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INTRODUCTION

Signal acquisition and reconstruction is at the heart of signal processing, and sampling theorems

provide the bridge between the continuous and the discrete-time worlds. The most celebrated and

widely used sampling theorem is often attributed to Shannon1, and gives a sufficient condition,

namelybandlimitedness, for an exact sampling and interpolation formula. The sampling rate, at

twice the maximum frequency present in the signal, is usually called theNyquistrate. Bandlimit-

edness is however not necessary, as is well known but only rarely taken advantage of [1]. In this

broader, non-bandlimited view, the question is: when can weacquire a signal using a sampling

kernel followed by uniform sampling and perfectly reconstruct it?

The Shannon case is a particular example, where any signal from the subspace of bandlimited

signals denoted byBL, can be acquired through sampling and perfectly interpolated from the sam-

ples. Using thesinc kernel, or ideal lowpass filter, non-bandlimited signals will be projected onto

the subspaceBL. The question is: can we beat Shannon at this game, namely, acquire signals from

outside ofBL and still perfectly reconstruct? An obvious case is bandpass sampling and varia-

tions thereof. Less obvious are sampling schemes taking advantage of some sort of sparsity in the

signal, and this is the central theme of the present paper. That is, instead of generic bandlimited

signals, we consider the sampling of classes of non-bandlimited parametric signals. This allows

us to circumvent Nyquist and perfectly sample and reconstruct signals usingsparsesampling, at a

rate characterized by how sparse they are per unit of time. Insome sense, we sample at therate of

innovationof the signal by complying with Occam’s razor2 principle.

1and many others, from Whittaker to Kotel’nikov and Nyquist,to name a few.
2Known asLex Parcimoniæor “Law of Parsimony”:Entia non svnt mvltiplicanda præter necessitatem, or, “Entities

should not be multiplied beyond necessity” (Wikipedia).



2

Besides Shannon’s sampling theorem, a second basic result that permeates signal processing is

certainly Heisenberg’s uncertainty principle, which suggests that a singular event in the frequency

domain will be necessarily widely spread in the time domain.A superficial interpretation might

lead one to believe that a perfect frequency localization requires a very long time observation. That

this is not necessary is demonstrated by high resolution spectral analysis methods, which achieve

very precise frequency localization using finite observation windows [2], [3]. The way around

Heisenberg resides in a parametric approach, where the prior that the signal is a linear combination

of sinusoids is put to contribution.

If by now you feel uneasy about slaloming around Nyquist, Shannon and Heisenberg, do not

worry. Estimation of sparse data is a classic problem in signal processing and communications,

from estimating sinusoids in noise, to locating errors in digital transmissions. Thus, there is a wide

variety of available techniques and algorithms. Also, the best possible performance is given by the

Cramér-Rao lower bounds for this parametric estimation problem, and one can thus check how close

to optimal a solution actually is.

We are thus ready to pose the basic questions of this paper. Assume a sparse signal (be it in con-

tinuous or discrete time) observed through a sampling device, that is a smoothing kernel followed

by regular or uniform sampling. What is the minimum samplingrate (as opposed to Nyquist’s rate,

which is often infinite in cases of interest) that allows to recover the signal? What classes of sparse

signals are possible? What are good observation kernels, and what are efficient and stable recovery

algorithms? How does observation noise influence recovery,and what algorithms will approach

optimal performance? How will these new techniques impact practical applications, from inverse

problems to wideband communications? And finally, what is the relationship between the presented

methods and classic methods as well as the recent advances incompressed sensing and sampling?

Signals with Finite Rate of Innovation

Using thesinc kernel (defined assinc t = sin πt/πt), a signalx(t) bandlimited to[−B/2, B/2] can

be expressed as

x(t) =
∑

k∈Z

xk sinc(Bt − k), (1)

wherexk = 〈B sinc(Bt−k), x(t)〉 = x(k/B), as stated by C. Shannon in his classic 1948 paper [4].
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Alternatively, we can say thatx(t) hasB degrees of freedom per second, sincex(t) is exactly

defined by a sequence of real numbers{xk}k∈Z, spacedT = 1/B seconds apart. It is natural to call

this therate of innovationof the bandlimited process, denoted byρ, and equal toB.

