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INTRODUCTION

Signal acquisition and reconstruction is at the heart afaigrocessing, and sampling theorems
provide the bridge between the continuous and the distirateworlds. The most celebrated and
widely used sampling theorem is often attributed to Shahnand gives a sufficient condition,
namelybandlimitednessfor an exact sampling and interpolation formula. The samgptate, at
twice the maximum frequency present in the signal, is uguallled theNyquistrate. Bandlimit-
edness is however not necessary, as is well known but ordyyrtaken advantage of [1]. In this
broader, non-bandlimited view, the question is: when caraeguire a signal using a sampling
kernel followed by uniform sampling and perfectly recoustrit?

The Shannon case is a particular example, where any sigmal thie subspace of bandlimited
signals denoted bBL, can be acquired through sampling and perfectly interpdifiiom the sam-
ples. Using thainc kernel, or ideal lowpass filter, non-bandlimited signald bé projected onto
the subspacBL. The question is: can we beat Shannon at this game, namgljrasignals from
outside ofBL and still perfectly reconstruct? An obvious case is barslgasnpling and varia-
tions thereof. Less obvious are sampling schemes takingnsalye of some sort of sparsity in the
signal, and this is the central theme of the present papeait i§hinstead of generic bandlimited
signals, we consider the sampling of classes of non-baitdtinparametric signals. This allows
us to circumvent Nyquist and perfectly sample and recoosgignals usingparsesampling, at a
rate characterized by how sparse they are per unit of timesorme sense, we sample at thge of

innovationof the signal by complying with Occam’s raZgsrinciple.

land many others, from Whittaker to Kotel'nikov and Nyqutstname a few.
2Known asLex Parcimonia®r “Law of Parsimony”: Entia non svnt mvltiplicanda praeter necessitatem “Entities

should not be multiplied beyond necessity” (Wikipedia).



Besides Shannon’s sampling theorem, a second basic reatjpérmeates signal processing is
certainly Heisenberg’s uncertainty principle, which sesg that a singular event in the frequency
domain will be necessarily widely spread in the time domaisuperficial interpretation might
lead one to believe that a perfect frequency localizatiguires a very long time observation. That
this is not necessary is demonstrated by high resolutiootgpeanalysis methods, which achieve
very precise frequency localization using finite obseorativindows [2], [3]. The way around
Heisenberg resides in a parametric approach, where thetpabthe signal is a linear combination
of sinusoids is put to contribution.

If by now you feel uneasy about slaloming around Nyquist,rloa and Heisenberg, do not
worry. Estimation of sparse data is a classic problem inaignocessing and communications,
from estimating sinusoids in noise, to locating errors gitdi transmissions. Thus, there is a wide
variety of available techniques and algorithms. Also, thstipossible performance is given by the
Cramér-Rao lower bounds for this parametric estimatiabiem, and one can thus check how close
to optimal a solution actually is.

We are thus ready to pose the basic questions of this papsunfesa sparse signal (be it in con-
tinuous or discrete time) observed through a sampling devitat is a smoothing kernel followed
by regular or uniform sampling. What is the minimum sampliate (as opposed to Nyquist's rate,
which is often infinite in cases of interest) that allows toaeer the signal? What classes of sparse
signals are possible? What are good observation kernalsyhat are efficient and stable recovery
algorithms? How does observation noise influence recowry, what algorithms will approach
optimal performance? How will these new techniques impaattical applications, from inverse
problems to wideband communications? And finally, whatésrtdationship between the presented

methods and classic methods as well as the recent advanoespressed sensing and sampling?

Signals with Finite Rate of Innovation
Using thesinc kernel (defined asinc ¢t = sin 7t /7t), a signalz(t) bandlimited td—B/2, B /2] can
be expressed as

x(t) = Z xp sinc(Bt — k), 1)

keZ
wherexy, = (Bsinc(Bt—k),z(t)) = z(k/B), as stated by C. Shannon in his classic 1948 paper [4].



