same ∆, more than Rj,α bits are required to code the coefficients in

the set Ip. However, it is true that the information of the wavelet coefficients of fα(t) is fully contained

within the first Rj,α bits (starting from the less significant bits (LSB)). Therefore, for {dj,n}(j,n)∈Ip
, only

the first Rj,α LSBs are transmitted to the decoder and the rest of the bits can be discarded.

As mentioned earlier, the reconstruction of the piecewise polynomial component fp(t) can be done

parametrically. We recall that the wavelet coefficients of f(t) are given by dj,n = ⟨fα(t), ψj,n(t)⟩ +

⟨fp(t), ψj,n(t)⟩, (j, n) ∈ Ip. Let us denote with f̂p(t), the reconstructed version of fp(t), which is obtained

from parametric estimation, and let d̂j,n = ⟨f̂p(t), ψj,n(t)⟩ be the corresponding wavelet coefficients.

In addition, by following the above quantization strategy, the decoder receives the first Rj,α LSBs of

{dj,n}(j,n)∈Ip
. We denote with d̄j,n, the quantized version of dj,n. We will now show that {dj,n}(j,n)∈Ip

can be decoded using the concept of error correction code. Let us demonstrate this concept with the

following example.

Consider the case where RJ,α = 2 bits for a given J . Suppose that the binary representation of d̄J,n is

1111 and that, at the decoder, parametric estimation gives d̂J,n = 1110. The encoder sends the first RJ,α

LSBs of d̄J,n, which is 11, to the decoder. Since dJ,n = ⟨fα(t), ψj,n(t)⟩ + ⟨fp(t), ψj,n(t)⟩, this means

that the quantized version of ⟨fα(t), ψJ,n(t)⟩ can either take a positive value of 1 or a negative value of

111 (this is without the sign bit attached), which would lead to d̄J,n = 1111 or d̄J,n = 111 respectively.

However, since the decoder knows that the magnitude of ⟨fα(t), ψj,n(t)⟩ is bounded by RJ,α − 1 = 1

bit, it can select d̄J,n = 1111 as the correct decoded value. This is, in spirit, similar to the use channel

coding technique in Wyner-Ziv coding [6], [9], where the first RJ,α bits is the equivalent of the coset.

The proposed ‘semi-parametric’ compression algorithm for a piecewise smooth function can now be

outlined as follows:

Algorithm 1 (centralized semi-parametric compression):

Encoding:

1: N -term linear approximation: the encoder approximates f(t) as shown in (5);

2: Quantization: the coefficients {cJ,n} and {dj,n}J−JN+1≤j≤J are quantized using a linear approximation-

based quantization strategy as discussed in this section to obtain the quantized coefficients {c̄J,n}



IEEE TRANSACTIONS ON SIGNAL PROCESSING 8

and {d̄j,n}J−JN+1≤j≤J .

Decoding:

1: Parametric estimation: the decoder approximates fp(t) by estimating the locations {ti}0≤i≤K+1 and

the polynomial coefficients {ar,k}0≤r≤⌊α⌋,0≤k≤K of fp(t) from the received quantized coefficients

{c̄J,n} and {d̄j,n}J−JN+1≤j≤J to obtain f̂p(t);

2: Cone of influence prediction: the coefficients {dj,n}−∞<j≤J,n∈Ip
in the cone of influence are

predicted as follows:

d̂j,n = ⟨f̂p(t), ψj,n(t)⟩, j = −∞, ..., J − JN , (j, n) ∈ Ip;

3: Error correction decoding: the decoder uses the received Rj,α LSBs of quantized coefficients d̄j,n

together with the predicted coefficients d̂j,n to decode {dj,n}J−JN+1≤j≤J,(j,n)∈Ip
, where we denote

with d̃j,n, the decoded version of dj,n;

4: Final reconstruction: f(t) is reconstructed from the inverse wavelet transform of the following set of

coefficients: {c̄J,n}, {d̄j,n}J−JN+1≤j≤J,(j,n)/∈Ip
, {d̃j,n}J−JN+1≤j≤J,(j,n)∈Ip

and {d̂j,n}−∞<j≤J−JN
.

By using parametric estimation, the decoder is able to predict the coefficients in the cone of influence

from the reconstructed function f̂p(t) (see Fig. 1 (b) and (e)). Moreover, the encoder in the proposed

algorithm is low in complexity as it is based on linear wavelet approximation.

B. Cramér-Rao Bound of Parametric Estimation

One of the core elements of the proposed algorithm is the parametric estimation step. Let us now

assess the efficiency of using scaling and wavelet coefficients in parametric estimation with the Cramér-

Rao Bound (CRB). Note that this is also an important step in determining the R-D performance of

the proposed algorithm. Given a function f(Θ, t) where Θ = (θ1, θ2, ..., θK)T is a vector of K deter-

ministic parameters, the CRB gives us the lower bound on the variance of any unbiased estimator i.e.

CRB(Θ) ≤ E

[(
Θ̂−Θ

)(
Θ̂−Θ

)T]
, where Θ̂ is obtained from any unbiased estimation procedure. The

CRB can be calculated from the inverse of the Fisher Information Matrix I(Θ) as CRB(Θ) = I−1(Θ) =(
E
[
∇l(Θ)∇l(Θ)T

])−1
, where l(Θ) is the log-likelihood function and ∇ =

(
∂
∂θ1
, ∂
∂θ2
, ..., ∂

∂θK

)
.

Consider now the problem of estimating Θ from a set of noisy transform coefficients given by ŷn =

yn + ϵn = yn(f(Θ, t)) + ϵn, n ∈ IL, where ϵn is i.i.d. additive Gaussian noise with zero mean and

variance σ2ϵ , and IL denotes the index set of the received coefficients. It can be shown that CRB(Θ) is

as follows:

CRB(Θ) = σ2ϵ

(∑
n∈IL

∇yn∇yTn

)−1

. (6)
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The full derivation of this result can be found in [27], [28].

In order to gain some intuition, we consider the following simplified estimation problem. The parametric

function of interest s(t) is assumed to be piecewise constant with a single discontinuity:

s(t) =

 0 t < t0,

A t0 ≤ t < 1.
(7)

The estimator then has to retrieve Θ = (t0, A)
T from a set of L noisy scaling coefficients ŷn = yn+ϵn =

⟨s(t), φJ,n(t)⟩+ϵn, n = 0, 1, ..., L−1. By applying the formula in (6), we have that CRB(Θ) = σ2ϵJt0,A,

where Jt0,A is

Jt0,A =

 ∑L−1
n=0

(
∂yn

∂t0

)2 ∑L−1
n=0

∂yn

∂t0
∂yn

∂A∑L−1
n=0

∂yn

∂A
∂yn

∂t0

∑L−1
n=0

(
∂yn

∂A

)2
−1

.