A generalization of the space of bandlimited signals is the space of shift-invariant signals. Given

a basis functionϕ(t) that is orthogonal to its shifts by multiples ofT , or 〈ϕ(t− kT ), ϕ(t− k′T )〉 =

δk−k′ , the space of functions obtained by replacingsinc with ϕ in (1) defines a shift-invariant space

S. For such functions, the rate of innovation is again equal toρ = 1/T .

Now, let us turn our attention to a generic sparse source, namely a Poisson process, which is a

set of Dirac pulses,
∑

k∈Z
δ(t − tk), wheretk − tk−1 is exponentially distributed with p.d.f.λe−λt.

Here, the innovations are the set of positions{tk}k∈Z . Thus, the rate of innovation is the average

number of Diracs per unit of time:ρ = limT→∞ CT /T , whereCT is the number of Diracs in the

interval [−T/2, T/2]. This parallels the notion ofinformation rateof a source based on the average

entropy per unit of time introduced by Shannon in the same 1948 paper. In the Poisson case with

decay rateλ, the average delay between two Diracs is1/λ; thus, the rate of innovationρ is equal to

λ. A generalization involves weighted Diracs, or

x(t) =
∑

k∈Z

xkδ(t − tk).

By similar arguments,ρ = 2λ in this case, since both positions and weights are degrees offreedom.

Note that this class of signals is not a subspace, and its estimation is a non-linear problem.

Now comes the obvious question: is there a sampling theorem for the type of sparse processes

just seen? That is, can we acquire such a process by taking about ρ samples per unit of time, and

perfectly reconstruct the original process, just as the Shannon sampling procedure does.

The necessary sampling rate is clearlyρ, the rate of innovation. To show that it is sufficient can

be done in a number of cases of interest. The archetypal sparse signal is the sum of Diracs, observed

through a suitable sampling kernel. In this case, sampling theorems at the rate of innovation can

be proven. Beyond the question of a representation theorem,we also derive efficient computational

procedures, showing the practicality of the approach. Nextcomes the question of robustness to

noise and optimal estimation procedures under these conditions. We propose algorithms to esti-

mate sparse signals in noise that achieve performance closeto optimal. This is done by computing
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Cramér-Rao bounds that indicate the best performance of anunbiased estimation of the innovation

parameters. Note that, when the Signal-to-Noise ratio is poor, the algorithms are iterative, and thus

trade computational complexity for estimation performance.

In order for the reader to easily navigate through the paper,we have collected in Table I the most

frequent notations that will be used in the sequel.

I. SAMPLING SIGNALS AT THEIR RATE OF INNOVATION

We consider aτ -periodic stream ofK Diracs with amplitudesxk located at timestk ∈ [0, τ [:

x(t) =

K∑

k=1

∑

k′∈Z

xkδ(t − tk − k′τ). (2)

We assume that the signalx(t) is convolved with asinc-window of bandwidthB, whereBτ is an

odd integer3, and is uniformly sampled with sampling periodT = τ/N . We therefore want to

retrieve the innovationsxk andtk from then = 1, 2, . . . , N measurements

yn = 〈 x(t), sinc(B(nT − t)) 〉 =

K∑

k=1

xkϕ(nT − tk), (3)

where ϕ(t) =
∑

k′∈Z

sinc(B(t − k′τ)) =
sin(πBt)

Bτ sin(πt/τ)
(4)

is theτ -periodic sinc function or Dirichlet kernel. Clearly,x(t) has a rate of innovationρ = 2K/τ

and we aim to devise a sampling scheme that is able to retrievethe innovations ofx(t) by operating

at a sampling rate that is as close as possible toρ.

Sincex(t) is periodic, we can use the Fourier series to represent it. Byexpressing the Fourier

series coefficients ofx(t) we thus have

x(t) =
∑

m∈Z

x̂m ej2πmt/τ , where x̂m =
1

τ

K∑

k=1

xk e−j2πmtk/τ
︸ ︷︷ ︸

um
k

. (5)

We observe that the signalx(t) is completely determined by the knowledge of theK amplitudes

xk and theK locationstk, or equivalently,uk. By considering2K contiguous values of̂xm in (5),

we can build a system of2K equations in2K unknowns that is linear in the weightsxk, but is highly

