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ABSTRACT The paper is organized as follows: In Section 2 we define a

piecewise sinusoidal signal and describe the samplingsebec-

Consider sampling a signal that is piecewise sinusoidaassital tion 3 recalls the annihilating filters for exponentials ahe results

sampling theory does not enable a perfect reconstructitiieafon-  for sampling Diracs and differentiated Diracs. We also giverief

tinuous time signal since the band is not limited [1]. Howewvee  review of Exponential Splines (E-Splines) [8]. We then presa

show that it is still possible to recover all the parametéithe sinu- new sampling theorem in Section 4 for piecewise sinusoigalds

soids and the exact locations of the discontinuities udiegannihi-  and conclude in Section 5.

lating filter method and recently developed Finite Rate ablration

(FRI) sampling schemes [2, 3]. Moreover, we show that them i

tradeoff between the number of sinusoids per piece and thémpr 2. SIGNALS OF INTEREST AND SAMPLING SETUP
ity of the discontinuities in order to have a unique solutioFhis
result recalls a sort of uncertainty principle. The signals of interest in this paper are piecewise sinatoiRte-

call that a sinusoidal function can be expressed as the sumioof

complex exponentials
1. INTRODUCTION

Ng—1
Back in 1949, Shannon formulated the famous sampling thefig zo(t) = Z A, cos(wnt + ¢n)
It states that any bandlimited functiar{¢) such thatX (w) = 0V n=0
|w| > wmae can be exactly recovered from its samples given that Ng—1
the rate2rw /T is greater or equal to twice the highest frequency _ 1 Z Ap[ef@ntton) o gmilonttén)] (1)
component. The continuous time signal is recovered wiit) = 2 =

> orez IkIsindt/T — k) where sin€t) = sin(rt)/xt andy[k] =

z(kT). It follows that any bandlimited signal can be expressed as avhereA,, > 0 and that it has a discrete and finite spectrum. Piece-
linear combination of an infinite length kernel. This samglsetup  wise sinusoids are expressed here as a linear combinafioasines
provides resolution in frequency however the infinite suppbthe  multiplied by rectangle functions

sinc function causes the lack of resolution in time. Namafyevent

concentrated in time cannot be precisely measured wittsthisme. Ng—1
It has recently been shown that certain classes of paransagri z(t) = Z z Adyn cos(wa,nt + Gan) ey i,y
nals that are not bandlimited can also be reconstructed fhain d€Z n=0

samples. The notion on which these schemes rely is the rate of
novation defined in [2] as the counter for the number of degoe  Wherelly, ¢, , = u(t —ta) —u(t —tat1) andu(t) is the Heaviside
freedom per unit of time. The authors show that signals withige ~ step function. Clearly, the resulting spectrum is not biamititd as
rate of innovation (FRI) are uniquely determined from tteeimples ~ the Fourier domain is made of the convolution between Dieacs
given certain hypotheses. In particular, it is shown thegeshs of ~ sinc functions. Fig. 1(a) shows an example of a piecewisgssidal
Diracs, differentiated Diracs and piecewise polynomiatsracov-  Signal with two discontinuities and a maximum of two cosipes
erable. Furthermore, it has been shown in [3] that it is fbsgo  PI€Ce.
recover exactly these signals using compact support kerAslop- Assume our signal is pre-filtered with a kergel) and sampled
posed to the sampling theorem, these results provide a #eap by an acquisition device. The observed discrete signalasacter-
allows for precise time localization. But, to some exteatks fre-  ized by
guency localization capabilities. -

In thls paper, we provide an approach for sampllng signatls wi y[k] = / 2(t)p(t)T — k)dt = (x(t), o(t/T — k), (2)
a combination of time and frequency components using |@ain- oo
struction schemes. More specifically, we consider piece\sigu-
soidal functions. We use the annihilating filter method toxer the  whereT is the sampling period. As(t) is not bandlimited, the
parameters of the sinusoids and FRI sampling schemes taaereco sampling process causes aliasing. However, we will shotgikian
the discontinuities. Furthermore, we put forward the todfdbe-  certain conditions op(¢) and considering a certain tradeoff between
tween time and frequency resolution which is in spirit santio the  the number of sinusoids and the proximity of the discontiasj we
uncertainty principle in [4, 5, 6, 7]. can perfectly recovet(t).
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Fig. 1. Example of a piecewise sinusoidal signal with two disconti

nuities and a maximum of two sinusoids per piece.