Alternatively, we can say that(¢) has B degrees of freedom per second, sinde) is exactly
defined by a sequence of real numbgrg} iz, spaced” = 1/B seconds apart. It is natural to call
this therate of innovationof the bandlimited process, denoted fyand equal td3.

A generalization of the space of bandlimited signals is fhaee of shift-invariant signals. Given
a basis functionp(t) that is orthogonal to its shifts by multiples ®f or (p(t — kT"), o(t — k'T)) =
or_r, the space of functions obtained by replacing: with ¢ in (1) defines a shift-invariant space
S. For such functions, the rate of innovation is again equalto1/T.

Now, let us turn our attention to a generic sparse sourceglyamPoisson process, which is a
set of Dirac pulsesy ., 6(t — ti), wheret,, —t;,_; is exponentially distributed with p.d.Ae M,
Here, the innovations are the set of positiging}ic~. Thus, the rate of innovation is the average
number of Diracs per unit of timey = limp_,o, C7 /T, whereCr is the number of Diracs in the
interval [—T'/2, T /2]. This parallels the notion afformation rateof a source based on the average
entropy per unit of time introduced by Shannon in the same I@per. In the Poisson case with
decay rate\, the average delay between two Dirac$ i3; thus, the rate of innovatiopis equal to
. A generalization involves weighted Diracs, or

x(t) = Zl’ké(t — tg).

keZ

By similar argumentsy = 2\ in this case, since both positions and weights are degrdeseafom.
Note that this class of signals is not a subspace, and ite&s#tin is a non-linear problem.

Now comes the obvious question: is there a sampling theooernhé type of sparse processes
just seen? That is, can we acquire such a process by taking alsamples per unit of time, and
perfectly reconstruct the original process, just as then8tia sampling procedure does.

The necessary sampling rate is clear)ythe rate of innovation. To show that it is sufficient can
be done in a number of cases of interest. The archetypalespigirgal is the sum of Diracs, observed
through a suitable sampling kernel. In this case, sampliegrems at the rate of innovation can
be proven. Beyond the question of a representation theaveralso derive efficient computational
procedures, showing the practicality of the approach. Mertes the question of robustness to
noise and optimal estimation procedures under these ¢mmslit We propose algorithms to esti-

mate sparse signals in noise that achieve performance tdagstimal. This is done by computing



Cramér-Rao bounds that indicate the best performance ofibiased estimation of the innovation
parameters. Note that, when the Signal-to-Noise ratio @s,{ibe algorithms are iterative, and thus
trade computational complexity for estimation perforn&anc

In order for the reader to easily navigate through the papehave collected in Table | the most

frequent notations that will be used in the sequel.

I. SAMPLING SIGNALS AT THEIR RATE OF INNOVATION

We consider a-periodic stream of{ Diracs with amplitudes;, located at timeg;, € [0, 7]:
K
2(t) =Y > mpd(t —ty — k'7). )
k=1k'€Z
We assume that the signa(t) is convolved with ainc-window of bandwidthB, where Bt is an

odd intege?, and is uniformly sampled with sampling peridd = 7/N. We therefore want to

retrieve the innovations;, and¢; from then = 1,2,..., N measurements
K
yn = (2(t),sinc(B(nT —))) = Y zpp(nT — ty), (3)
k=1
sin(7 Bt)

where o(t) = > sinc(B(t — k'7)) = 4)

- Brsin(nt/r)
is ther-periodic sinc function or Dirichlet kernel. Clearly(t) has a rate of innovatiop = 2K /7
and we aim to devise a sampling scheme that is able to rethievi@novations of:(¢) by operating
at a sampling rate that is as close as possib}e to

Sincex(t) is periodic, we can use the Fourier series to represent itexpyessing the Fourier

series coefficients of(¢) we thus have

K

) 1 .
z(t) = Z T eﬂﬂmt/T, where i, = — Z xp e 2R (5)
N———
meZ T k=1 upt

We observe that the signal(t) is completely determined by the knowledge of fieamplitudes
x), and theK locationst,, or equivalentlyu;. By considering2 K contiguous values af,,, in (5),

we can build a system @fK equations ir2 K unknowns that is linear in the weightg, but is highly
3we will use this hypothesis throughout the paper in ordeinpkfy the expressions and because it allows convergence

of the r-periodized sum ofinc-kernels.