Therefore, the CRBs for the estimation of the location t0 and the amplitude A of s(t) are given by

CRB(t0) = σ2ϵ (Jt0,A)11 and CRB(A) = σ2ϵ (Jt0,A)22 (8)

where (Jt0,A)ij denotes the entry in the i-th row and j-th column of the matrix Jt0,A.

C. Rate-Distortion Analysis

The distortion-rate bound D(R) of the proposed semi-parametric compression algorithm is derived in

this section. For simplicity, we will use the simplified model of f(t) given by

f(t) = s(t) + fα(t), (9)

where s(t) is the step function in (7) and fα(t) is such that 0 ≤ α < 1. In addition, let us assume that

the decoder uses L low-pass coefficients to estimate the t0 and A. With this set up, we will show that,

at high rates, the distortion D(R) decays as R−2α for a wide range of rates.

Firstly, let us revisit the low-pass representation of f(t), which can be written as follows:

yn = ⟨f(t), φJ,n(t)⟩
(a)
= ⟨s(t), φJ,n(t)⟩+ ⟨fα(t), φJ,n(t)⟩ = ysn + yαn ,

where (a) follows from (2) and the linearity of the inner product. We can then write the quantized

coefficients as

ȳn = yn + ϵqn = ysn + yαn + ϵqn = ysn + ϵsn, (10)

where ϵqn represents the quantization noise, which is assumed to be additive and Gaussian. Thus, we have

written the quantized coefficients ȳn as the sum of the coefficients of the step function ysn and the noise
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term ϵsn = ϵqn + yαn . Suppose that a uniform scalar quantizer is used, at high rates, it follows that the

variance σ2q of the quantization noise {ϵqn}0≤n≤L−1 is given by

σ2q = C2−2
R2
L , (11)

where C is a constant and R2 is the total rate allocated to represent {yn}0≤n≤L−1.

In the derivation of the D(R) bound that follows, we assume the following:

• the wavelet basis has at least ⌊α+ 1⌋ vanishing moments;

• the decoder uses L quantized low-pass coefficients to estimate the parameters t0 and A;

• the estimators of t0 and A are minimum-variance unbiased estimator;

• the quantization noise, ϵqn, is additive Gaussian;

• the probability density function (PDF) of the low-pass coefficients of the smooth function fα(t)

denoted by yαn is zero-mean Gaussian 1 with variance σ2α;

• the quantization noise ϵqn and the coefficients yαn are independent, which imply that ϵsn is Gaussian

distributed with zero mean and variance σ2ϵ , where

σ2ϵ =
(
σ2q + σ2α

)
, (12)

We begin by noting that the proposed decoding algorithm essentially reconstructs s(t) and fα(t)

separately. The total distortion D can, therefore, be written as

D = Dα +Ds, (13)

where Dα and Ds are the distortion for the reconstruction of fα(t) and s(t) respectively. Since fα(t)

is uniformly α-Lipschitz smooth, an encoder in Algorithm 1 whose rate allocation follows the N -term

wavelet linear approximation strategy achieves

Dα(R1) ≤ c7R
−2α
1 , (14)

where R1 is the total rate (in bits) allocated for the compression of fα(t).

Our next step then is to derive the expression for Ds. The reconstructed step function ŝ(t) can be

written as

ŝ(t) =

 0 t < t0 + ϵt,

A+ ϵA t0 + ϵt ≤ t ≤ 1.

1The PDF of yα
n and ϵqn are arbitrarily assumed to be zero-mean Gaussian as this allows us to use the analytical expression

of the CRB, given by (6). The derived distortion-rate bound is then verified with simulations.
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Here, the errors in the estimation of t0 and A are represented by ϵt and ϵA. It then follows that the

average distortion Ds = MSE (s(t)− ŝ(t)) is given by

Ds = E

[∫
(s(t)− ŝ(t))2 dt

]
= E

[∫ t0+|ϵt|

t0

A2dt+

∫ 1

t0+ϵt

ϵ2Adt

]
= E

[
A2|ϵt|+ ϵ2Acτ − ϵ2Aϵt

]
with a constant 0 ≤ cτ ≤ 1. By assuming that ϵt and ϵA are independent, we have that

Ds = E
[
A2|ϵt|

]
+ E

[
ϵ2Acτ

]
− E

[
ϵ2A
]
E [ϵt]︸ ︷︷ ︸
=0

= A2E [|ϵt|] + cτE
[
ϵ2A
]
.

Let us denote with σ2t and σ2A the variances of ϵt and ϵA respectively. Our assumption that the estimators

are minimum variance estimators means that both σ2t and σ2A are given by their respective CRBs shown

in (8) where, from (10), σ2ϵ is given by (12). Using Jensen’s inequality for concave functions2, we have

that

E[|ϵt|] = E

[√
(ϵt − E[ϵt])

2

]
≤
√

E
[
(ϵt − E[ϵt])

2
]
= σt =

√
CRB(t0)

as E[ϵt] = 0. Clearly, E
[
ϵ2A
]
= σ2A = CRB(A). Therefore, the expected distortion can be written as

Ds ≤ A2σt + σ2A = A2
√
CRB(t0) + CRB(A).

By using the expression for the CRBs in (8) together with the relationship given in (10), we obtain the

following R-D bound for the estimation of the step function:

Ds(R2) ≤ A2σϵ (Jt0,A)
1

2

11 + σ2ϵ (Jt0,A)22
(a)
= c8

(
σ2q + σ2α

) 1

2 + c9
(
σ2q + σ2α

)
(b)
= c8

(
c102

−2R2
L + σ2α

) 1

2

+ c9

(
c102

−2R2
L + σ2α

)
,

(15)

where we have replaced (Jt0,A)11 and (Jt0,A)22 with c8 and c9 respectively and (a) and (b) follow from

substituting in (12) and (11).

The expression for the total distortion-rate bound can now be obtained by substituting (14) and (15)

into (13), which gives

D(R) ≤ c7R
−2α
1 + c8

(
c102

−2R2
L + σ2α

) 1

2

+ c9

(
c102

−2R2
L + σ2α

)
(16)

with R equal to R = R1 +R2. Given the total rate R, we now need to allocate the bits among R1 and

R2 so that the distortion in (16) is minimized. This is a well known constrained optimization problem,

2Jensen’s inequality: given a random variable X and a concave function f(x), it follows that E[f(X)] ≤ f(E[X]).
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which can be solved using Lagrange multipliers. One necessary condition for the optimal bit allocation

is that the derivatives of the distortion D with respect to R1 and R2 are equal i.e.