3We will use this hypothesis throughout the paper in order to simplify the expressions and because it allows convergence

of theτ -periodized sum ofsinc-kernels.
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nonlinear in the locationstk and therefore cannot be solved using classical linear algebra. Such a

system, however, admits a unique solution when the Diracs locations are distinct, which is obtained

by using a method known in spectral estimation asProny’s method[5], [6], [2], [3], and which we

choose to call theannihilating filter method for the reason clarified below. Call{hk}k=0,1,...,K the

filter coefficients withz-transform

H(z) =

K∑

k=0

hkz
−k =

K∏

k=1

(1 − ukz
−1). (6)

That is, the roots ofH(z) correspond to the locationsuk = e−j2πtk/τ . It clearly follows that

hm ∗ x̂m =

K∑

k=0

hkx̂m−k =

K∑

k=0

K∑

k′=1

xk′

τ
hku

m−k
k′ =

K∑

k′=1

xk′

τ
um

k′

K∑

k=0

hku
−k
k′

︸ ︷︷ ︸

H(uk′)=0

= 0. (7)

The filterhm is thus called annihilating filter since it annihilates the discrete signal̂xm. The zeros

of this filter uniquely define the locationstk of the Diracs. Sinceh0 = 1, the filter coefficientshm

are found from (7) by involving at least2K consecutive values of̂xm, leading to a linear system

of equations; e.g., if we havêxm for m = −K,−K + 1, . . . ,K − 1, this system can be written in

square Toeplitzmatrix form as follows












x̂−1 x̂−2 · · · x̂−K

x̂0 x̂−1 · · · x̂−K+1

...
...

. . .
...

x̂K−2 x̂K−3 · · · x̂−1

























h1

h2

...

hK













= −













x̂0

x̂1

...

x̂K−1













. (8)

If the xk ’s do not vanish, thisK × K system of equations has a unique solution because any

hm satisfying it is also such thatH(uk) = 0 for k = 1, 2, . . . K. Given the filter coefficientshm,

the locationstk are retrieved from the zerosuk of thez-transform in (6). The weightsxk are then

obtained by considering, for instance,K consecutive Fourier-series coefficients as given in (5). By

writing the expression of theseK coefficients in vector form, we obtain a Vandermonde system of

equations which yields a unique solution for the weightsxk since theuk ’s are distinct. Notice that

we need in total no more than2K consecutive coefficientŝxm to solve both the Toeplitz system (8)

and the Vandermonde system. This confirms our original intuition that the knowledge of only2K

Fourier-series coefficients is sufficient to retrievex(t).
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We are now close to solve our original sampling question, theonly remaining issue is to find a

way to relate the Fourier-series coefficientsx̂m to the actual measurementsyn. AssumeN ≥ Bτ

then, forn = 1, 2, ..., N , we have that

yn = 〈x(t), sinc(Bt − n)〉 =
∑

|m|≤⌊Bτ/2⌋

T x̂m ej2πmn/N . (9)

Up to a factorNT = τ , this is simply the inverse Discrete Fourier Transform (DFT) of a discrete

signal bandlimited to[−⌊Bτ/2⌋, ⌊Bτ/2⌋] and which coincides witĥxm in this bandwidth. As

a consequence, the discrete Fourier coefficients ofyn provideBτ consecutive coefficients of the

Fourier series ofx(t) according to

ŷm =

N∑

n=1

yne−j2πmn/N =

{
τ x̂m if |m| ≤ ⌊Bτ/2⌋

0 for otherm ∈ [−N/2, N/2].
(10)

Let us now analyse the complete retrieval scheme more precisely and draw some conclusions.

First of all, since we need at least2K consecutive coefficientŝxm to use the annihilating filter

method, this means thatBτ ≥ 2K. Thus, the bandwidth of thesinc-kernel,B, is always larger than

2K/τ = ρ, the rate of innovation. However, sinceBτ is odd, the minimum number of samples

per period is actually one sample larger:N ≥ Bminτ = 2K + 1 which is the next best thing to

critical sampling. Moreover, the reconstruction algorithm is fast and does not involve any iterative

procedures. Typically, the only step that depends on the number of samples,N , is the computation

of the DFT coefficients of the samplesyn, which can of course be implemented inO(N log2 N)

elementary operations using the FFT algorithm. All the other steps of the algorithm (in particular,

polynomial rooting) depend onK only; i.e., on the rate of innovationρ.

