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ABSTRACT

Consider sampling a signal that is piecewise sinusoidal. Classical
sampling theory does not enable a perfect reconstruction ofthe con-
tinuous time signal since the band is not limited [1]. However, we
show that it is still possible to recover all the parameters of the sinu-
soids and the exact locations of the discontinuities using the annihi-
lating filter method and recently developed Finite Rate of Innovation
(FRI) sampling schemes [2, 3]. Moreover, we show that there is a
tradeoff between the number of sinusoids per piece and the proxim-
ity of the discontinuities in order to have a unique solution. This
result recalls a sort of uncertainty principle.

1. INTRODUCTION

Back in 1949, Shannon formulated the famous sampling theorem [1].
It states that any bandlimited functionx(t) such thatX(ω) = 0 ∀
|ω| > ωmax can be exactly recovered from its samples given that
the rate2π/T is greater or equal to twice the highest frequency
component. The continuous time signal is recovered withx(t) =
P

k∈Z
y[k]sinc(t/T − k) where sinc(t) = sin(πt)/πt andy[k] =

x(kT ). It follows that any bandlimited signal can be expressed as a
linear combination of an infinite length kernel. This sampling setup
provides resolution in frequency however the infinite support of the
sinc function causes the lack of resolution in time. Namely,an event
concentrated in time cannot be precisely measured with thisscheme.

It has recently been shown that certain classes of parametric sig-
nals that are not bandlimited can also be reconstructed fromtheir
samples. The notion on which these schemes rely is the rate ofin-
novation defined in [2] as the counter for the number of degrees of
freedom per unit of time. The authors show that signals with afinite
rate of innovation (FRI) are uniquely determined from theirsamples
given certain hypotheses. In particular, it is shown that streams of
Diracs, differentiated Diracs and piecewise polynomials are recov-
erable. Furthermore, it has been shown in [3] that it is possible to
recover exactly these signals using compact support kernels. As op-
posed to the sampling theorem, these results provide a setupthat
allows for precise time localization. But, to some extent, lacks fre-
quency localization capabilities.

In this paper, we provide an approach for sampling signals with
a combination of time and frequency components using local recon-
struction schemes. More specifically, we consider piecewise sinu-
soidal functions. We use the annihilating filter method to recover the
parameters of the sinusoids and FRI sampling schemes to recover
the discontinuities. Furthermore, we put forward the tradeoff be-
tween time and frequency resolution which is in spirit similar to the
uncertainty principle in [4, 5, 6, 7].

The paper is organized as follows: In Section 2 we define a
piecewise sinusoidal signal and describe the sampling setup. Sec-
tion 3 recalls the annihilating filters for exponentials andthe results
for sampling Diracs and differentiated Diracs. We also givea brief
review of Exponential Splines (E-Splines) [8]. We then present a
new sampling theorem in Section 4 for piecewise sinusoidal signals
and conclude in Section 5.

2. SIGNALS OF INTEREST AND SAMPLING SETUP

The signals of interest in this paper are piecewise sinusoidal. Re-
call that a sinusoidal function can be expressed as the sum oftwo
complex exponentials

xω(t) =

Nd−1
X

n=0

An cos(ωnt + φn)

=
1

2

Nd−1
X

n=0

An[ej(ωnt+φn) + e−j(ωnt+φn)], (1)

whereAn > 0 and that it has a discrete and finite spectrum. Piece-
wise sinusoids are expressed here as a linear combinations of cosines
multiplied by rectangle functions

x(t) =
X

d∈Z

Nd−1
X

n=0

Ad,n cos(ωd,nt + φd,n)Πtd,td+1
,

whereΠtd,td+1
= u(t− td)−u(t− td+1) andu(t) is the Heaviside

step function. Clearly, the resulting spectrum is not bandlimited as
the Fourier domain is made of the convolution between Diracsand
sinc functions. Fig. 1(a) shows an example of a piecewise sinusoidal
signal with two discontinuities and a maximum of two cosinesper
piece.

Assume our signal is pre-filtered with a kernelϕ(t) and sampled
by an acquisition device. The observed discrete signal is character-
ized by

y[k] =

Z

∞

−∞

x(t)ϕ(t/T − k)dt = 〈x(t), ϕ(t/T − k)〉, (2)

whereT is the sampling period. Asx(t) is not bandlimited, the
sampling process causes aliasing. However, we will show that given
certain conditions onϕ(t) and considering a certain tradeoff between
the number of sinusoids and the proximity of the discontinuities, we
can perfectly recoverx(t).
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Fig. 1. Example of a piecewise sinusoidal signal with two disconti-
nuities and a maximum of two sinusoids per piece.