∂D

∂R1
=

∂D

∂R2
. (17)

First, let us consider the case where the variance of {yαn} is negligible i.e. σ2α ≈ 0. The D(R) function

now becomes

D(R) ≤ c7R
−2α
1 + c8

√
c102

−R2
L + c9c102

−2R2
L . (18)

By applying the condition given in (17) to (18) and assuming a high-rate regime, we have that the bits

can be approximately allocated as

R2 ≈ L(2α+ 1) log2R1 + C ′ (19)

and the total rate is then given by

R = R1 + L(2α+ 1) log2R1 + C ′ ≈ R1. (20)

From the substitution of (19) into (18), together with the approximation in (20), we have that the total

distortion is

D(R) ≤ c7R
−2α + c11R

−(2α+1) + c12R
−2(2α+1). (21)

From (21), we can see that both terms c11R−(2α+1) and c12R
−2(2α+1) represent the distortion due to

the discontinuity, which decay faster than c7R−2α. Therefore, given that σ2α ≈ 0, the D(R) curve of our

proposed scheme follows D(R) ∼ R−2α at high R.

If we now consider the case where σ2α > 0 and assume that c102
−2R2

L < σ2α, the distortion given in

(16) can then be approximated with a Taylor series expansion of the square root term
(
c102

−2R2
L + σ2α

) 1

2

to obtain

D(R) ≤ c7R
−2α
1 + c8

(
c102

−2R2
L

2σα
+ σα

)
+ c9

(
c102

−2R2
L + σ2α

)
. (22)

By solving the equal gradient condition in (17), where D is approximately given by (22), we obtain the

following rate allocation: R2 =
L
2 (2α+1) log2R1 +C ′ with a constant C ′. Therefore, the overall D(R)

function becomes

D(R) ≤ c7R
−2α + c11R

−(2α+1) +
(
c8σα + c9σ

2
α

)
.

Note that the term c11R
−(2α+1) now represents the distortion caused by the discontinuity, which still

decays faster than the distortion from the encoding of the smooth function. It is straightforward to extend
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the results of this R-D analysis to the case where the signal is piecewise smooth as given in (2), which

is summarized as follows:

Summary 1: Consider a piecewise smooth function f(t) as given in (2). The semi-parametric com-

pression of f(t), which employs a linear approximation strategy at the encoder and reconstructs the

piecewise polynomial component fp(t) and the uniformly smooth component fα(t) separately, achieves

the following D(R) function:

D(R) ≤ c13R
−2α + c14R

−(2α+1) + c15R
−2(2α+1)

when the variance of the coefficients of fα(t) is close to zero. Otherwise, the achievable D(R) function

is

D(R) ≤ c13R
−2α + c14R

−(2α+1) +
(
c16σα + c17σ

2
α

)
.

Therefore, given that σ2α is sufficiently small, the proposed scheme can achieve the dominating decay

rate of R−2α for a wide range of rates. Such performance is comparable to that of a compression scheme

based on nonlinear approximation.

IV. DISTRIBUTED SEMI-PARAMETRIC COMPRESSION

We now investigate the problem of distributed transform coding of piecewise smooth functions. Our

aim here is to devise a suitable compression strategy for this new scenario. We then determine the

differences in R-D performance among the distributed, joint and independent compression schemes.

A. Signal and Disparity Models

We consider the scenario where N piecewise smooth signals are independently encoded but are decoded

jointly. We denote a set of N functions with {fi(t)}1≤i≤N , where the subscript i indicates the signal that

is observed by Encoder i. Each function is given by the model in (2). Hence, fi(t) ∈ L2([0, 1]) can be

written as

fi(t) = fip(t) + fiα(t), i = 1, ..., N. (23)

We consider a disparity model where the main difference between the two observed signals is described

by a shift. For simplicity, we write each function fi(t) as

fi(t) = f1(t− τi) + ϵiα(t), i = 2, ..., N. (24)

This is illustrated in Fig. 2. The term ϵiα(t) represents the prediction error (or the residual), which is

assumed to be uniformly α-Lipschitz. The construction of this model is motivated by the block-based
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prediction or disparity estimation in applications such as video compression algorithms, multi-view images

and image-based rendering. Fig. 3 shows an example of the scan lines taken from two images where the

signals and the residual follow the model in (23) and (24) quite closely.

B. Distributed Semi-Parametric Compression Strategy

In the analysis that follows, we will assume that a reconstructed version of f1(t) is available at the

decoder by means of conventional wavelet nonlinear approximation-based compression strategy. Thus,

fi(t), i = 2, ..., N , can be reconstructed by first estimating the shift parameter τi and then the residual

ϵiα(t) as follows: f̂i(t) = f̂1(t − τ̂i) + ϵ̂iα(t), where f̂i(t) and ϵ̂iα(t) denote the reconstructed versions,

and τ̂i is the estimated shift parameter. One of the challenges here is that Encoders 2 to N have no access

to f1(t) and, hence, the prediction error ϵiα(t) cannot be directly calculated and transmitted.

From the model of the piecewise smooth function in (23), let us define the locations of the disconti-

nuities in fip(t) with {tik}1≤k≤K such that tik = t1k
− τi. Therefore, by retrieving {tik}1≤k≤K , the shift

parameters τi can be estimated by taking the average:

τ̂i =
1

K

K∑
k=1

(
t̂1k

− t̂ik
)
, i = 2, ..., N. (25)

In the following analysis, we will assume for simplicity that the decoder is able to retrieve the locations

{t1k
}1≤k≤K of f1p

(t). Hence, the problem of estimating τi becomes the problem of estimating the

locations {tik}1≤k≤K , i = 2, ..., N . In addition, we will assume that the decoder only uses L low-pass

coefficients ciJ,n = ⟨fi(t), φJ,n(t)⟩, n = 0, ..., L− 1, of fi(t) to estimate {tik}1≤k≤K .

Since the reconstructed version of f1(t) is available at the decoder, the prediction of fi(t) can be

formed by f̃i(t) = f̂1(t − τ̂i). Assuming that the range of the amplitude of ϵiα(t) can be estimated a

priori, we can adopt a similar quantization strategy as the one discussed in Section III, where the encoder

Fig. 2. Distributed compression problem setup using the disparity-by-translation model with prediction error. Each function is

piecewise smooth and fi(t) = f1(t− τi) + ϵiα(t), i = 2, ..., N .
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Fig. 3. Examples of the scan lines taken from stereo images shown in (a) and (b). (c) A scan line of the first image f1(x, y
′);

(d) a scan line from the second image f2(x, y
′); (e) the prediction error given by f2(x, y

′)− f1(x− τx, y
′), where τx denotes

the shift parameter.

only transmits the required LSBs to the decoder. We, therefore, propose the following semi-parametric

distributed compression algorithm:

Algorithm 2 (distributed semi-parametric compression):

Encoding and Decoding of f1(t):

1: Nonlinear approximation-based compression: f1(t) is encoded and decoded with a conventional

wavelet nonlinear approximation-based compression scheme;

2: Extracting locations of discontinuities: the locations {t1k
}k=0,..,K are extracted from f̂1(t).

Encoding of fi(t), i = 2, ..., N :

1: N -term linear approximation: the encoder approximates fi(t) as shown in (5);

2: Quantization: the coefficients {ciJ,n} and {dij,n}J−JN+1≤j≤J are quantized using a linear approximation-

based quantization strategy as discussed in Section III-A to obtain {c̄iJ,n} and {d̄ij,n}J−JN+1≤j≤J .