More on annihilation: A closer look at (7) indicates thatanynon-trivial filter{hk}k=0,1,...,L where

L ≥ K that hasuk = e−j2πtk/τ as zeros will annihilate the Fourier series coefficients ofx(t). The

converse is true: any filter with transfer functionH(z) that annihilates thêxm is automatically such

thatH(uk) = 0 for k = 1, 2, . . . ,K. Taking (10) into account, this means that for such filters

L∑

k=0

hkŷm−k = 0, for all |m| ≤ ⌊Bτ/2⌋. (11)



7

These linear equations can be expressed using a matrix formalism: letA be the Toeplitz matrix

A =

2
M

−
L

+
1

ro
w

s
























L + 1 columns
︷ ︸︸ ︷

ŷ−M+L ŷ−M+L−1 · · · ŷ−M

ŷ−M+L+1 ŷ−M+L · · · ŷ−M+1

ŷ−M+L+2 ŷ−M+L+1
. ..

...
...

. . . . .. ŷ−M+L

...
. . . . ..

...

ŷM ŷM−1 · · · ŷM−L



















whereM = ⌊Bτ/2⌋, (12)

andH = [h0, h1, . . . , hL]T the vector containing the coefficients of the annihilating filter, then (11)

is equivalent to

AH = 0, (13)

which can be seen as a rectangular extension of (8). Note that, unlike (6),H is not restricted to

satisfyh0 = 1. Now, if we chooseL > K, there areL−K + 1 independent polynomials of degree

L with zeros at{uk}k=1,2,...,K , which means that there areL−K +1 independent vectorsH which

satisfy (13). As a consequence, the rank of the matrixA does never exceedK. This provides a

simple way to determineK when it is not known a priori: find the smallestL such that the matrix

A built according to (12) is singular, thenK = L − 1.

The annihilation property (11) satisfied by the DFT coefficients ŷm is narrowly linked to the peri-

odizedsinc-Dirichlet window used prior to sampling. Importantly, this approach can be generalized

to other kernels such as the (non-periodized)sinc, the Gaussian windows [7], and more recently any

window that satisfies a Strang-Fix like condition [8].

II. FRI SIGNALS WITH NOISE

“Noise”, or more generally model mismatch are unfortunately omnipresent in data acquisition,

making the solution presented in the previous section only ideal. Schematically, perturbations to the

FRI model may arise both in the analog domain during, e.g., a transmission procedure, and in the

digital domain after sampling (see Fig. 1)—in this respect,quantization is a source of corruption as

well. There is then no other option but to increase the sampling rate in order to achieve robustness

against noise.
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Thus, we consider the signal resulting from the convolutionof theτ -periodic FRI signal (2) and

a sinc-window of bandwidthB, whereBτ is anodd integer. Due to noise corruption, (3) becomes

yn =

K∑

k=1

xkϕ(nT − tk) + εn for n = 1, 2, . . . , N, (14)

whereT = τ/N andϕ(t) is the Dirichlet kernel (4). Given that the rate of innovation of the signal

is ρ, we will considerN > ρτ samples to fight the perturbationεn, making the data redundant by

a factor ofN/(ρτ). At this point, we do not make specific assumptions—in particular, of statistical

nature—onεn. What kind of algorithms can be applied to efficiently exploit this extra redundancy

and what is their performance?

A related problem has already been encountered decades ago by researchers in spectral analysis

where the problem of finding sinusoids in noise is classic [9]. Thus we will not try to propose new

approaches regarding the algorithms. One of the difficulties is that there is as yet no unanimously

agreed optimal algorithm for retrieving sinusoids in noise, although there has been numerous eval-

uations of the different methods (see e.g. [10]). For this reason, our choice falls on the the simplest

approach, the Total Least-Squares approximation (implemented using aSingular Value Decomposi-

tion, an approach initiated by Pisarenko in [11]), possibly enhanced by an initial “denoising” (more

exactly: “model matching”) step provided by what we callCadzow’s iterated algorithm[12]. The

full algorithm, depicted in Fig. 2, is also detailed in its two main components in Inserts 1 and 2.

By computing the theoretical minimal uncertainties known as Cramér-Rao bounds on the inno-

vation parameters, we will see that these algorithms exhibit a quasi-optimal behavior down to noise

levels of the order of5 dB (depending on the number of samples). In particular, these bounds tell

us how to choose the bandwidth of the sampling filter.