3. PRELIMINARIES

In this section, we recall the annihilating filters for exponentials and
the results shown in [3] for sampling streams of Diracs and differ-
entiated Diracs. We also give a brief review of differentialoperators
and cardinal E-Splines [8].

3.1. Annihilating filters for exponentials

A filter h[k] is called annihilating filter ofs[k] if

(h ∗ s)[k] = 0 ∀k ∈ Z. (3)

Assumes[k] is made of a linear combination of weighted exponen-
tials such thats[k] =

PN−1
n=0 anuk

n with un ∈ C. Clearly, the
(N+1)-tap filter withz-transform

H~u(z) =

N−1
Y

n=0

(1 − unz−1) (4)

and~u = (u0, . . . , uN−1) will annihilates. The knowledge ofH~u(z)
is sufficient to uniquely determine theuns. Indeed, (3) can be writ-
ten in matrix-vector form with the Yule-Walker systemS · h~u = 0
involving 2N+1 samples ofs. Matrix S is therefore of sizeN + 1
by N +1. The system has a unique solution as the annihilating filter
is unique [9] and Rank(S) = N . The weightsan are determined
usingN + 1 samples to form a classic Vandermonde system which
also has unique solution given that theuns are distinct. Notice that
a sinusoidal signal as defined in (1) can also be annihilated with a
filter like H~u(z). Indeed, the filter is obtained by posing~u = e~α and

~α = (jω0, . . . , jωNd−1,−jω0, . . . ,−jωNd−1). (5)

We simplify the notation by expressingHe~α as H~α. HereN =
2Nd. In practice, the annihilating filter is found using a singular
value decomposition. We refer to [9] for a more detailed discussion.

3.2. Sampling streams of differentiated Diracs

For the sake of simplicity, we show the procedure for the basic case
of sampling Diracs that are not differentiated and set the sampling
period toT = 1. The general case of reconstructing differentiated
Diracs of maximum orderM − 1 is obtained using a similar proce-
dure.

Letxδ(t) be a stream of Diracsxδ(t) =
P

n∈Z
anδ(t−tn) sam-

pled with a kernelϕ that can reproduce polynomials of maximum
degreeN . Therefore, there existscm,k such that

P

k cm,kϕ(t−k) =
tm for m = 0, 1, . . . , N . The idea behind the necessity of the poly-
nomial reproduction is that the weights and the locations are deter-
mined using the polynomial moments. Indeed, the annihilating filter

method applied tos[m] where

s[m] =
X

k

cm,ky[k]

= 〈x(t),
X

k

cm,kϕ(t − k)〉

=

Z

∞

−∞

x(t)tmdt

=
N−1
X

n=0

antm
n (6)

provides a unique solution for thetns andans [3]. Equality (6)
derives from the fact thatxδ(t) is a stream of Diracs and

R

f(t)δ(t−
tn)dt = f(tn). The general result is summarized as follows:

Theorem 1 (Dragotti, Vetterli, Blu [3]) Given is a sampling ker-
nel ϕ(t) that can reproduce polynomials of maximum degreeN ≥
2KM − 1 and of compact supportL. An infinite-length stream of
Diracs x(t) =

P

n=Z

PM−1
m=0 an,mδ(m)(t − tn) is uniquely deter-

mined by the samplesyn = 〈ϕ(t/T − n), x(t)〉 if and only if there
are at most K differentiated Diracs in an interval of length KLT.

3.3. Differential operators and cardinal E-splines

Consider a generic differential operator of orderN

L{x(t)} =
dNx(t)

dtN
+ aN−1

dN−1x(t)

dtN−1
+ . . . + a0x(t)

with constant coefficientsan ∈ C. This operator can also be defined
by the roots of its characteristic polynomialL(s) =

QN

n=1(s −
αn). Using the same notation as in [8], we express the operator as
L~α. Posings = jω, we have in the frequency domainL~α(jω) =
QN

n=1(jω − αn). The null space of the operator, denotedN~α, con-
tains all the solutions to the differential equationL{x(t)} = 0. As
shown in [8], we haveN~α = span{eαnt}n=1,...,N . This is particu-
larly interesting to us as a sinusoidal signal can be expressed as the
linear combination of complex exponentials (1). Therefore, given
that~α is as in (5), the operatorL~α will produce a zero output to the
corresponding sinusoidal input. Put in other words,xω(t) is a so-
lution to the differential equationL~α{xω(t)} = 0. This operator,
together with the filterH~α, form the cardinal E-Splines introduced
in [8]. These functions are extensions of the classical B-splines that
are made of exponential segments instead of polynomial ones. Sev-
eral interesting properties are derived in [8]. In particular, it is shown
that a cardinal E-spline has finite support and has polynomial and
exponential reproduction capabilities. The first order E-spline is a
functionβα(t) with Fourier transformβ̂α(ω) = 1−eα−jω

jω−α
. The E-

splines of orderN are constructed byN successive convolutions of
first order ones. In the Fourier domain we have [8]

β̂~α(ω) =
N−1
Y

n=0

1 − eαn−jω

jω − αn

=
H~α(ejω)

L~α(jω)
.