For {d̄ij,n}, only the required LSBs are transmitted. The analysis that determines the number of

required LSBs will be given in the next section.

Joint Decoding of fi(t), i = 2, ..., N :

1: Parametric estimation: the decoder estimates the locations tik , k = 0, ..,K, from the L quantized

low-pass coefficients c̄iJ,n and the shift parameter τi is calculated using (25);

2: Prediction by translation: a predicted version of fi(t) is formed by f̃i(t) = f̂1(t − τ̂) and the

coefficients d̃ij,n =
⟨
f̃i(t), ψj,n(t)

⟩
, J − JN + 1 ≤ j ≤ J are obtained;

3: Error correction decoding: the error correction decoding technique discussed in Section III-A can

also be applied at this stage where the received LSBs of quantized coefficients {d̄ij,n}J−JN+1≤j≤J

are used together with the predicted coefficients {d̃ij,n}J−JN+1≤j≤J to decode dij,n . The decoded
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coefficient is denoted with d̂ij,n ;

4: Final reconstruction: the signal fi(t) is reconstructed by taking the inverse wavelet transform of

the following set of coefficients: {c̄iJ,n}, {d̂ij,n}J−JN+1≤j≤J and {d̃ij,n}−∞<j≤J−JN
.

C. Rate-Distortion Analysis

As with the centralized case, we consider a simplified model of the piecewise smooth signal, which

consists of a step function and a uniformly smooth α-Lipschitz function. We also make the same set of

assumptions as in the previous section here. For the sake of clarity, we begin by assuming that there are

only two functions f1(t) and f2(t) where

fi(t) = si(t) + fiα(t), si(t) =

 0 t < ti,

A ti ≤ t < 1,

for i = 1, 2. The generalization of the analysis to the case of N signals will be given at the end of

this section. We divide the derivation of the D(R) function into two parts; the first part will look at

disparity by translation only and the second part will look at the residual. We will show that the overall

D(R) function decays as R−2α for a wide range of rates and that the rate-distortion performance of the

proposed distributed compression scheme is better than an independent encoding scheme and, in some

cases, comparable to the joint encoding scheme.

1) Disparity by Translation: Let us begin by assuming that there is no prediction error i.e. ϵ2α
(t) = 0.

Hence, the function f2(t) can be written as f2(t) = f1(t− τ). We have that the total distortion is

D = D1 +D2, (26)

where D1 and D2 are the distortion due to the reconstruction of f1(t) and f2(t) respectively. Since a

conventional wavelet nonlinear approximation-based compression scheme is used to encode f1(t), D1 is

given by

D1(R1) ≤ c1R
−2α
1 , (27)

where R1 is the total number of bits allocated to compress f1(t). Our next task is then to derive D2.

Since the decoder reconstructs f2(t) by estimating the shift parameter τ = t1 − t2, the reconstructed

function can be written as f̂2(t) = f̂1(t − τ̂) = ŝ1(t − τ̂) + f̂1α
(t − τ̂), where τ̂ is the estimated shift

parameter. Let ϵf1(t) denote the compression error of f1(t) such that f1(t) = f̂1(t)+ϵf1(t). It then follows

that D2 is given by D2 = E

[∫ (
f2(t)− f̂2(t)

)2
dt

]
= E

[∫
(f1(t− τ)− (f1(t− τ̂) + ϵf1(t− τ̂)))2 dt

]
.
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Let ϵτ denote an error in the estimation of τ i.e. ϵτ = τ − τ̂ . Given that R1 is sufficiently high and that

ϵτ is small, the distortion D2 can be approximated as

D2 ≈ E

[∫
(s1(t− τ)− s1(t− τ̂))2 dt+

∫
ϵ2f1(t− τ̂)dt

]
= A2E [|ϵτ |] +D1.

Given that the location t1 can be retrieved by the decoder, the error in the parametric estimation becomes

ϵτ = t2 − t̂2 = ϵt2 . From the analysis of the centralized case in Section III, this leads to the distortion of

the form:

D2 ≈ A2E [|ϵt2 |] +D1 = A2
√
CRB(t2) +D1.

Using the same set of assumptions as in Section III, it follows that
√
CRB(t2) = c2

(
σ2q + σ2α

) 1

2 with

σ2q = C2−
2R2
L . Here, σ2q is the variance of the quantization noise and σ2α represents the variance of the

term ⟨f2α
(t), φJ,n(t)⟩. Hence, we have that

D2 ≈ c2

(
c32

− 2R2
L + σ2α

) 1

2

+D1. (28)

Therefore, the total distortion can be approximated by substituting (27) and (28) into (26), which gives

D ≈ 2c1R
−2α
1 + c2

(
c32

− 2R2
L + σ2α

) 1

2

. (29)

Assuming a high rate regime, where c32
−2R2

L < σ2α, the distortion given in (29) can be approximated

with a Taylor series expansion of the square root function as follows:

D(R) ≈ 2c1R
−2α
1 +

c2c3
2σα

2
−2R2

L + c2σα. (30)

By solving the Lagrange multiplier method, we have that the optimal rate allocation for R2 is

R2 =
L

2
(2α+ 1) log2R1 + C (31)

with a constant C. The total rate R is thus given by

R = R1 +
L

2
(2α+ 1) log2R1 + C ≈ R1. (32)

Therefore, by substituting (31) into (30) together with the approximation in (32), the overall D(R)

function of the proposed scheme is as follows:

D(R) ≤ 2c1R
−2α + c4R

−(2α+1) + c2σα.

If the term σα is sufficiently small, then D(R) decays as R−2α for a wide range of rates. Finally, we

note here that even though Encoder 2 employs a linear compression strategy, the overall D(R) function

has a decay characteristic of a nonlinear scheme for a wide range of rates.



IEEE TRANSACTIONS ON SIGNAL PROCESSING 18

2) Disparity by Translation with Prediction Error: Let us now include the prediction error ϵα(t) to

the distortion-rate analysis such that f2(t) = f1(t− τ)+ ϵα(t) = s1(t− τ)+f1α
(t− τ)+ ϵα(t). It follows

that the total distortion of the proposed scheme is now given by D = D1 +D2 = D1 +Dτ +Dϵ, where

Dτ is due to the reconstruction of the prediction f̃2(t) = f̂1(t− τ̂) and Dϵ is due to the reconstruction

of the prediction error. Our next step is to determine Dϵ.

First, we examine the approximation property of the prediction error. Since the function ϵα(t) is

uniformly α-Lipschitz, the wavelet linear approximation based compression gives the following distortion:

Dϵ(Rϵ) = βD1(Rϵ) = βc1R
−2α
ϵ with β ≥ 0, (33)

where Rϵ is the total rates allocated to represent ϵα(t). The constant β is used to relate the energy

of the prediction error to f1(t). In terms of the wavelet coefficients, (33) implies maxj,n∈Z |dϵj,n | ≤
√
βmaxj,n∈Z |d1j,n

|, where {dϵj,n} and {d1j,n
} denote the wavelet coefficients of ϵα(t) and f1(t) respec-

tively.