A. Total least-squares approach

In the presence of noise, the annihilation equation (13) equation is not satisfied exactly, yet it is

still reasonable to expect that the minimization of the Euclidian norm‖AH‖2 under the constraint

that‖H‖2 = 1 may yield an interesting estimate ofH. Of particular interest is the solution forL =

K—annihilating filter of minimal size—because theK zeros of the resulting filter provide a unique

estimation of theK locationstk. It is known that this minimization can be solved by performing a



9

singular value decompositionof A as defined by (12)—more exactly: an eigenvalue decomposition

of the matrixAT
A—and choosing forH the eigenvector corresponding to the smallest eigenvalue.

More specifically, ifA = USV
T whereU is a (Bτ − K) × (K + 1) unitary matrix,S is a

(K +1)×(K +1) diagonal matrix with decreasing positive elements, andV is a(K +1)×(K +1)

unitary matrix, thenH is the last column ofV. Once thetk are retrieved, thexk follow from a least

mean square minimization of the difference between the samplesyn and the FRI model (14).

This approach, summarized in Insert 1, is closely related toPisarenko’s method [11]. Although

its cost is much larger than the simple solution of Section I,it is still essentially linear withN

(excluding the cost of the initial DFT)

B. Extra denoising: Cadzow

The previous algorithm works quite well for moderate valuesof the noise—a level that depends on

the number of Diracs. However, for small SNR, the results maybecome unreliable and it is advisable

to apply a robust procedure that “projects” the noisy samples onto the sampled FRI model of (14).

This iterative procedure was already suggested by Tufts andKumaresan in [13] and analyzed in [12].

As noticed in Section I, the noiseless matrixA in (12) is of rankK wheneverL ≥ K. The idea

consists thus in performing the SVD ofA, sayA = USV
T, and forcing to zero theL + 1 − K

smallest diagonal coefficients of the matrixS to yieldS
′. The resulting matrixA′ = US

′
V

T is not

Toeplitz anymore but its best Toeplitz approximation is obtained by averaging the diagonals ofA
′.

This leads to a new “denoised” sequenceŷ′n that matches the noiseless FRI sample model better

than the original̂yn’s. A few of these iterations lead to samples that can be expressed almost exactly

as bandlimited samples of an FRI signal. Our observation is that this FRI signal is all the closest to

the noiseless one asA is closer to a square matrix, i.e.,L = ⌊Bτ/2⌋.

The computational cost of this algorithm, summarized in Insert 2, is higher than the annihilating

filter method since it requires performing the SVD of a squarematrix of large size, typically half

the number of samples. However, using modern computers we can expect to perform the SVD of

a square matrix with a few hundred columns in less than a second. We show in Fig. 3 an example

of FRI signal reconstruction having7 Diracs whose71 samples are buried in a noise with5 dB

SNR power (redundancy≈ 5): the total computation time is0.9 second on a PowerMacintosh G5
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at1.8 GHz. Another more striking example is shown in Fig. 4 where weuse1001 noisy (SNR= 20

dB) samples to reconstruct100 Diracs (redundancy≈ 5): the total computation time is61 seconds.

Although it is not easy to check on a crowded graph, all the Dirac locations have been retrieved

very precisely, while a few amplitudes are wrong. The fact that the Diracs are sufficiently far apart

(≥ 2/N ) ensures the stability of the retrieval of the Dirac locations.

C. Craḿer-Rao Bounds

The sensitivity of the FRI model to noise can be evaluated theoretically by choosing a statistical

model for this perturbation. The result is that any unbiasedalgorithm able to retrieve the innova-

tions of the FRI signal from its noisy samples exhibits a covariance matrix that is lower bounded

by Cramér-Rao Bounds (see Appendix III-B). As can be seen inFig. 5, the retrieval of an FRI

signal made of two Diracs is almost optimal for SNR levels above 5 dB since the uncertainty on

these locations reaches the (unbiased) theoretical minimum given by Cramér-Rao bounds. Such a

property has already been observed for high-resolution spectral algorithms (and notably, those using

a maximum likelihood approach) by Tufts and Kumaresan [13].