nonlinear in the locationg, and therefore cannot be solved using classical linear elgebuch a
system, however, admits a unique solution when the Dirargitins are distinct, which is obtained

by using a method known in spectral estimatiorPasny’s method5], [6], [2], [3], and which we

choose to call thannihilating filter method for the reason clarified below. C8ll; }x—o1,... x the
filter coefficients withz-transform
K K
H(z) =Y hpz "= - w2z (6)
k=0 k=1
That is, the roots off (z) correspond to the locations, = =727/, It clearly follows that
K K K Ko K
A A _ k! m—k __ k' m -k _
k=0 k=0 k'=1 k=1 k=0
——
H(u;,r)=0

The filter h,,, is thus called annihilating filter since it annihilates thecdete signal:,,,. The zeros
of this filter uniquely define the locatiorig of the Diracs. Sincé = 1, the filter coefficients:,,
are found from (7) by involving at lea&K’ consecutive values af,,,, leading to a linear system
of equations; e.g., if we haw,, form = —K,—-K +1,..., K — 1, this system can be written in

square Toeplitznatrix form as follows

T_1 T_9 T_K h1 Zo
o &1 o Tkl hao 21
=— _ - (8)
Tk 2 Tg-3 -+ T hx T 1

If the z;’s do not vanish, thisk x K system of equations has a unique solution because any
h., satisfying it is also such tha (uy) = 0 for &k = 1,2,... K. Given the filter coefficientg,,,,
the locationg;, are retrieved from the zeras, of the z-transform in (6). The weights; are then
obtained by considering, for instand&, consecutive Fourier-series coefficients as given in (5). By
writing the expression of thes€ coefficients in vector form, we obtain a Vandermonde system o
equations which yields a unique solution for the weighissince theu;’s are distinct. Notice that
we need in total no more th&¥ consecutive coefficients,, to solve both the Toeplitz system (8)
and the Vandermonde system. This confirms our originaltintuithat the knowledge of onlgK

Fourier-series coefficients is sufficient to retriexe).



We are now close to solve our original sampling question otlg remaining issue is to find a
way to relate the Fourier-series coefficieti{s to the actual measuremenis. AssumeN > BTt
then, forn = 1,2, ..., N, we have that

Yn = (z(t),sinc(Bt —n)) = ZTﬁ:m ed2rmn/N, 9)
Im|<|B7/2]
Up to a factorNT = 7, this is simply the inverse Discrete Fourier Transform (pBTa discrete
signal bandlimited td—|B7 /2], | B7/2]] and which coincides witt,, in this bandwidth. As
a consequence, the discrete Fourier coefficientg,gfrovide B consecutive coefficients of the

Fourier series of(t) according to

N ‘ T&m i jm| < |Bt/2]
G = Zyne—j27rmn/N _ (10)
n=1 0 for otherm € [-N/2, N/2].

Let us now analyse the complete retrieval scheme more pigasnd draw some conclusions.
First of all, since we need at lea8K consecutive coefficients,, to use the annihilating filter
method, this means th&r > 2K. Thus, the bandwidth of thénc-kernel, B, is always larger than
2K /T = p, the rate of innovation. However, sinéer is odd, the minimum number of samples
per period is actually one sample largéY: > B,...7m = 2K + 1 which is the next best thing to
critical sampling. Moreover, the reconstruction algaritks fast and does not involve any iterative
procedures. Typically, the only step that depends on thébeumwf samples)V, is the computation
of the DFT coefficients of the sampleg, which can of course be implementedGr{NV log, N)
elementary operations using the FFT algorithm. All the p#teps of the algorithm (in particular,

polynomial rooting) depend o only; i.e., on the rate of innovation

More on annihilation A closer look at (7) indicates thahynon-trivial filter { by, } ,—o 1,... 1, Where
L > K that hasu, = e=727%/7 as zeros will annihilate the Fourier series coefficients @j. The
converse is true: any filter with transfer functiéh(z) that annihilates the,,, is automatically such

that H (u;) = 0for k = 1,2,..., K. Taking (10) into account, this means that for such filters

