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ABSTRACT
Recently, new sampling schemes were presented for signals with
finite rate of innovation (FRI) using sampling kernels reproducing
polynomials or exponentials [1] [2].

In this paper, we extend those sampling schemes to a distributed
acquisition architecture in which numerous and randomly located
sensors are pointing to the same area of interest. We emphasize the
importance played by moments and show how to acquire efficiently
FRI signals with a set of sensors. More importantly, we also show
that those sampling schemes can be used for accurate registration of
affine transformed and low-resolution images. Based on this, a new
super-resolution algorithm was developed and showed good prelim-
inary results.

Index Terms— Moment methods, image registration, image
resolution, image sampling, image reconstruction, spline functions,
distributed algorithms.

1. INTRODUCTION

Recent developments in sampling theory focus on signals that are
not necessarily bandlimited, like signals with finite rate of innovation
(FRI) [3]. In [1], perfect reconstruction of FRI signals was demon-
strated by using sampling kernels like B-splines or E-splines. Lately,
these sampling schemes were extended to 2-D FRI signals [2].

At the same time, in many research areas, a common trend is to
replace a single complex acquisition device with an acquisition sys-
tem made of several cheap and simple devices. For instance, high
rate A/D converters can be decomposed into several slow convert-
ers operating in parallel and whose synchronization is critical. This
can also happen for high resolution digital imaging where a single
high resolution camera is replaced by a large array of cheap, low-
resolution cameras. A natural question that arises is to understand
whether such a system can perform as well as the classical one.

In this paper we investigate the use of the new sampling schemes
of [1] and [2] when the single acquisition device has been replaced
by a system of multiple devices, each acquiring an undersampled
version of the original signal. A particular emphasis is given to the
case of 2-D signals and to the case of arrays of cameras. Moreover
the scenario of interest to us is when the array contains hundreds of
cameras of extremely low resolution. The contribution of the paper
is two-fold: (a) for idealized signals and images, the results of [1]
and [2] are extended to an acquisition system composed of several
sensors; (b) a new super-resolution algorithm operating on real mul-
tiview images is presented using the results of (a).

In the next section, we present the sampling setup that models
our acquisition system. We also recall important properties concern-
ing the sampling kernels and the moment theory. In Section 3, we

propose a distributed acquisition approach for FRI signals and we
present simulation results for bilevel polygonal images. In Section
4, we show and illustrate how the previous results can be applied to
image registration and to super-resolution of real images. Finally,
we conclude in Section 5.

2. PRELIMINARIES AND PROBLEM SETUP

2.1. Image acquisition model

The signal entering the lens of a camera can be thought as the 2-D
projection on the image plane of the observed 3-D scene limited to
the field of view of the camera. In the classical case of a single acqui-
sition device, see Figure 1(a), the incoming 2-D projectionf (x, y)
of the 3-D scene is first filtered with a smoothing kernelϕ (x, y)
modeling the point spread function of the lens of the camera. The
blurred versionf (x, y)∗ϕ (−x/Tx,−y/Ty) is then uniformly sam-
pled to produce the set of samplesSm,n:

Sm,n = 〈f (x, y) , ϕ (x/Tx − m, y/Ty − n)〉 (1)

with x, y ∈ R , m, n ∈ Z, and whereTx, Ty ∈ R
+ are the sampling

periods alongx andy respectively. Usually the sampled signal is
an accurate discrete version of the original continuous signal (e.g.
high-resolution image).

In a distributed acquisition system,N camerasPi, i =
0, . . . , N − 1, are observing the same 3-D scene from different un-
known locations. Therefore the incoming 2-D projectionsfi (x, y)
at each sensor will differ. By choosing a camera of reference (e.g.
i = 0), we can model our distributed acquisition system as de-
picted in Figure 1(b). We assume that each projectionfi (x, y) is
the result of a transformation withTi of the projection of reference
f (x, y). Examples of transformationsT are translation, rotation or
affine transformation according to the observed scene and to the lo-
cations of the cameras. Similarly to the single camera case, each
sensor outputs a set of samplesS

(i)
m,n:

S(i)
m,n = 〈fi (x, y) , ϕi (x/Tx − m, y/Ty − n)〉

whereϕi (x, y) is the sampling kernel of the sensorPi. With a mul-
tiview system as in Figure 1(b), each camera usually has a low reso-
lution and an accurate high-resolution images can be obtained from
the set of cameras with a super-resolution algorithm.