It is particularly instructive to make the explicit computation for signals that have exactly two

innovations per periodτ , and where the samples are corrupted with a white Gaussian noise. The

results, which involve the same arguments as in [14], are given in Insert 3 and essentially state that

the uncertainty on the location of the Dirac is proportionalto 1/
√

NBτ when the sampling noise is

dominant (white noise case), and to1/(Bτ) when the transmission noise is dominant (ϕ(t)-filtered

white noise). In both cases, it appears that it is better tomaximize the bandwidthB of thesinc-kernel

in order tominimize the uncertaintyon the location of the Dirac. A closer inspection of the white

noise case shows that the improved time resolution is obtained at the cost of a loss of amplitude

accuracy by a
√

Bτ factor.

WhenK ≥ 2, the Cramér-Rao formula for one Dirac still holds approximately when the locations

are sufficiently far apart. Empirically, if the minimal difference (moduloτ ) between two of the Dirac

locations is larger than, say,2/N , then the maximal (Cramér-Rao) uncertainty on the retrieval of

these locations is obtained using the formula given in Insert 3.
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III. D ISCUSSION

A. Applications

Let us turn to applications of the methods developed so far. The key feature to look for is sparsity,

together with a good model of the acquisition process and of the noise present in the system. For

a real application, this means a thorough understanding of the set up and of the physics involved

(remember that we assume a continuous-time problem, and we do not start from a set of samples or

a finite vector).

One main application to use the theory presented in this paper is ultra-wide band (UWB) commu-

nications. This communication method uses pulse position modulation (PPM) with very wideband

pulses (up to several gigahertz of bandwidth). Designing a digital receiver using conventional sam-

pling theory would require analog-to-digital conversion (ADC) running at over 5 GHz, which would

be very expensive and power consumption intensive. A simplemodel of an UWB pulse is a Dirac

convolved with a wideband, zero mean pulse. At the receiver,the signal is the convolution of the

original pulse with the channel impulse response, which includes many reflections, and all this

buried in high levels of noise. Initial work on UWB using an FRI framework was presented in [15].

The technology described in the present paper is currently being transferred to Qualcomm Inc.

The other applications that we would like to mention, namelyElectro-EncephaloGraphy (EEG)

and Optical Coherence Tomography (OCT), use other kernels than the Dirichlet window, and as

such, require a slight adaptation to what has been presentedhere.

EEG measurements during neuronal events like epileptic seizures can be modelled reasonably

well by a FRI excitation to a Poisson equation and it turns outthat these measurements satisfy an

annihilation property [16]. Obviously, accurate localization of the activation loci is important for

the surgical treatment of such impairment.

In OCT, the measured signal can be expressed as a convolutionbetween the (low-)coherence

function of the sensing laser beam (typically, a Gabor function which satisfies an annihilation prop-

erty), and a FRI signal whose innovations are the locations of refractive index changes and their

range, within the object imaged [17]. Depending on the noiselevel and the model adequacy, the

annihilation technique allows to reach a resolution that ispotentially well-below the “physical”
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resolution implied by the coherence length of the laser beam.

B. Relation with compressed sensing

One may wonder whether the approach described here could be addressed using compressed

sensing tools developed in [18], [19]. Obviously, FRI signals can be seen as “sparse” in the time

domain. However, differently from the compressed sensing framework, this domain isnot discrete:

the innovation times may assumearbitrary real values. Yet, assuming that these innovations fall on

some discrete grid{θn′}n′=0,1,...,(N ′−1) known a priori, one may try to address our FRI interpolation

problem as

min
x′
0
,x′

1
,...,x′

N′−1

N ′−1∑

n′=0

|x′
n′ | under the constraint

N∑

n=1

∣
∣
∣yn −

N ′−1∑

n′=0

x′
n′ϕ(nT − θn′)

∣
∣
∣

2
≤ Nσ2, (15)

whereσ2 is an estimate of the noise power.

In the absence of noise, it has been shown that this minimization provides the parameters of

the innovation, with “overwhelming” probability [19] using O(K log N ′) measurements. Yet, this

method is not as direct as the annihilating filter method which does not require any iteration. More-

over, the compressed-sensing approach does not reach the critical sampling rate, unlike the method

proposed here which almost achieves this goal (2K + 1 samples for2K innovations). On the

other hand, compressed sensing is not limited to uniform measurements of the form (14), and could

potentially accommodate arbitrary sampling kernels—and not only the few ones that satisfy an an-

nihilation property. This flexibility is certainly an attractive feature of compressed sensing.