If we are to compress ϵα(t) directly, a linear approximation-based compression would achieve the

D(R) given in (33) with a quantizer step size

∆ϵ ≤
√
βmax

n∈Z

(
|d1J,n

|
)
2−JN (α+1/2) (34)

such that the coefficients in decomposition level J−JN+1 ≤ j ≤ J are retained. Note that max
n∈Z

(
|d1J,n

|
)
≈

max
n∈Z

(
|d2J,n

|
)
. Let Rϵ(j) be the number of bits per coefficient required to directly quantize dϵj,n , it follows

that Rϵ(j) = ⌈(JN − J + j)(α+ 1/2)⌉+ 1 with JN > 0, J < 0 and j ≤ J . Note that one extra bit has

been included for the sign.

In our setup, however, Encoder 2 does not have access to ϵα(t). Intuitively, one can still quantize the

coefficients of f2(t) with a step size ∆ϵ as given in (34). If we assume that the best possible prediction

f1(t − τ) is available at the decoder, then the information of the wavelet coefficients of ϵα(t) is fully

contained within the first Rϵ(j) LSBs. This means that the quantized coefficients of the prediction error

can be retrieved from the first Rϵ(j) LSBs of each coefficient and any additional distortion is due to the

error in the prediction.

In reality, β has to be estimated prior to compression as ϵα(t) is not accessible. We denote with β∗,

the value of β estimated by Encoder 2. Thus, the actual quantizer step size used by Encoder 2 is given

by ∆∗
ϵ =

√
β∗maxn∈Z

(
|d2J,n

|
)
2−JN (α+1/2). If f1(t− τ) is available at the decoder, then setting β∗ = β

gives us the D(R) equivalent to that of a joint encoding scheme. Instead, if β∗ > β, then the step size ∆∗
ϵ

will be too large and the added redundancy will result in an inferior compression performance. Lastly,
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if β∗ < β then not enough bits will be transmitted for ϵα(t) to be correctly decoded. In the analysis that

follows, we will assume that β∗ ≥ β.

With the above quantization strategy, we can be certain that Dϵ decays as Dϵ ≤ β∗c1R
−2α
2ϵ

with a linear

approximation-based compression strategy both inside and outside the cone of influence of discontinuities.

This is because the encoder transmits enough bits to carry the information of ϵα(t) and any additional

error is due to the parametric estimation of the prediction f̃2(t). Here, R2ϵ
denotes the total number of

bits allocated to represent ϵα(t). Note also that we have used the estimated β∗ instead of β. From the

analysis in the previous setup, where the prediction error was absent, it directly follows from (28) and

(30) that Dτ is given by

Dτ (R2τ
) ≈ c1R

−2α
1 +

c2c3
2σα

2
−2R2τ

L + c2σα,

where R2τ
is the number of bits allocated to the L low-pass coefficients, which are used to estimate

f̃2(t).

We can now express the total distortion as follows:

D(R) ≤ 2c1R
−2α
1 +

c2c3
2σα

2
−2R2τ

L + c2σα + β∗c1R
−2α
2ϵ

(35)

with R = R1+R2τ
+R2ϵ

. The optimal bit allocation can then be obtained using the Lagrange multiplier

method, which gives
R2τ

= L
2 (2α+ 1) log2R1 + C,

R2ϵ
=

(
β∗

2

) 1

(2α+1)

R1.
(36)

The total rate R can then be approximated as

R = R1 +
L
2 (2α+ 1) log2R1 + C +

(
β∗

2

) 1

(2α+1)

R1

≈
(
1 +

(
β∗

2

) 1

(2α+1)

)
R1

(37)

for high R. By substituting (36) and (37) into (35), we have that the D(R) curve for the proposed

distributed semi-parametric compression scheme is given by

D(R) ≤

(
1 +

(
β∗

2

) 1

(2α+1)

)2α+1 (
2c1R

−2α + c4R
−(2α+1)

)
+ c2σα.

If we assume that R is high and that the term σα is negligible, then the distortion-rate behavior at high

rates follows

D(R) ≤ 2

(
1 +

(
β∗

2

) 1

2α+1

)2α+1

c1R
−2α. (38)
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3) Extension to N Signals: It is straight forward to extend the R-D analysis for the setup in (24) to

N signals. It is assumed here that σiα = σα for i = 2, ..., N . In addition, we can assume that Encoder 2

to N use the same β∗. From (35), it follows that the total distortion is now given by

D(R) ≤ Nc1R
−2α
1 +

c2c3
2σα

N∑
i=2

2
−2Riτ

L + (N − 1)c2σα + β∗c1

N∑
i=2

R−2α
iϵ

,

which gives the following optimal rate allocation:

Riτ =
L

2
(2α+ 1) log2R1 + C and Riϵ =

(
β∗

N

) 1

2α+1

R1

with i = 2, ..., N . The total rate can then be approximated as R ≈
(
1 + (N − 1)

(
β∗

N

) 1

2α+1

)
R1. Finally,

the resulting D(R) bound obtained is given as follows:

D(R) ≤

(
1 + (N − 1)

(
β∗

N

) 1

(2α+1)

)2α+1 (
Nc1R

−2α + (N − 1)c10R
−(2α+1)

)
+ (N − 1)c2σα.

D. Comparison with Independent and Joint Compression

Let us now compare the R-D performance of the proposed compression scheme with that of an

independent scheme and an ideal joint encoding scheme. For the sake of clarity in the following analysis,

we first assume that there are only two signals, namely f1(t) and f2(t).

1) Independent compression: The independent compression scheme encodes and decodes each ob-

served signal independently. We denote the D(R) curve of such scheme with Dind(R), which can be

written as Dind(R) ≤ c1R
−2α
1 + c1R

−2α
2 with R = R1+R2. Clearly, the optimal rate allocation is given

by R1 = R2. This gives the following distortion-rate function:

Dind(R) ≤ 2c1

(
R

2

)−2α

= 22α+1c1R
−2α.

In comparison to the proposed distributed scheme, assuming that σα is sufficiently small, the distortion

of the independent scheme is higher by a factor of

Dind(R)

D(R)
=

22α(
1 +

(
β∗

2

) 1

2α+1

)2α+1 .

Interestingly, the gain in the compression performance increases with the smoothness of the function.

One can easily show that the independent compression scheme for N signals achieves Dind(R) =

2c1N
2αR−2α.
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2) Centralized compression: Since an ideal centralized joint encoding scheme has access to all of

the observed functions, the prediction error can be encoded with optimal bit allocation and transmitted

directly to the decoder along with the quantized shift parameter τ . The decoder can then reconstruct

f2(t) as f̂2(t) = f̄1(t− τ̄) + ϵ̄α(t).