2.2. Sampling kernels and theory of moments

Sampling kernels used in this research are 2-D B-splinesβρ(x, y)
[4] and 1-D E-splinesβα(t) [5]. A B-spline is characterized by its
order ρ and constitutes a basis of the polynomial spline space of
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Fig. 1. Classical vs. distributed acquisition device

degreeρ − 1. Thus there exists a set of coefficients
{

c
(p,q)
m,n

}
so that

polynomial planesxpyq can be reproduced:
∑

m∈Z

∑

n∈Z

c(p,q)
m,n βρ (x − m, y − n) = xpyq, (2)

wherep, q = 0, . . . , ρ − 1.
The E-splines, or exponential B-spline,βα(t) are a natural ex-

tension of the B-splines [5]. An E-spline of orderρ is characterized
by its parametersα = (α0, . . . , αρ) ∈ C

ρ+1. They are obtained by
successive convolutions of the zeroth order E-splines:

βα(t) = βα0 ∗ . . . ∗ βαρ(t), βα(t) =

{
eαt, 0 ≤ t < 1,
0, otherwise.

Notice that ifα is the null vector, then the E-spline becomes a B-
spline. The E-splines also constitute a basis of the exponential spline
space with parameterα. Therefore, similarly to B-spline, there exists

a set of coefficients
{

c
(αn)
m

}
which satisfies:

eαnt =
∑

m∈Z

c(αn)
m βα (t − m) , n = 0, . . . , ρ. (3)

An interesting feature of B-splines is the possibility to retrieve
the continuous geometric momentsmp,q, p, q ∈ N, of the image
f (x, y) from the samplesSm,n with a simple linear combination:

mp,q =

∫ ∫
f (x, y) xpyqdxdy

(a)
=

∫ ∫
f (x, y)

∑

m

∑

n

c(p,q)
m,n βρ (x − m, y − n) dxdy

=
∑

m

∑

n

c(p,q)
m,n

∫ ∫
f (x, y) βρ (x − m, y − n) dxdy

(b)
=

∑

m

∑

n

c(p,q)
m,n Sm,n (4)

where(a) and(b) refer respectively to Equations (2) and (1), and
Tx = Ty = 1 for clarity only. Notice that the coefficientsc(p,q)

m,n

can be calculated and stored beforehand which makes the compu-
tation of the continuous moments very easy. Similarly to Equation
(4), complex exponential momentshn are obtained from the samples
with E-splines and the coefficients from Equation (3).

Interestingly, some FRI signals are uniquely determined by a fi-
nite number of moments. For example, a bilevel polygonal image
with K corners can be perfectly reconstructed from the knowledge
of 2K − 2 consecutive complex momentsκp,0 [6]. In the work
of [1] and [2] on sampling of FRI signals, perfect reconstruction is
achieved by first computing the necessary moments from the sam-
ples with Equation (4). Then by combining those moments, a com-
plete description of the original FRI signal is obtained. As a result,
the notion of moments plays an important role in the analysis of FRI
signals and we briefly present now the main definitions and impor-
tant results of 2-D moments that are useful in our context. First
we recall the definition of the geometric momentsmp,q of order
(p + q) , p, q ∈ N of a continuous functionf (x, y):

mp,q =

∫ ∫
f (x, y) xpyqdxdy

The central momentsµp,q are defined at the barycenter(x, y) =(
m1,0

m0,0
,

m0,1

m0,0

)
of f (x, y):

µp,q =

∫ ∫
f (x, y) (x − x)p (y − y)q dxdy

=

p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
(−x)p−k (−y)q−l mk,l

The complex momentsκp,q are defined on the complex image plane
z = x + jy, j =

√
−1, [7]:

κp,q =

∫ ∫
f (x, y) (x + jy)p (x − jy)q dxdy

=

p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
jp−k+q+l (−1)q−l mk+l,p−k+q−l

As shown above, the various types of moments can be obtained by
combining appropriately the geometric moments which constitute
therefore the basic elements of moment-based analysis.

3. DISTRIBUTED ACQUISITION OF FRI SIGNALS

In a distributed acquisition system, the locations of the sensors are
unknown and we want to recover the original signal although each
sensor can only retrieve a partial description of it. Consequently, the
reconstruction of the observed signal at each sensor is only possible
by considering the information of several sensors. Moreover, in or-
der to interpret correctly the data of each sensor, it is first necessary
to find the transformations existing between the observed images.