L
> hiimer =0,  forall|m| < |Br/2]. (11)
k=0



These linear equations can be expressed using a matrixlfenrmaet A be the Toeplitz matrix

L + 1 columns

Y-M+L Y-M+L-1 -  Y-M

~ ~ A~

Y-M+L+1  Y-M+L o Y-M+1

J-M+L+2 Y—M+L+1
i i whereM = | Bt/2], (12)

Y-M+L

>
I
2M — L + 1 rows

~

U gv-1 o UM-L |

andH = [hg, hq, ..., hr]" the vector containing the coefficients of the annihilatingedj then (11)
is equivalent to

AH =0, (13)

which can be seen as a rectangular extension of (8). Noteuhkke (6), H is not restricted to
satisfyhg = 1. Now, if we choosd. > K, there ard. — K + 1 independent polynomials of degree
L with zeros afuy },=1 2.... k-, Wwhich means that there afe— K + 1 independent vectod§ which
satisfy (13). As a consequence, the rank of the mairidoes never exceel. This provides a
simple way to determind when it is not known a priori: find the smalletsuch that the matrix
A built according to (12) is singular, thed = L — 1.

The annihilation property (11) satisfied by the DFT coeffitsg),,, is narrowly linked to the peri-
odizedsinc-Dirichlet window used prior to sampling. Importantly, stapproach can be generalized
to other kernels such as the (non-periodizédy}, the Gaussian windows [7], and more recently any

window that satisfies a Strang-Fix like condition [8].

Il. FRI SIGNALS WITH NOISE

“Noise”, or more generally model mismatch are unfortunatahnipresent in data acquisition,
making the solution presented in the previous section a@dgli Schematically, perturbations to the
FRI model may arise both in the analog domain during, e.garsmission procedure, and in the
digital domain after sampling (see Fig. 1)—in this respgugntization is a source of corruption as
well. There is then no other option but to increase the samgphte in order to achieve robustness

against noise.



Thus, we consider the signal resulting from the convolubbthe 7-periodic FRI signal (2) and

asinc-window of bandwidthB, whereBr is anoddinteger. Due to noise corruption, (3) becomes

K
yn:kacp(nT—tk) +e&, forn=1,2,...,N, (14)
k=1

whereT = /N andy(t) is the Dirichlet kernel (4). Given that the rate of innovatiof the signal
is p, we will considerN > pr samples to fight the perturbatiap, making the data redundant by
a factor of N/(p7). At this point, we do not make specific assumptions—in paldic of statistical
nature—ore,,. What kind of algorithms can be applied to efficiently exptbis extra redundancy
and what is their performance?

A related problem has already been encountered decadey agsdarchers in spectral analysis
where the problem of finding sinusoids in noise is classic T9jus we will not try to propose new
approaches regarding the algorithms. One of the difficul8ethat there is as yet no unanimously
agreed optimal algorithm for retrieving sinusoids in npaiéhough there has been numerous eval-
uations of the different methods (see e.g. [10]). For thésoa, our choice falls on the the simplest
approach, the Total Least-Squares approximation (imphkedeusing &ingular Value Decomposi-
tion, an approach initiated by Pisarenko in [11]), possibly exglkd by an initial “denoising” (more
exactly: “model matching”) step provided by what we daddzow's iterated algorithrfil2]. The
full algorithm, depicted in Fig. 2, is also detailed in itsdtvmain components in Inserts 1 and 2.

By computing the theoretical minimal uncertainties knownCxamér-Rao bounds on the inno-
vation parameters, we will see that these algorithms eixhiQuasi-optimal behavior down to noise
levels of the order 05 dB (depending on the number of samples). In particular ettoesinds tell

us how to choose the bandwidth of the sampling filter.