3. PRELIMINARIES

In this section, we recall the annihilating filters for expatials and
the results shown in [3] for sampling streams of Diracs atfigdi
entiated Diracs. We also give a brief review of differentiperators
and cardinal E-Splines [8].

3.1. Annihilating filters for exponentials
Afilter h[k] is called annihilating filter of[] if
(hxs)[k] =0

Vk € Z. 3)

method applied ta[m] where

Zcmﬁky[k]

k

= (a0, Y emaelt — b))
k

- /.

N—-1
z : m
- a"ltn

n=0

s[m]

w(t)t™dt
(6)

provides a unique solution for thig,s anda,s [3]. Equality (6)
derives from the fact that; (¢) is a stream of Diracs anfl f (¢)5 (¢ —
tn)dt = f(tn). The general result is summarized as follows:

Theorem 1 (Dragotti, Vetterli, Blu [3]) Given is a sampling ker-
nel ¢(t) that can reproduce polynomials of maximum deghée>
2K M — 1 and of compact suppoit. An infinite-length stream of
Diracs z(t) = 3, _, >om ) anmd"™ (t — tn) is uniquely deter-
mined by the samplas, = (¢(¢t/T — n), z(t)) if and only if there
are at most K differentiated Diracs in an interval of length K

Assumes[k] is made of a linear combination of weighted exponen-3-3. Differential operators and cardinal E-splines

tials such thatss[k] = SN anub
(N+1)-tap filter withz-transform

with u,, € C. Clearly, the

Hg(z) = H (1—upz™") 4)
n=0

andd = (uo, ..., un—1) willannihilates. The knowledge off;(z)
is sufficient to uniquely determine thg,s. Indeed, (3) can be writ-
ten in matrix-vector form with the Yule-Walker systeésn hz; = 0
involving 2N+1 samples of. Matrix S is therefore of sizéV + 1

Consider a generic differential operator of or@ér

dVz(t)
dtNv

dN 1z (t)
dtN-1

L{z(t)} = +an-1 + ...+ aox(t)
with constant coefficients,, € C. This operator can also be defined

by the roots of its characteristic polynomials) = ]'[Q;l(s —

an). Using the same notation as in [8], we express the operator as

Ls. Posings = jw, we have in the frequency domair; (jw) =
Hszl(jw — ap ). The null space of the operator, denoi¥d, con-

by N + 1. The system has a unique solution as the annihilating filte(ains all the solutions to the differential equatibfz(t)} = 0. As

is unique [9] and Ran{s) = N. The weightsa,, are determined

shown in [8], we haveVz = spafe®"'},—1,.. ~. This is particu-

using N + 1 samples to form a classic Vandermonde system whicHarly interesting to us as a sinusoidal signal can be expteas the

also has unique solution given that thgs are distinct. Notice that
a sinusoidal signal as defined in (1) can also be annihilaitd av
filter like Hz(z). Indeed, the filter is obtained by posifig= ¢* and

©)

We simplify the notation by expressing .= as Hg. Here N =
2Ng4. In practice, the annihilating filter is found using a sirayul
value decomposition. We refer to [9] for a more detailed uksoon.

o= (jw()? B 7ijd717 _jw07 ey _j(UNdfl).

3.2. Sampling streams of differentiated Diracs

For the sake of simplicity, we show the procedure for thedease
of sampling Diracs that are not differentiated and set tmptiag

period toT = 1. The general case of reconstructing differentiated
Diracs of maximum ordef/ — 1 is obtained using a similar proce-

dure.
Letz;s(t) be a stream of Diracss (t) = >, o5 and(t—t,) SAmM-

linear combination of complex exponentials (1). Therefaigen
thatd is as in (5), the operatat; will produce a zero output to the
corresponding sinusoidal input. Put in other words(t) is a so-
lution to the differential equatiolLz{z.(¢)} = 0. This operator,
together with the filtef/ 5, form the cardinal E-Splines introduced
in [8]. These functions are extensions of the classical IBisg that
are made of exponential segments instead of polynomial @®s
eral interesting properties are derived in [8]. In par@eyit is shown
that a cardinal E-spline has finite support and has polynoamd
exponential reproduction capabilities. The first orderplire is a
function . (t) with Fourier transformi, (w) = = The E-
splines of orderV are constructed by successive convolutions of
first order ones. In the Fourier domain we have [8]