In the presence of noise, the beneficial contribution of theℓ1 norm is less obvious since the

quadratic program (15) does not provide an exactlyK-sparse solution anymore—althoughℓ1/ℓ2

stable recovery of thex′
k′ is statistically guaranteed [20]. Moreover, unlike the method we are

proposing here which is able to reach the Cramér-Rao lower bounds (computed in Appendix III-B),

there is no evidence that theℓ1 strategy may share this optimal behavior. In particular, itis of interest

to note that, in practice, the compressed sensing strategy involvesrandom measurementselection,

whereas arguments obtained from Cramér-Rao bounds computation—namely, on the optimal band-

width of thesinc-kernel—indicate that, on the contrary, it might be worth optimizing the sensing

matrix.
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CONCLUSION

Sparse sampling of continuous-time sparse signals has beenaddressed. In particular, it was shown

that sampling at the rate of innovation is possible, in some sense applying Occam’s razor to the sam-

pling of sparse signals. The noisy case has been analyzed andsolved, proposing methods reaching

the optimal performance given by the Cramér-Rao bounds. Finally, a number of applications have

been discussed where sparsity can be taken advantage of. Thecomprehensive coverage given in this

paper should lead to further research in sparse sampling, aswell as new applications.

APPENDIX: CRAMÉR-RAO LOWER BOUNDS

We are considering noisy real measurementsY = [y1, y2, . . . yN ] of the form

yn =

K∑

k=1

xkϕ(nT − tk) + εn

whereεn is a zero-meanGaussiannoise of covarianceR; usually the noise is assumed to be station-

ary: [R]n,n′ = rn−n′ wherern = E {εn′+nεn′}. Then any unbiased estimateΘ(Y) of the unknown

parameters[x1, x2, . . . , xK ]T and[t1, t2, . . . tK ]T has a covariance matrix that is lower-bounded by

the inverse of the Fisher information matrix (adaptation of[21, eqn. (6)])

cov{Θ} ≥
(

Φ
T
R

−1
Φ

)−1
,

where Φ =













ϕ(T − t1) · · · ϕ(T − tK) −x1ϕ
′(T − t1) · · · −xKϕ′(T − tK)

ϕ(2T − t1) · · · ϕ(2T − tK) −x1ϕ
′(2T − t1) · · · −xKϕ′(2T − tK)

...
...

...
...

ϕ(NT − t1) · · · ϕ(NT − tK) −x1ϕ
′(NT − t1) · · · −xKϕ′(NT − tK)













.

Note that this expression holds quite in general: it does notrequire thatϕ(t) be periodic or bandlim-

ited, and the noise does not need to be stationary.

One-Dirac periodized sinc case—If we make the hypothesis thatεn is N -periodic andϕ(t) is the

Dirichlet kernel (4), then the2 × 2 Fisher matrix becomes diagonal. The minimal uncertaintieson

the location of one Dirac,∆t1, and on its amplitude,∆x1, are then given by:

∆t1
τ

≥ Bτ

2π|x1|
√

N

(
∑

|m|≤⌊Bτ/2⌋

m2

r̂m

)−1/2

and ∆x1 ≥ Bτ√
N

(
∑

|m|≤⌊Bτ/2⌋

1

r̂m

)−1/2

.
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Insert 1—Annihilating filter: total least-squares method

An algorithm for retrieving the innovationsxk andtk from the noisy samples of (14).

1) Compute theN -DFT coefficients of the sampleŝym =
∑N

n=1
yne−j2πnm/N ;

2) ChooseL = K and build the rectangularToeplitzmatrixA according to (12);

3) Perform thesingular value decompositionof A and choose the eigenvector[h0, h1, . . . , hK ]T

corresponding to thesmallesteigenvalue—i.e., the annihilating filter coefficients;

4) Compute the rootse−j2πtk/τ of thez-transformH(z) =
∑K

k=0 hkz
−k and deduce{tk}k=1,...,K ;

5) Compute the least mean square solutionxk of theN equations{yn−
∑

k xkϕ(nT−tk)}n=1,2,...N .

When the measuresyn are very noisy, it is necessary to firstdenoisethem by performing a few

iterations of Cadzow’s algorithm (see Insert 2), before applying the above procedure.

Insert 2—Cadzow’s iterative denoising

Algorithm for “denoising” the samplesyn of Insert 1.