A. Total least-squares approach

In the presence of noise, the annihilation equation (13antopi is not satisfied exactly, yet it is
still reasonable to expect that the minimization of the Eli@h norm||AH||? under the constraint
that||[H||> = 1 may yield an interesting estimate Bt Of particular interest is the solution fdr =
K—annihilating filter of minimal size—because thezeros of the resulting filter provide a unique

estimation of the{ locationst,. It is known that this minimization can be solved by perfamma



singular value decompositioof A as defined by (12)—more exactly: an eigenvalue decompnsitio
of the matrix ATA—and choosing foH the eigenvector corresponding to the smallest eigenvalue.
More specifically, ifA = USV™ whereU is a (Bt — K) x (K + 1) unitary matrix,S is a
(K +1) x (K +1) diagonal matrix with decreasing positive elements, ¥nd a(K +1) x (K +1)
unitary matrix, therH is the last column oV. Once the, are retrieved, the, follow from a least
mean square minimization of the difference between the Eapp and the FRI model (14).

This approach, summarized in Insert 1, is closely relatddisarenko’s method [11]. Although
its cost is much larger than the simple solution of Sectioit is still essentially linear withV

(excluding the cost of the initial DFT)

B. Extra denoising: Cadzow

The previous algorithm works quite well for moderate valoithe noise—a level that depends on
the number of Diracs. However, for small SNR, the results bempme unreliable and it is advisable
to apply a robust procedure that “projects” the noisy samplgo the sampled FRI model of (14).
This iterative procedure was already suggested by Tuft&anthresan in [13] and analyzed in [12].

As noticed in Section I, the noiseless matfixin (12) is of rankK wheneverL. > K. The idea
consists thus in performing the SVD &f, sayA = USVT, and forcing to zero thé + 1 — K
smallest diagonal coefficients of the matfixo yield S’. The resulting matrixA’ = US’V' is not
Toeplitz anymore but its best Toeplitz approximation isaiéd by averaging the diagonals Af.
This leads to a new “denoised” sequerigethat matches the noiseless FRI sample model better
than the original),,’s. A few of these iterations lead to samples that can be egprealmost exactly
as bandlimited samples of an FRI signal. Our observationaisthis FRI signal is all the closest to
the noiseless one a&s is closer to a square matrix, i.d.,= | B7/2].

The computational cost of this algorithm, summarized irethg, is higher than the annihilating
filter method since it requires performing the SVD of a squagdrix of large size, typically half
the number of samples. However, using modern computers wexgaect to perform the SVD of
a square matrix with a few hundred columns in less than a sedMe show in Fig. 3 an example
of FRI signal reconstruction having Diracs whoserl samples are buried in a noise withdB

SNR power (redundancy 5): the total computation time 8.9 second on a PowerMacintosh G5
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at1.8 GHz. Another more striking example is shown in Fig. 4 whereuge1 001 noisy (SNR= 20
dB) samples to reconstrutfO Diracs (redundancy: 5): the total computation time 61 seconds.
Although it is not easy to check on a crowded graph, all the®Iocations have been retrieved
very precisely, while a few amplitudes are wrong. The faat the Diracs are sufficiently far apart

(> 2/N) ensures the stability of the retrieval of the Dirac locasio

C. Craner-Rao Bounds

The sensitivity of the FRI model to noise can be evaluatedr#iesally by choosing a statistical
model for this perturbation. The result is that any unbisaigdrithm able to retrieve the innova-
tions of the FRI signal from its noisy samples exhibits a cavece matrix that is lower bounded
by Cramér-Rao Bounds (see Appendix IlI-B). As can be sedrign 5, the retrieval of an FRI
signal made of two Diracs is almost optimal for SNR levelsva® dB since the uncertainty on
these locations reaches the (unbiased) theoretical mmigiven by Cramér-Rao bounds. Such a
property has already been observed for high-resolutioatspalgorithms (and notably, those using
a maximum likelihood approach) by Tufts and Kumaresan [13].