In this section, we are considering FRI signals and their perfect
reconstruction from a finite number of continuous moments. We
extend to a distributed approach the work of [1] and [2] based on E-
splines and B-splines sampling kernels. Calculating all the necessary
moments independently as if each sensor were a single acquisition
device, would require a complex sampling kernel (i.e. of high order
ρ) at each sensor. Moreover it would be sub-efficient as it would
not take into account the fact that a similar scene is observed by
each sensor. Therefore we propose instead to distribute the compu-
tation of the required moments among theN sensors so that each of
them retrieve only a specific part of the observed scene. By choosing
the order of the spline, we can determine which amount of informa-
tion we want to retrieve from the samples. This allows us to use a
simpler sampling kernel (i.e. of lower orderρ) at each sensor since
fewer moments will be calculated. Once that we have determined the



transformations existing between each observations, it then becomes
possible to recover the observed signal at each sensor’s location. A
major advantage of using simpler sampling kernels is to have less
samples per sensor compared to a single acquisition device.

We are now using 2-D B-splines as sampling kernels. Suppose
that we have a bilevel image representing a pentagon (five corners)
and observed by three sensors. This polygonal image can be com-
pletely specified by eight consecutive complex moments [6]. As op-
posed to E-spline, a B-spline of a given orderρ is unique: if it can
reproduce a monomial of degreek, it also reproduces, by construc-
tion, all the monomials of degree0 to k − 1. Consequently it is not
possible to have a sensor providing the moment of orderk without
also providing moments of order0 to k − 1. It is therefore also not
possible to distribute equally the computation of moments among
the sensors. However we propose an asymmetric distributed acqui-
sition architecture in which exists two types of cameras: a unique
main camera and several auxiliary ones. In this setup, the main cam-
era can directly determine all the required moments from its samples
and reconstruct perfectly the observed signal similarly to the single
acquisition device proposed in [2]. The auxiliary cameras though
have very low resolution and only allow to retrieve the unknown
transformations between the observed signals. It is therefore usually
not possible to reconstruct the FRI signal by only considering the
samples of the auxiliary cameras. However, after estimation of the
transformation between an auxiliary camera and the main camera, it
is possible to apply this transformation to the reconstructed image of
the main sensor and to finally obtain the view at the location of this
auxiliary camera.

In the case of the pentagon image and assuming an affine trans-
formation between each view, we need a B-spline of order seven at
the main camera and a B-spline of order three at each auxiliary cam-
eras (see Section 4 concerning the registration procedure). Figure
2(a) shows the acquired low-resolution sampled images obtained at
two auxiliary cameras (left and right) and at the main camera (mid-
dle). Figure 2(b) represents the reconstructed view at each corre-
sponding camera after retrieval of the exact affine transformations.

In 1-D, different sensors can only observe different delayed ver-
sions of the same signal. By using 1-D E-spline, it is possible to
design a symmetric distributed acquisition system. Indeed, since an
E-spline is defined by its parametersα, different sampling kernels
of same orderρ can be defined for each sensor. This way, different
exponential moments can be obtained at each sensor. The delayti,j

between two sensors can also be retrieved if they share a common
parameterαn = α since it can be shown thath

(i)
n = eαnti,j · h(j)

n .
We think that applications of 1-D FRI signals (e.g.stream of Diracs)
can be useful in electronic (e.g.high rate A/D converter) [1].

4. REGISTRATION AND SUPER-RESOLUTION FROM
MOMENTS

The estimation of the continuous moments from the samples as de-
scribed by Equation (4) is not confined to FRI signals but can also
be applied to real images. In particular, we propose here a novel
approach of image registration based on the knowledge of the con-
tinuous moments of an object viewed from different locations. An
extensive survey of image registration techniques is provided in [8].

As the resolution of the images to be registered gets lower, the
efficiency of algorithms to retrieve salient features (such as corners,
edges, etc. . . ) and to determine accurately the transformations be-
comes poorer and poorer. So far, moments of the sampled image
m̃p,q =

∑
m

∑
n Sm,n(mTx)p(nTy)q were used in moment-based

image analysis as discrete approximations of the original moments.

(a) Samples from each of the three cameras.

(b) Reconstructed image from the samples (512x512 px each).