Let ϵqτ be the quantization error of τ , assuming that a uniform quantizer is used, the distortion in

the reconstruction of the prediction f̃2(t) = f1(t − τ) can be approximated by Dτ (Rτ ) ≈ A2E[|ϵqτ |] ≤
A2
√
12
2−Rτ , where we have used the Jensen’s inequality and Rτ denotes the number of bits allocated to

quantize τ . By following a similar analysis as shown in the distributed case, the total distortion can be

shown to be

Djoint(R) ≤ 2c1R
−2α
1 +

A2

√
12

2−Rτ + βc1R
−2α
ϵ ,

where Rϵ is the total bits allocated to the compression of ϵα(t). It then follows that the optimal bit

allocation is given by Rτ = (2α + 1) log2R1 + C and Rϵ =
(
β
2

) 1

(2α+1)

R1. In a high-rate regime, we

can approximate the total rate R with

R = R1 +Rτ +Rϵ ≈

(
1 +

(
β

2

) 1

(2α+1)

)
R1.

It then follows that the joint encoding scheme achieves the following D(R) at high rates:

D(R) ≤

(
1 +

(
β∗

2

) 1

2α+1

)2α+1 (
2c1R

−2α + c9R
−(2α+1)

)
,

which has the same form as the distributed case given in (38). The only difference is in the values of β∗

and β. This means that the closer the value of β∗ can be to the actual β (i.e. the better the quality of

the prediction of f2(t)), the closer the performance of the distributed compression scheme is to that of

an ideal joint encoding scenario. The extension of this analysis to the case with N signals gives

Djoint(R) ≤

(
1 + (N − 1)

(
β

N

) 1

(2α+1)

)2α+1 (
Nc1R

−2α + (N − 1)c11R
−(2α+1)

)
.

As with before, the analysis in this section can be generalized to the case where each function is

piecewise smooth as given in (2). We summarize the findings in this section as follows:

Summary 2: Consider a set of N piecewise smooth functions, {fi(t)}1≤i≤N ∈ L2([0, 1]), where each

consists of a piecewise polynomial function and a uniformly α-Lipschitz function and fi(t) = f1(t −

τ)+ ϵiα(t). The function ϵiα(t) is uniformly α-Lipschitz. Given that the D(R) function corresponding to

a linear compression of ϵiα(t) follows Diϵ(Riϵ) = βD1(Riϵ), at high rates, the proposed semi-parametric
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distributed compression scheme achieves

D(R) ≤

(
1 + (N − 1)

(
β∗

N

) 1

(2α+1)

)2α+1 (
Nc18R

−2α + (N − 1)c19R
−(2α+1)

)
+ (N − 1)c20σα,

where β∗ is the estimate of β. At high rates, provided that σα is sufficiently small, if β∗ = β then the

achieved D(R) performance is comparable to that of a joint encoding scheme and is better by a factor

of
2N2α−1(

1 + (N − 1)
(
β∗

N

) 1

2α+1

)2α+1

when compared to an independent compression scheme.

V. CONSTRUCTIVE PARAMETRIC ESTIMATION ALGORITHMS

One of the key elements of the proposed algorithms is the use parametric estimation during the decoding

stage. In this section, we introduce a practical parametric estimation technique based around the recently

developed concept of sampling of signals with finite rate of innovation (FRI) [16]. FRI signals are, loosely

speaking, a class of signals or functions f(t) that can be described by a finite number of free parameters

over a given interval t ∈ [ta, tb]. The definition and sampling theory of FRI signals are given in details in

[16], [17]. It is easy to see that a piecewise polynomial signal as shown in (3) also belongs to this class

of functions as there are a finite number of discontinuities and each polynomial piece can be described

by at most ⌊α⌋ polynomial coefficients.

Let us present one of the key results from the sampling schemes of FRI signals described in [16],

[17]. Given a function f(t) and a scaling function φ(t), in the context of sampling, the samples or the

coefficients are given by yn = ⟨f(t), φ(t/T − n)⟩, where T is the sampling period. Assume that φ(t)

together with its shifted versions can reproduce polynomials of maximum degree P i.e. φ(t) satisfies∑
n∈Z

wp
nφ(t/T − n) = tp, p = 0, 1, ..., P (39)

for a proper set of coefficients wp
n. The polynomial reproduction coefficients can be calculated as wp

n =

⟨tp, φ̃(t/T − n)⟩, where φ̃(t) is the dual of φ(t). It then follows that the continuous moment mp of order

p of the signal f(t) can be obtained as follows:

Mp =

∫
f(t)tpdt =

⟨
f(t),

∑
n∈Z

wp
nφ(t/T − n)

⟩
=
∑
n∈Z

wp
n ⟨f(t), φ(t/T − n)⟩ =

∑
n∈Z

wp
nyn. (40)

Therefore, given wp
n, one can retrieve the continuous moments of f(t) from the coefficients yn provided

that f(t) lies in the region where the condition given by (39) is satisfied. In fact, the standard result in
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wavelet theory states that if the wavelet function has (P +1) vanishing moments then the corresponding

scaling function reproduces polynomial up to an order of P .

In [17], a sampling scheme that allows a perfect reconstruction of a piecewise polynomial signal

was presented. First, the authors developed a sampling framework for a stream of Diracs and differ-

entiated Diracs based on the annihilating filter method (a.k.a. Prony’s method [29]), which uses the

retrieved continuous moments to calculate the locations and amplitudes of each Dirac. Since the R-

th derivative f
(R)
p (t) of a piecewise polynomial function fp(t) with pieces of maximum degree R

is also a stream of differentiated Diracs, the same sampling scheme can be applied to reconstruct

f
(R)
p (t). Let us denote with z

(R)
n , the R-th order finite difference of yn. It was shown in [17] that

z
(1)
n = yn+1 − yn =

⟨
df(t)
dt , φ(t/T − n) ∗ β0(t/T − n)

⟩
, which leads to the following identity:

z(R)
n =

⟨
f (R)(t), φ(t/T − n) ∗ βR−1(t/T − n)

⟩
,

where βp(t) denotes a p-th order B-spline function. Therefore, from (40), we have that

M (R)
p =

∑
n

w′p
n z

(R)
n , (41)

where M (R)
p is the p-th order continuous moment of f (R)

p (t) and w′p
n are the polynomial reproduction

coefficients of the new scaling function φ(t/T − n) ∗ βR−1(t/T − n). One can, therefore, obtain M (R)
p

directly from the coefficients yn using (41), which then allows the function f (R)
p (t) and, hence, fp(t) to

be reconstructed.