It is particularly instructive to make the explicit comptiba for signals that have exactly two
innovations per period, and where the samples are corrupted with a white Gaussiaa.ndhe
results, which involve the same arguments as in [14], arengiv Insert 3 and essentially state that
the uncertainty on the location of the Dirac is proporticieal /+/N BT when the sampling noise is
dominant (white noise case), andita( Br) when the transmission noise is dominapt(-filtered
white noise). In both cases, it appears that it is betteragimize the bandwidtB of thesinc-kernel
in order tominimize the uncertaintgn the location of the Dirac. A closer inspection of the white
noise case shows that the improved time resolution is addadt the cost of a loss of amplitude
accuracy by a/Br factor.

WhenK > 2, the Cramér-Rao formula for one Dirac still holds approiety when the locations
are sufficiently far apart. Empirically, if the minimal déffence (module) between two of the Dirac
locations is larger than, sag/N, then the maximal (Cramér-Rao) uncertainty on the redtie¥

these locations is obtained using the formula given in rider
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[1l. DISCUSSION
A. Applications

Let us turn to applications of the methods developed so faa.Key feature to look for is sparsity,
together with a good model of the acquisition process antie@hbise present in the system. For
a real application, this means a thorough understandinbeoéét up and of the physics involved
(remember that we assume a continuous-time problem, anawetdtart from a set of samples or
a finite vector).

One main application to use the theory presented in thisrpgpéra-wide band (UWB) commu-
nications. This communication method uses pulse positiodutation (PPM) with very wideband
pulses (up to several gigahertz of bandwidth). Designinigitadi receiver using conventional sam-
pling theory would require analog-to-digital conversiétD(C) running at over 5 GHz, which would
be very expensive and power consumption intensive. A simmadel of an UWB pulse is a Dirac
convolved with a wideband, zero mean pulse. At the receitiersignal is the convolution of the
original pulse with the channel impulse response, whiclugies many reflections, and all this
buried in high levels of noise. Initial work on UWB using anIFRimework was presented in [15].
The technology described in the present paper is curreathgiiransferred to Qualcomm Inc.

The other applications that we would like to mention, nantggctro-EncephaloGraphy (EEG)
and Optical Coherence Tomography (OCT), use other kerhals the Dirichlet window, and as
such, require a slight adaptation to what has been preskated

EEG measurements during neuronal events like epileptausaes can be modelled reasonably
well by a FRI excitation to a Poisson equation and it turnstbat these measurements satisfy an
annihilation property [16]. Obviously, accurate localina of the activation loci is important for
the surgical treatment of such impairment.

In OCT, the measured signal can be expressed as a convohdigreen the (low-)coherence
function of the sensing laser beam (typically, a Gabor fioncivhich satisfies an annihilation prop-
erty), and a FRI signal whose innovations are the locatidnefeactive index changes and their
range, within the object imaged [17]. Depending on the ntegel and the model adequacy, the

annihilation technique allows to reach a resolution thgbagentially well-below the “physical”
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resolution implied by the coherence length of the laser beam

B. Relation with compressed sensing

One may wonder whether the approach described here coulddresaed using compressed
sensing tools developed in [18], [19]. Obviously, FRI signzan be seen as “sparse” in the time
domain. However, differently from the compressed sengiagnéwork, this domain isot discrete
the innovation times may assuragbitrary real values. Yet, assuming that these innovations fall on

some discrete grifd,,s },,—o,1,....(vv—1) Known a priori, one may try to address our FRI interpolation

)

problem as
N'—1 N N'—1 9
. . 2
. min Z |z7,| under the constralng ‘yn - Z zo(nT —0,)] < No°, (15)
TG e =0 1 =0

whereo? is an estimate of the noise power.

In the absence of noise, it has been shown that this minimizqirovides the parameters of
the innovation, with “overwhelming” probability [19] usinO(K log N') measurements. Yet, this
method is not as direct as the annihilating filter method Widices not require any iteration. More-
over, the compressed-sensing approach does not reaclitited sampling rate, unlike the method
proposed here which almost achieves this g@& (+ 1 samples for2 K innovations). On the
other hand, compressed sensing is not limited to uniformsomements of the form (14), and could
potentially accommodate arbitrary sampling kernels—awidonly the few ones that satisfy an an-
nihilation property. This flexibility is certainly an atotive feature of compressed sensing.