It results that the annihilating filter for a linear combination of sinu-
soids can be expressed as the multiplication of a cardinal E-spline
and a differential operator

H~α(ejω) = β̂~α(ω)L~α(jω). (7)
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Fig. 2. (a) Original piecewise sinusoidal signalx(t) with one si-
nusoid of frequencyω0. (b) Sampled signaly[k] with kernelϕ(t).
(c) Annihilated signalyann[k] = (y∗h~α)[k] with ~α = (jω0,−jω0).
These samples are equivalent to a sampled sum of differentiated
Diracs int0 andt1 with kernelϕequ(t) = (ϕ ∗ β~α)(t).

4. SAMPLING PIECEWISE SINUSOIDAL SIGNALS

In this section, we consider recovering piecewise sinusoidal signals
from their sampled versions. For clarity, we show the procedure with
the most basic example and mention the results for the general case.

Let x(t) be a sinusoid with frequencyω0 < π/T and truncated
beforet0 and aftert1. Its continuous time representation is given by

x(t) = A0 cos(ω0t + φ0)
h

u(t − t0) − u(t − t1)
i

,

and the samples are given by (2). We use a filter of finite support L
and set the sampling period toT = 1. Fig. 2(a) shows an example
of such a signal and the observed samples are depicted in Fig.2(b).
There are two steps in the algorithm, namely the recovery of the
sinusoids and the localization of the breakpoints. Both rely on the
annihilating filter method.

4.1. Recovering the sinusoids

The first step in recovering the sinusoid is to find the samplesthat are
not influenced by the discontinuities. Indeed,4Nd + 1 = 5 samples
such thatk ∈ [t0 + L/2, t1 − L/2] whereL is the support ofϕ
are sufficient to determineω0. A simple way to find these samples is
through the rank of matrixS. Recall from Section 3 that in this caseS
is a square matrix of size3 by 3 and Rank(S) = 2Nd = 2. However,
the matrix is full rank in the presence of a sample influenced by
a breakpoint. Therefore, we slide a window alongk and run the
annihilating filter method when the matrix is rank deficient.The
filter in this case isH~α where~α = (jω0,−jω0). As shown in (4),
ω0 is given by the roots ofH~α. In order to find the amplitude and the
phase, we use two consecutive samples to create the Vandermonde
system

»

ejω0k e−jω0k

ejω0(k+1) e−jω0(k+1)

– »

Ã0e
jφ0

Ã0e
−jφ0

–

= 2

»

y[k]
y[k + 1]

–

with Ã0 = ϕ̂(ω0)A0. The unicity of the solution is guarantied since
the exponents are distinct. At this stage, all the parameters of the

sinusoidal part are retrieved. The next step is to determinet0 andt1.

4.2. Recovering the discontinuities

The idea behind recovering the exact location of the breakpoints re-
lies on Theorem 1. Indeed, if we apply the annihilating filterfound
in the previous step to the samples and develop the equation,we see
that

yann[k] = 〈x(t), ϕ(t − k)〉 ∗ h~α[k]

=
1

2π
〈X(ω), e−jωkϕ̂(ω)H~α(ejω)〉

=
1

2π

˙

X(ω), e−jωkϕ̂(ω)β̂~α(ω)L~α(jω)
¸

=
1

2π

˙

X(ω)L~α(jω), e−jωkϕ̂(ω)β̂~α(ω)
¸

= 〈L~α{x(t)}, ϕ ∗ β~α(t − k)〉,

where we used Parseval’s identity and (7). This means that the co-
efficientsyann[k] shown in Fig. 2(c) represent the samples given by
the inner-product between a modifiedx(t) that we callxδ(t)and a
new kernelϕequ = ϕ ∗ β~α with ~α = (jω0,−jω0). In the context
of our example, we apply the differential operator and notice that

L~α{x(t)} =
d2x(t)

dt2
+ ω2

0x(t)