Consider now a set of noisy quantized low-pass coefficients c̄M,n of a piecewise polynomial function

fp(t) =
∑1

k=0

∑r=R−1
r=0 ak,r(t−tk)r+, where t0 = 0, t1 ∈]0, 1[ and c̄J,n = ⟨fp(t), φJ,n(t)⟩+ϵn. Assuming

that φJ,n(t) reproduces polynomials of maximum order P ≥ R − 1, we now present the following

parametric estimation algorithm, which is based on the sampling theory of FRI signals, for the estimation

of fp(t):

Algorithm 3 (FRI-based parametric estimation algorithm):

1: Finite difference: the R-order finite difference of c̄M,n is obtained by z̄(R)
n = z̄

(R−1)
n+1 − z̄

(R−1)
n with

z̄
(1)
n = c̄J,n+1 − c̄J,n.

2: Thresholding: in order to reduce the effect of noise, thresholding is applied as

z̃(R)
n =

 z̄
(R)
n z̄

(R)
n ≥ zth

0 otherwise.

where zth is a constant, which can be chosen empirically.
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3: Moments estimation: the continuous moments of f (R)
p (t) are estimated as:

M̃ (R)
p =

∑
n

w′(p)
n z̃(R)

n p = 0, 1...., P +R− 1.

4: Annihilating filter method: the locations tk of the discontinuities are estimated from M̃ ′
p, p =

0, ..., P +R− 1, with the annihilating filter method described in [17].

5: Solving Vandermonde system: the amplitudes of the stream of differentiated Diracs f (R)
p (t) are esti-

mated by solving the Vandermonde system of equations of M̃ (R)
p =

∑K−1
k=0

∑Rk−1
r=0 ak,r(−1)r p!

(p−r)! t
p−r
k ,

p = 0, ..., P +R− 1, which is derived from the identity in (41) (see [17]).

6: Integration: the function fp(t) is estimated by integrating the reconstructed R-th derivative of fp(t).

Given that φJ,n(t) has a compact support L, it was shown in [17] that the above algorithm can

reproduce polynomials with pieces of maximum degree R−1 if there are at most K discontinuities in an

interval of size 2K(L+R)2J and P +R ≥ 2KR−1. Note however that since φ(t) has compact support,

if groups of K discontinuities are sufficiently distant, we can reconstruct them independently [17] and

therefore we can still reconstruct piecewise polynomial signals with more than K discontinuities. Finally,

it is worth noting the stability of the proposed algorithm deteriorates as the number of discontinuities K

per time interval increases (as demonstrated in [17]). In particular, we find that the algorithm is stable

for one discontinuity per time interval even for piecewise polynomials with high order R. The algorithm

becomes noticeably less stable when K ≥ 2.

A practical centralized and distributed semi-parametric compression schemes with a low-complexity

encoder can now be constructed from Algorithm 1 and Algorithm 2, where the parametric estimation step

can be implemented with Algorithm 3. This allows the decoder to approximate the piecewise polynomial

function from the quantized low-pass coefficients c̄J,n.

VI. SIMULATION RESULTS

This section presents the simulation results of the proposed centralized and distributed semi-parametric

compression schemes, where the parametric estimation step is implemented with the FRI-based estimation

algorithm presented in the previous section.

A. Parametric Estimation Algorithm

First, let us start by comparing the variance of an estimator that uses Algorithm 3 against the CRB

described in Section III-B. In this simulation, the coefficients yn of a step function s(t) given by (7) are
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Ā
−

A
)

2
]

 

 

MSE
CRB(A)

(b)

Fig. 4. (a) MSE in the estimation of t0 using Algorithm 3 and the corresponding CRB; (b) MSE in the estimation of A using

Algorithm 3 and the corresponding CRB.

obtained as yn = ⟨s(t), φJ,n(t)⟩ with J = 6, where φ(t) is the first order B-spline scaling function. Note

that a B-spline function of order P ≥ 0 is given by

β(t) =
1

P !

P+1∑
l=0

(
P + 1

l

)
(−1)l (t− l)P+ with (t)P+ =

 0 t < 0,

tP t ≥ 0.

Gaussian noise with variance σ2ϵ is then added to yn. The values of the amplitude A and the location

t0 are estimated using Algorithm 3. Note that in our simulations, the parameter for the threshold was

chosen empirically.

Fig. 4 shows the plots of the MSE and the corresponding CRB for the retrieval of t0 and A. Note

that the signal-to-noise ratio (SNR) is calculated as 10 log10

(
var[yn]
σ2
ϵ

)
where var [yn] is the variance of

yn. For the estimation of t0, our proposed algorithm exhibits the same decay as the CRB when the SNR

reaches approximately 15dB even though the estimator does not achieve the lower bound. The MSE for

the estimation of A follows the CRB even at low SNR.

B. Centralized Semi-Parametric Compression Algorithm

We now present the simulation results of the centralized semi-parametric compression scheme described

in Algorithm 1, where the parametric estimation step is implemented with Algorithm 3. Note that in all

our simulation, the function f(t) is generated by adding the piecewise polynomial component fp(t)

directly to the smooth component fα(t). The smooth function fα(t) is generated in the wavelet domain

as follows: first, a set of coefficients {dJ,n} at the coarsest decomposition level is generated with a random

number generator; the rest of the coefficients at j-th decomposition level are then created by scaling the

maximum value of the random number generator as dj,n ∼ A2j(α+1/2) where A = maxn |dJ,n|.
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Fig. 5. (a) D(R) plots (log scale) for the compression of piecewise smooth function with one discontinuity and α = 1; (b)

plots of the original signal, the reconstructed signals with a linear approximation based scheme and a semi-parametric scheme.
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Fig. 6. D(R) plots (log scale) for the compression of piecewise smooth function with one discontinuity and α = 0.95.

First, we present the simulation results of the simplified signal model in (9) where we set α = 1.

A ten-level wavelet transform with a first order B-spline scaling function was used to decompose f(t).

Fig. 5 (a) shows the distortion-rate plot of the proposed scheme in comparison with the D(R) curves

of a linear and nonlinear approximation-based scheme. Note that we employ a 1-D version of the Set

Partitioning In Hierarchical Trees (SPIHT) algorithm [30] to implement nonlinear approximation-based

compression in all of our simulations. Our scheme achieves D(R) ∼ R−2α, which is in line with our

analysis in Section III-C, and the performance is comparable with SPIHT. The reconstructed functions

are illustrated in Fig. 5 (b). Note that, in this simulation, the term σ2α is insignificant.

Fig. 6 shows the D(R) plot of the proposed scheme where σ2α is not negligible. Here, f(t) is given

by (9) with α = 0.95. The behavior of D(R) changes from D(R) ∼ R−2α to D(R) ∼ C1σα + C2σ
2
α

after a certain rate point. The value of C1 and C2 depend largely on the performance of the parametric

estimation algorithm. Thus, a better parametric estimation algorithm allows a wider range of R where

D(R) ∼ R−2α.
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Fig. 7. (a) D(R) plots (log scale) for the compression of piecewise smooth function with two discontinuities and α = 2.5. (b)

Plots of the original signal, the reconstructed signals with a linear approximation based scheme and a semi-parametric scheme.