In the presence of noise, the beneficial contribution of th@orm is less obvious since the
quadratic program (15) does not provide an exaéfisparse solution anymore—althoughy ¢2
stable recovery of the, is statistically guaranteed [20]. Moreover, unlike the inoet we are
proposing here which is able to reach the Cramér-Rao losandis (computed in Appendix IlI-B),
there is no evidence that tiiéstrategy may share this optimal behavior. In particulas, af interest
to note that, in practice, the compressed sensing strategivesrandom measuremestlection,
whereas arguments obtained from Cramér-Rao bounds catign#t-namely, on the optimal band-
width of thesinc-kernel—indicate that, on the contrary, it might be worthimizing the sensing

matrix.
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CONCLUSION

Sparse sampling of continuous-time sparse signals hassoeeassed. In particular, it was shown
that sampling at the rate of innovation is possible, in soemss applying Occam'’s razor to the sam-
pling of sparse signals. The noisy case has been analyzesbamdl, proposing methods reaching
the optimal performance given by the Cramér-Rao boundslllyj a number of applications have
been discussed where sparsity can be taken advantage afoifipeehensive coverage given in this

paper should lead to further research in sparse samplingeldas new applications.

APPENDIX: CRAMER-RAO LOWER BOUNDS

We are considering noisy real measuremeénts [y1, yo, . . . yn| Of the form

K

yn =Y orp(nT —ty) + en
h=1

wheres,, is a zero-meaGaussiamoise of covarianc®,; usually the noise is assumed to be station-
ary: [R],, s = rp—n Wherer,, = & {e,y 1,6,/ }. Then any unbiased estimas&Y) of the unknown
parameterszy, zs, ..., xx|" and[t1, ta, ... tx]" has a covariance matrix that is lower-bounded by

the inverse of the Fisher information matrix (adaptatiofi2df eqn. (6)])

cov{O} > <<I>TR‘1<I>>_1,

(T —t1) - T —tk) | —m'(T—t1) - —2x (T —tk)
02T —t1) -+ 2T —tk) | —x1¢/(2T —t1) -+ —xr¢' (2T —tk)

where ® =
O(NT —t1) -+ @(NT —tg) | —x190'(NT —t1) -+ —xzg(NT —tg)

Note that this expression holds quite in general: it doesewptire thatp(¢) be periodic or bandlim-

ited, and the noise does not need to be stationary.

One-Dirac periodized sinc caself we make the hypothesis thaj, is N-periodic andp(t) is the
Dirichlet kernel (4), then th@ x 2 Fisher matrix becomes diagonal. The minimal uncertairdies
the location of one Dirac)\t;, and on its amplitudel\x+, are then given by:

At B 2\ 2 B 1\
1 T m T

> - and Az > — - .
T 27T]w1\\/N< Z m> b= \/N( Z m)

7 7
Im|<[B7/2] Im|<[BT/2]
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Insert 1—Annihilating filter: total least-squares method
An algorithm for retrieving the innovations, andt;, from the noisy samples of (14).

1) Compute theV-DFT coefficients of the samplgs, = Zivzl ype I2mmm/N.

2) Choosel. = K and build the rectanguldfoeplitzmatrix A according to (12);

3) Perform thesingular value decompositioof A and choose the eigenvectap, i1, ..., hi]"
corresponding to themallesteigenvalue—i.e., the annihilating filter coefficients;

4) Compute the roots 727/ of the z-transformH (z) = "1, hyz " and deducét, }r—1.. x;

5) Compute the least mean square solutipof the N equationsy,—> ;. zxo(nT—t;) }n=12..N-

When the measureg, are very noisy, it is necessary to fidenoisethem by performing a few
iterations of Cadzow'’s algorithm (see Insert 2), beforelydpg the above procedure.

Insert 2—Cadzow'’s iterative denoising

Algorithm for “denoising” the sampleg, of Insert 1.