= a0(t)(δ(t − t0) − δ(t − t1))

+a1(t)(δ
′(t − t0) − δ′(t − t1)),

with a0(t) = −2A0ω0sin(ω0t + φ0) anda1(t) = A0cos(ω0t +
φ0). Therefore we conclude that sampling the signal and applying
the annihilating filter is equivalent to sampling a stream ofweighted
and differentiated Diracs with the modified kernelϕequ. In virtue
of Theorem 1 we can find the exact locations of the discontinuities
providing all the hypotheses are met. In this simple case, weonly
have differentiated Diracs of maximum order 1 and two locationst0
andt1. As we locate thetns separately, we haveK = 1 andM = 2.
Therefore, according to Theorem 1, we need a sampling kernelthat
can reproduce polynomials of degree≥ 3. Assume thatϕ fulfills
that condition. It is shown in [8] that the equivalent kernelϕequ

also fulfills the condition. As described in Section 3, we recover
the locationst0 and t1 from yann by computing the roots of the
annihilating filter for the polynomial momentss[m] defined in (6).
We refer to [3] for a detailed description.

4.3. Generalization and discussion

We have shown with this example how to recover all the parameters
that characterize a truncated sinusoid. The general case isomitted
in this paper due to lack of space. However, we bring attention to
the fact that we use the annihilating filterH~αd

· H~αd+1
when there

are two consecutive pieces with sinusoids. Here~αd and~αd+1 con-
tain the frequencies present in the first and the second pieces respec-
tively. The resulting filter thus annihilates both sides of the discon-
tinuity and the problem of finding the location is again reduced to
that of finding differentiated Diracs. The complexity of thealgo-
rithm is polynomial and depends only on the number of sinusoids in
two consecutive pieces. Furthermore, all the reconstruction schemes
are local therefore the method can be extended to an infinite length
piecewise sinusoidal signal. The following breakpoint is found using
filter H~αd+1

· H~αd+2
and so on. The pseudocode for the algorithm

and description of the procedure appears below:



Find rank deficient windows
For eachwindow

Find annihilating filter
Recover frequencies
Solve Vandermonde system
Recover amplitudes and phases

end for
For eachpair of consecutive pieces

Create the composite annihilating filter
Filter the samples
Recover discontinuity with Theorem 1

end for

There are two main conditions to provide unique reconstruction.
The first one is related to Theorem 1. Indeed, the equivalent signal
xδ(t) obtained after annihilation contains differentiated Diracs up
to order2D − 1 whereD is the number of sinusoids in two con-
secutive pieces. Therefore, the sampling kernelϕequ(t) of support
L + 2D must be able to reproduce polynomials of degree4D − 1.
The second condition is related to the length of the annihilating filter
for sinusoids. Recall from Section 3 that we need4Nd + 1 samples
to find the frequencies in each piece. From these bounds, we de-
duce the tradeoff betweenNd, the number of sinusoids in the piece
andId = td+1 − td, the length of the piece. Indeed, the larger the
Nd, the longerId must be. Inversely, whenNd decreases,Id can be
shorter. There is a parametric uncertainty principle underlying that
statesId/(4Nd +L) ≥ T . We summarize the result in the following
theorem:

Theorem 2 Given is a sampling kernelϕ(t) of compact support
L and that can reproduce polynomials of maximum degreeP ≥
4D − 1. An infinite-length piecewise sinusoidal signal is uniquely
determined by the samplesyn = 〈ϕ(t/T − n), x(t)〉 if there are
at mostD sinusoids in two consecutive pieces and at mostN sinu-
soids with maximum frequencyωmax < π/T in a piece of length
T (4N + L).

A simulation for recovering a piecewise sinusoidal signal with
two discontinuities and one sinusoid per piece is shown in Fig. 3.
We use a classical B-Spline sampling kernelϕ(t) = β7(t) as it is
capable of reproducing polynomials of maximum degree4D − 1 =
7. The reconstructed signal is exact within machine precision.

5. CONCLUSIONS

We considered sampling piecewise sinusoidal signals and have shown
that it is possible to recover exactly all the parameters that charac-
terize it. Furthermore, we have put forward a parametric uncertainty
principle that states that there is a tradeoff between the number of
sinusoids in each piece and the proximity of the discontinuities.

We believe that a natural application of our result is in the spread
spectrum communication systems. In particular in the case of fre-
quency hopping signals, where precise frequency estimation and syn-
chronization are of crucial importance. The design of a decoder for
such signals that uses our sampling results and works at a rate below
the rates normally used is under investigation.
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