The simulation results for a function f(t) described by (2) are given next. Here, fp(t) is a piecewise

quadratic function with three pieces and α = 2.5. We used a six-level wavelet decomposition with

a second order B-spline scaling function. The parametric estimation for the two discontinuities in the

function are done locally. The D(R) curves are given in Fig. 7 (a), where the proposed scheme also

achieves D(R) ∼ R−2α. The reconstructed functions are shown in Fig. 7 (b).

C. Distributed Semi-Parametric Compression Algorithm

We now present the simulation result of the proposed distributed semi-parametric compression schemes.

The parametric estimation step is implemented with Algorithm 3. Two piecewise smooth functions, f1(t)

and f2(t), t ∈ [0, 1[, are generated, where f2(t) = f1(t − τ) + ϵα(t) such that supt∈[0,1[ |ϵα(t)| ≤

supt∈[0,1[
√
β|f1(t)| with β = 0.04. Both functions contain two smooth pieces with α = 2.6. We use a

second order B-spline scaling function to decompose the signals up to six decomposition levels. Encoder

2 sets β∗ = 0.06. Fig. 8 (a) shows D(R) plots of the proposed scheme. The distortion of the proposed

scheme is approximately 2.33 times lower when compared to the independent coding scheme, which is

in line with the predicted gain of 2.26 times from Summary 2. The result also shows that the achieved

distortion is very close to that of the joint encoding scheme. This is because β∗ is well calibrated

to be close to β. From Fig. 8 (b), at high rates, our scheme outperforms the independent scheme by

approximately 3 dB where the gain predicted in our analysis is 3.5 dB.

VII. APPLICATION TO REAL IMAGES

In this section, we briefly discuss how the distributed semi-parametric compression scheme presented

in this paper can be extended to a set of real images or video. Firstly, we acknowledge that some textures
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Fig. 8. D(R) plots of compression schemes based on disparity-by-translation model with prediction error (log-log scale in (a)

and decibel scale in (b)).

of an image do not entirely fit the piecewise smooth model but are closer to noise. The encoding strategy

presented in algorithm 2, therefore, has to be slightly modified by using a non-linear approximation based

quantization strategy rather than a linear one. The disparity between each image can be described with a

motion vector. As an alternative to the FRI-based method, here the parametric estimation at the decoder

is performed using a typical maximum likelihood block-based motion estimation. Fig. 9 presents a set of

preliminary results for the distributed compression of the stereo images in Fig. 3. We used a SPIHT-based

algorithm to compress both images. At the joint decoder, the prediction of the second image is obtained

from the first image by using a simple block-based motion estimation. Error correction code as the one

discussed in Section III-A is then applied to fully decode the residual of the second image, where the

power of the residual is estimated a priori. For this set of images, we found that the performance in terms

of PSNR is better than an independent compression scheme.

VIII. CONCLUSION

The objective of this paper is to develop a new approach to centralized and distributed compression

using wavelets. First, a new centralized semi-parametric compression algorithm for piecewise smooth

functions has been proposed. The encoder of the proposed algorithm uses a wavelet-based linear approx-

imation strategy. The decoder is, instead, nonlinear and employs a parametric estimation technique to

reconstruct the singular structure of the observed function. Our analysis shows that the D(R) function

of the proposed scheme achieves a dominating decay rate of R−2α for a wide range of rates, which is

comparable to that of a conventional compression scheme with a nonlinear encoder and a linear decoder.

The concept of semi-parametric compression has then been extended to a distributed compression scenario,



IEEE TRANSACTIONS ON SIGNAL PROCESSING 29

0 0.1 0.2 0.3 0.4 0.5
10

15

20

25

30

35

40

45

R (bits per pixel)

PSNR (dB)

 

 

SPIHT - Semi-Parametric, λ = −2
SPIHT - Independent

(a) (b) (c)

Fig. 9. Preliminary results of the extension of the proposed distributed compression scheme to real images: (a) plot of the

PSNRs of the independent compression scheme versus our distributed semi-parametric scheme; (b) the reconstructed second

image using the semi-parametric distributed compression at 0.07 bpp with the PSNR of 31.9 dB; (c) the reconstructed second

image using independent SPIHT compression 0.066 bpp with the PSNR of 28.35 dB.

where we modeled the disparity between each observed signal with a shift and a prediction error, which

is uniformly smooth. By using this model, we have been able to provide precise answers on how the

total rate has to be split between the different encoders, and devise an encoding and decoding strategy

that achieves the same performance of a joint encoding scheme for a wide range of rates.
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Theory, vol. 52, no. 12, pp. 5177–5196, December 2006.

[12] M. Flierl and P. Vandergheynst, “Distributed coding of highly correlated image sequences with motion-compensated

temporal wavelets,” Eurasip Journal Applied Signal Processing, vol. 2006, September 2006.

[13] D. Rebollo-Monedero, S. Rane, A. Aaron, and B. Girod, “High-rate quantization and transform coding with side information

at the decoder,” EURASIP Journal on Signal Processing, vol. 86 (11), pp. 3160–3179, November 2006.

[14] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete

frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489 – 509, 2006.

[15] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289 –1306, 2006.

[16] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Transactions on Signal

Processing, vol. 50, no. 6, pp. 1417–1428, 2002.

[17] P. L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and reconstructing signals of finite rate of innovation: Shannon

meets Strang-Fix,” IEEE Transactions on Signal Processing, vol. 55(5), pp. 1741–1757, May 2007.

[18] M. F. Duarte, S. Sarvotham, M. B. Wakin, D. Baron, and R. G. Baraniuk, “Joint sparsity models for distributed compressed

sensing,” in Online Proceedings of the Workshop on Signal Processing with Adaptative Sparse Structured Representations

(SPARS), Rennes, France, 2005.

[19] D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Baraniuk, “Distributed compressive sensing,” CoRR, vol.

abs/0901.3403, 2009.

[20] M. Vetterli, “Wavelets, approximation, and compression,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 59–73,

2001.

[21] A. Cohen, I. Daubechies, O. Guleryuz, and M. Orchard, “On the importance of combining wavelet-based nonlinear

approximation with coding strategies,” IEEE Transactions on Information Theory, vol. 48, no. 7, pp. 1895–1921, July

2002.

[22] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way. Academic Press, December 2008.

[23] P. L. Dragotti and M. Vetterli, “Wavelet footprints: theory, algorithms, and applications,” IEEE Transactions on Signal

Processing, vol. 51, no. 5, pp. 1306–1323, May 2003.

[24] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Prentice Hall PTR, April 1995.

[25] G. Strang and T. Nguyen, Wavelets and Filter Banks. Wellesley-Cambridge Press, 1996.

[26] M. Unser and T. Blu, “Wavelet theory demystified,” IEEE Transactions on Signal Processing, vol. 51, no. 2, pp. 470–483,

2003.

[27] L. Coulot, M. Vetterli, T. Blu, and P. L. Dragotti, “Sampling signals with finite rate of innovation in presence of noise,”
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