1) Compute theV-DFT coefficients of the samplgs, = Zivzl ype I2mmm/N.

2) Choose an integek in [K, Bt/2] and build the rectangulaFoeplitzmatrix A according
to (12);

3) Perform thesingular value decompositiasf A = USV"whereU isa(2M — L+1)x (L+1)
unitary matrix,S is a diagonal( L + 1) x (L + 1) matrix, andV is a(L + 1) x (L + 1) unitary
matrix;

4) Build the diagonal matrixs’ from S by keeping only thei’ most significant diagonal ele-
ments, and deduce the total least-squares approximatidnbyfA’ = US'VT;

5) Build a denoised approximatiajj, of ¢,, by averaging the diagonals of the matAx;

6) Iterate step 2 until, e.g., tHg< + 1)*" largest diagonal element &fis smaller than thecth
largest diagonal element by some pre-requisite factor;

The number of iterations needed is usually small (less tfianNote that, experimentally, the best
choice forL in step 2 isL. = M.
Insert 3—Uncertainty relation for the one-Dirac case

We consider the FRI problem of findirig;, t1] from the N noisy measurementis;, yo, . . . , yn]

Yn = fn + €n  With  p, = z10(n7/N —t;)
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wherep(t) is ther-periodic, B-bandlimited Dirichlet kernel and, is a stationary Gaussian noise.
Any unbiased algorithm that estimatgesandx, will do so up to an error quantified by their standard
deviation At¢; and Az, lower bounded by Cramér-Rao formulee (see Appendix llI-Bgnoting
the noise power by? and the Peak Signal-to-Noise Ratio by PSNR|x1|?/02, two cases are
especially interesting:

« The noise is white, i.e., its power spectrum density is @risand equals?. Then we find

Aty 1 3BT 1 Axy Bt
> /—————.PSNR'?2 and =2 >,/=—— . PSNR'/2
T — w\ N(B?>m2-1) lzi] = VN

« The noise is a white noise filtered yt), then we find

Aty 1 3 A
S/~ PSNRY? and T2 > PSNR/2.
T m\ B212 -1 |z1]

In both configurations, we conclude that, in ordenimimize the uncertaintgn ¢y, it is better
to maximize the bandwidtbf the Dirichlet kernel, i.e., choosB such thatBr = N if N is odd,
or such thatBr = N — 1 if N is even. SinceBr < N we always have the following uncertainty

relation
2, % > ﬁ)

N - PSNR/

T s

involving the number of measurements, the end noise level and the uncertainty on the position.
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TABLE |

FREQUENTLY USED NOTATIONS

7

ation

Symbol Meaning
x(t), T, T T-periodic Finite Rate of Innovation signal and its Fourieefficients
| ti ters:(t) ZK §(t — tg), fort € [0, 7]
nnovation parameters:(t) = xR (t —ty), fort € [0, 7
K, ty, xp, andp k=1
and rate of innovation of the signgh:= 2K/
(). B “Anti-aliasing” filter, prior to sampling: typicallyy(t) = sinc Bt
p(t),
Note: B x T is restricted to be an odd integer
X (noisy) samplegyy, }n=1,2,..~ Of (¢ * x)(t)
ym ym! N! T
at multiples ofl" = 7/N (see eqn. 14) and its DFT coefficierts
AL rectangular annihilation matrix with + 1 columns (see eqgn. 12)
H(z), hi; andH | Annihilating filter: z-transform, impulse response and vector representa

analog noise digital noise
sampling kernel
> apd(t — t) y(t) 24T YUn
G s o(t) —

Fig. 1. Block diagram representation of the sampling of ahgtghal, with indications of potential noise perturbason

in the analog, and in the digital part.

Cadzow
yes

Yn

> FFT

Yn y too tr

>oisy?2

no Annihilating

Y
Filter method K

_>.,Z'k

Fig. 2.

almost exactly.

Schematical view of the FRI retrieval algorithm.

Y

linear system

Tdeta are considered “too noisy” until they satisfy

(11)
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