N-1

N _ 1 — en—Iw _ Hg ()
Palw) = H jw—an  La(jw)’

n=0

pled with a kernelp that can reproduce polynomials of maximum It results that the annihilating filter for a linear combiioat of sinu-

degreeN. Therefore, there exists, » suchthad ", cm rp(t—k) =

soids can be expressed as the multiplication of a cardirslise

t™form = 0,1,...,N. The idea behind the necessity of the poly- and & differential operator

nomial reproduction is that the weights and the locatioesdater-
mined using the polynomial moments. Indeed, the annihigfiiter

Hs (') = Ba(w)La(jw). (7)



sinusoidal part are retrieved. The next step is to determia@dt; .
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. . ) . . . . . . where we used Parseval's identity and (7). This means teatdh
Fig. 2. (a) Original piecewise sinusoidal signa(t) with one si-  efficientsy,..,[k] shown in Fig. 2(c) represent the samples given by
nusoid of frequencyvo. (b) Sampled signay (k] with kemnelyp().  the inner-product between a modifiedt) that we callzs(t)and a
(c) Annihilated signayann [k] = (yxha)[k] With & = (jwo, —jwo).  new kemelkpequ = @ * Bz With & = (jwo, —jwo). In the context
These samples are equivalent to a sampled sum of diffetedtia 4 or example, we apply the differential operator and reotiat
Diracs into andt; with kernelyeq. (t) = (¢ * Bz)(t).

d*z(t
La{z()} = dﬁg )+ wBa()
4. SAMPLING PIECEWISE SINUSOIDAL SIGNALS = ao(t)(8(t —to) — 8(t — t1))
In this section, we consider recovering piecewise singdadnals +ai(t)(3'(t = to) = 0'(t — 1)),
from their sampled versions. For clarity, we show the praceavith | i) ao(t) = —2Aowosin(wot + ¢o) andas (t) = Agcos(wot +

the most basic exa_lmple_and_ mention the results for the dereea. o). Therefore we conclude that sampling the signal and applyin

Letz(¢) be a sinusoid with frequenayo < m/T and truncated e annihilating filter is equivalent to sampling a strearwefghted
beforeto and aftett;. Its continuous time representation is given by 4 gifferentiated Diracs with the modified kernel,.. In virtue
of Theorem 1 we can find the exact locations of the discorttesii
providing all the hypotheses are met. In this simple casepnhe
have differentiated Diracs of maximum order 1 and two larat,
andt;. As we locate the,, s separately, we hav€ = 1 andM = 2.
Therefore, according to Theorem 1, we need a sampling kérael
can reproduce polynomials of degree3. Assume thatp fulfills
that condition. It is shown in [8] that the equivalent kerrel;.
also fulfills the condition. As described in Section 3, weonesr
the locationsto and¢i from y.n» by computing the roots of the
annihilating filter for the polynomial momentgm] defined in (6).
We refer to [3] for a detailed description.

(1) = Ao cos(wot + do) [u(t — to) — u(t — tl)],

and the samples are given by (2). We use a filter of finite suppor
and set the sampling period 1o = 1. Fig. 2(a) shows an example
of such a signal and the observed samples are depicted ig(Big.
There are two steps in the algorithm, namely the recoveryhef t
sinusoids and the localization of the breakpoints. Boti ogl the
annihilating filter method.