Fig. 2. Asymmetric distributed acquisition with affine registration:
left and right: auxiliary camera (7x7 px) - middle: main camera
(23x23 px).
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Fig. 3. Average normalized error of the discrete and continuous mo-
ment compared to the original moments (p = 2, q = 1).

For example, moment invariants have been used for finding corre-
spondences of closed-boundaries whose barycenters were used as
control points for registration [9]. This however requires sufficiently
high-resolution sampled images so that shapes are well preserved.
However, from Equation (4), it is actually possible to find precisely
the original moments of any signal from its low-resolution sampled
version. Figure 3 shows how the discrete and continuous moments
computed from the samples differ from the moments of the origi-
nal image (for the case ofp = 2 andq = 1). We considered a set
of 20 real square images (512x512 pixels) and their sampled ver-
sions at different resolution (256x256, 128x128, 64x64, 16x16 and
8x8 pixels). As the resolution decreases, the continuous moments
obtained from Equation (4) remain very accurate whereas discrete
moments diverge rapidly. The minimum number of required sam-
ples to compute the continuous moment depends on the order of the
desired moments. The higher the order of the moments is, the larger
the number of samples. But since B-splines are the splines with the
shortest possible support, they suit particularly well in this frame-
work. Finally, for order as low as 2, B-splines are very similar to
a Gaussian pulse which makes them particularly suitable to model
camera lenses.

We are assuming in this work that the disparity existing between
any two imagesf(x) andg(x′) can be described by an affine trans-
formation:

x
′ = Ax + t

whereA is a non-singular 2x2 matrix andt is 2-D vector. The trans-
lation t can be recovered by comparing the barycenters of each im-
age. By using a whitening transform, the estimation ofA is reduced



(a) Original image (2000x2000). (b) Low-resolution sampled image (65x65). (c) Super-resolved image (2000x2000).

Fig. 4. Image super-resolution from 100 sensors and based on continuousmoments (original image: NASAs Earth Observatory).

to a simpler problem of finding a matrix of rotationR with a single
unknown compared to four withA [10]:

A = FgRF
−1
f with F(·) =




√
µ

(·)
2,0 0

µ
(·)
1,1√
µ
(·)
2,0

√
µ

(·)
0,2 −

µ
(·)2
1,1

µ
(·)
2,0




where(·) refers either to the imageg or f . In [11], Heikkilä demon-
strated how to retrieve the matrixR from the third order complex
moments. The use of the continuous moments, instead of the dis-
crete moments, together with the approach described in [11], allows
us to perform an affine registration of very low-resolution sampled
images with the accuracy of the original image as it can be seen
from Figure 2. An advantage of doing registration based on the
moments is that features extraction and features correspondence are
not required anymore to determine a transformation as opposed to
intensity-, contour-, or point-based methods.

Image super-resolution consists in fusing adequately the infor-
mation from different low-resolution and blurred images of a same
scene in order to obtain a high-resolution image with greater details.
A variety of methods have been proposed to solve this problem (see
for example [12]). Our simulation results of image super-resolution
using one hundred sensors are shown in Figure 4. We assumed that
only 2-D translations were present between each sensors. We cre-
ated one hundred (circularly) shifted views from an original high-
resolution image of 2000 x2000 pixels (Figure 4(a)). Each view
was sampled so that we obtained a set of low-resolution images of
65x65 pixels (Figure 4(b)). The different offsets were exactly es-
timated using continuous moments. A 2-D cubic interpolation fol-
lowed by a restoration with a Wiener filter were then used to obtain
a 2000x2000px super-resolved image (Figure 4(c)). Since947 sen-
sors would be required to obtain a similar amount of information as
in the original image, there exists an inevitable discrepancy between
the super-resolved image and the original image. However, many
details are retrieved in the super-resolved image as it can be seen for
example from the coastline of the south American continent.

5. CONCLUSION

We have shown that the sampling of FRI signals can be performed
in a distributed fashion by using kernels reproducing either polyno-
mials or exponentials. We also developed a new image registration
algorithm by extending the computation of the continuous moments
of FRI signals to real images. The registration, which does not re-
quire any feature extractions and correspondences, can retrieve upto

an affine transformation and its high accuracy is maintained almost
regardless of the image resolution. Good preliminary results have
finally been obtained for image super-resolution. In future works,
we want to improve the restoration step of our super-resolution al-
gorithm and use real-world data.
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