1) Compute theN -DFT coefficients of the sampleŝym =
∑N

n=1
yne−j2πnm/N ;

2) Choose an integerL in [K,Bτ/2] and build the rectangularToeplitzmatrix A according

to (12);

3) Perform thesingular value decompositionof A = USV
T whereU is a(2M−L+1)×(L+1)

unitary matrix,S is a diagonal(L+1)× (L+1) matrix, andV is a(L+1)× (L+1) unitary

matrix;

4) Build the diagonal matrixS′ from S by keeping only theK most significant diagonal ele-

ments, and deduce the total least-squares approximation ofA by A
′ = US

′
V

T;

5) Build a denoised approximation̂y′n of ŷn by averaging the diagonals of the matrixA
′;

6) Iterate step 2 until, e.g., the(K + 1)th largest diagonal element ofS is smaller than theKth

largest diagonal element by some pre-requisite factor;

The number of iterations needed is usually small (less than10). Note that, experimentally, the best

choice forL in step 2 isL = M .

Insert 3—Uncertainty relation for the one-Dirac case

We consider the FRI problem of finding[x1, t1] from theN noisy measurements[y1, y2, . . . , yN ]

yn = µn + εn with µn = x1ϕ(nτ/N − t1)
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whereϕ(t) is theτ -periodic,B-bandlimited Dirichlet kernel andεn is a stationary Gaussian noise.

Any unbiased algorithm that estimatest1 andx1 will do so up to an error quantified by their standard

deviation∆t1 and∆x1, lower bounded by Cramér-Rao formulæ (see Appendix III-B). Denoting

the noise power byσ2 and the Peak Signal-to-Noise Ratio by PSNR= |x1|2/σ2, two cases are

especially interesting:

• The noise is white, i.e., its power spectrum density is constant and equalsσ2. Then we find

∆t1
τ

≥ 1

π

√

3Bτ

N(B2τ2 − 1)
· PSNR−1/2 and

∆x1

|x1|
≥
√

Bτ

N
· PSNR−1/2.

• The noise is a white noise filtered byϕ(t), then we find

∆t1
τ

≥ 1

π

√

3

B2τ2 − 1
· PSNR−1/2 and

∆x1

|x1|
≥ PSNR−1/2.

In both configurations, we conclude that, in order tominimize the uncertaintyon t1, it is better

to maximize the bandwidthof the Dirichlet kernel, i.e., chooseB such thatBτ = N if N is odd,

or such thatBτ = N − 1 if N is even. SinceBτ ≤ N we always have the following uncertainty

relation

N · PSNR1/2 · ∆t1
τ

≥
√

3

π
,

involving the number of measurements,N , the end noise level and the uncertainty on the position.
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TABLE I

FREQUENTLY USED NOTATIONS

Symbol Meaning

x(t), τ , x̂m τ -periodic Finite Rate of Innovation signal and its Fourier coefficients

K, tk, xk andρ
Innovation parameters:x(t) =

∑K

k=1
xkδ(t − tk), for t ∈ [0, τ [

and rate of innovation of the signal:ρ = 2K/τ

ϕ(t), B
“Anti-aliasing” filter, prior to sampling: typically,ϕ(t) = sincBt

Note: B × τ is restricted to be an odd integer

yn, ŷm, N , T
(noisy) samples{yn}n=1,2,...,N of (ϕ ∗ x)(t)

at multiples ofT = τ/N (see eqn. 14) and its DFT coefficientsŷm

A, L rectangular annihilation matrix withL + 1 columns (see eqn. 12)

H(z), hk andH Annihilating filter: z-transform, impulse response and vector representation

∑

k
xkδ(t − tk) - ϕ(t)

sampling kernel

-
⊕?

analog noise

y(t)
�

��

W -
T ⊕?

digital noise

-yn

Fig. 1. Block diagram representation of the sampling of an FRI signal, with indications of potential noise perturbations

in the analog, and in the digital part.

yn ŷn- FFT -�
��
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HH
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HH

�
��

too
noisy?

yes

�Cadzow

? -no Annihilating
Filter method

-tk

-

lin
ea

r
sy

st
em -

-

tk

xk

Fig. 2. Schematical view of the FRI retrieval algorithm. Thedata are considered “too noisy” until they satisfy (11)

almost exactly.
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