4.1. Recovering the sinusoids

The first step in recovering the sinusoid is to find the samplasare
not influenced by the discontinuities. IndeddV; + 1 = 5 samples  4.3. Generalization and discussion
such thatk € [to + L/2,t1 — L/2] whereL is the support ofp
are sufficient to determingy. A simple way to find these samples is
through the rank of matri$. Recall from Section 3 that in this caSe
is a square matrix of sizéby 3 and RankS) = 2N, = 2. However,
the matrix is full rank in the presence of a sample influenced
a breakpoint. Therefore, we slide a window aldn@nd run the
annihilating filter method when the matrix is rank deficierithe
filter in this case i s whered@ = (jwo, —jwo). As shown in (4),
wo is given by the roots off 5. In order to find the amplitude and the
phase, we use two consecutive samples to create the Vana#emo

We have shown with this example how to recover all the pararaet
that characterize a truncated sinusoid. The general caseitted
in this paper due to lack of space. However, we bring attartiio
p the fact that we use the annihilating filtéfz, - Hz, , when there
are two consecutive pieces with sinusoids. H&geandd ;1 con-
tain the frequencies present in the first and the secondgiespec-
tively. The resulting filter thus annihilates both sidesto# tliscon-
tinuity and the problem of finding the location is again resflito
that of finding differentiated Diracs. The complexity of thkyo-
rithm is polynomial and depends only on the number of sirdsi

system ) . .
two consecutive pieces. Furthermore, all the reconstmathemes
gIwok g TIwok Agei® ] y[k] are local therefore the method can be extended to an infaritgth
edwok+1)  o—jwo(k+1) Ape—d% | — k+1 piecewise sinusoidal signal. The following breakpoinbisrfd using
Aoe Yy
fiter Hs,,, - Ha,,, and so on. The pseudocode for the algorithm

with Ag = @(wo)Ao. The unicity of the solution is guarantied since and description of the procedure appears below:
the exponents are distinct. At this stage, all the parameikthe



Find rank deficient windows
For eachwindow
Find annihilating filter
Recover frequencies
Solve Vandermonde system
Recover amplitudes and phases
end for
For each pair of consecutive pieces
Create the composite annihilating filter
Filter the samples
Recover discontinuity with Theorem 1
end for

There are two main conditions to provide unique reconstinct
The first one is related to Theorem 1. Indeed, the equivaignak
zs(t) obtained after annihilation contains differentiated Dg&aip
to order2D — 1 where D is the number of sinusoids in two con-
secutive pieces. Therefore, the sampling kemmegl, (¢) of support
L + 2D must be able to reproduce polynomials of degtée— 1.
The second condition is related to the length of the annihiilter
for sinusoids. Recall from Section 3 that we ndéd; + 1 samples
to find the frequencies in each piece. From these bounds, we d
duce the tradeoff betweeN,, the number of sinusoids in the piece
andl; = tq+1 — ta, the length of the piece. Indeed, the larger the
Ny, the longerl; must be. Inversely, whel, decreased,; can be
shorter. There is a parametric uncertainty principle uydes that
statedy/(4Nq+ L) > T. We summarize the resultin the following
theorem:

Theorem 2 Given is a sampling kerneb(t) of compact support
L and that can reproduce polynomials of maximum degree>
4D — 1. An infinite-length piecewise sinusoidal signal is uniguel
determined by the samples = (¢(t/T — n),z(t)) if there are
at mostD sinusoids in two consecutive pieces and at Mostinu-
soids with maximum frequeney... < 7/7 in a piece of length
T(AN + L).

A simulation for recovering a piecewise sinusoidal signéghw
two discontinuities and one sinusoid per piece is shown @ Bi
We use a classical B-Spline sampling kerpé¢t) = 57(t) as it is
capable of reproducing polynomials of maximum degtée— 1 =
7. The reconstructed signal is exact within machine pregisio

5. CONCLUSIONS

We considered sampling piecewise sinusoidal signals areldreown
that it is possible to recover exactly all the parameters ¢harac-
terize it. Furthermore, we have put forward a parametrietamty
principle that states that there is a tradeoff between tmebeu of
sinusoids in each piece and the proximity of the discontiesti

We believe that a natural application of our resultis in fhead
spectrum communication systems. In particular in the cd$eeo
guency hopping signals, where precise frequency estimatid syn
chronization are of crucial importance. The design of a decéor
such signals that uses our sampling results and works at aebiw
the rates normally used is under investigation.
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