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Abstract—We address the problem of estimating the effective
connectivity of the brain network, using the input stimulus model
proposed by Izhikevich in [1], which accurately reproduces the
behaviour of spiking and bursting biological neurons, whilst
ensuring computational simplicity. We first analyse the temporal
dynamics of neural networks, showing that the spike propagation
within the brain can be modelled as a diffusion process. This helps
prove the suitability of NetRate algorithm proposed by Rodriguez
in [2] to infer the structure of biological neural networks. Finally,
we present simulation results using synthetic data to verify the
performance of the topology estimation algorithm.

Index Terms—Neural networks, network topology inference,
stability analysis of spike propagation, Izhikevich neuron model,
Brian simulator, NetRate algorithm.

I. INTRODUCTION

Neuronal network connectivity has been studied at multiple
spatial scales with the aim of understanding function in both
healthy and unhealthy brains [3]. Analysis of connectivity
in fMRI data identified network properties that could be
used as diagnostic markers for Alzheimer‘s disease [4] and
Schizophrenia [5]. Moreover, the prospects for understand-
ing network connectivity at smaller spatial scales have been
significantly expanded recently by the development of tools
to simultaneously monitor and stimulate neuronal microcir-
cuit activity [6]. Using multi-photon imaging and genetically
encoded sensors, it is possible to simultaneously interrogate
the activity of thousands of neurons at single-cell and single-
spike resolution [7]. These techniques enable a whole neural
circuit to be monitored at sufficient resolution to decode its
connectivity.

Early research in the area of network tomography, a term
coined by Vardi in [8], focused on inferring link-layer topolo-
gies, and the same techniques are currently being applied to
estimate the topology of biological neural networks. Many
algorithms for effective connectivity inference apply statistical
measures such as the Granger Causality test [9]. The Gen-
eralized Linear Model (GLM) is also a common technique
used to infer neural networks. For example, the successful
reconstruction of a physiological circuit was achieved in [10],
using coupling functions composed of spline basis functions,
and modelling the spike trains as point processes. Research in
the area also explored using the perceptron learning rule for
neural network inference [11].

In this paper, we present a novel method to solve the biolog-
ical neural network inference problem, based on adapting the

network estimation algorithm NetRate proposed by Rodriguez
in [2]. In particular, we focus on determining the effective
connectivity of the brain network. We use Izhikevich’s input
stimulus model to analyse the behaviour of a neuron. The
stability of the system of differential equations proposed by
Izhikevich helps us underpin the time when a neuron enters
the unstable region (i.e. spikes), and hence, the cause for
its spike - either pre-synaptic neurons or noise from outside
the observed network. Through the analysis of the cause of
spikes, we demonstrate that the system can be probabilistically
described, even though the individual neuron behaviour is
modelled through a set of deterministic differential equations.
Simulations help us determine the transmission likelihood
between individual neurons within the network. These are then
used by the NetRate algorithm, which infers the weighted
connections within the neural network.

This paper is organized as follows. In Section II we present
an overview of information processing in neural networks,
including the notion of connectivity, and the spiking neuron
model used. Section III gives an overview of the NetRate
algorithm, which is used to infer the connectivity within a
graph. Then, in Section IV we prove the feasibility of using
NetRate to achieve neural network inference. The analysis
revolves around the temporal dynamics of neural networks,
such as formalizing the notion of a cascade within the network,
using stability analysis to probabilistically describe spike prop-
agation, and finally, formulating the transmission likelihood
between the individual neurons. The experimental results in
Section V show the performance of the adapted inference
algorithm, on synthetic data. Finally, conclusions are presented
in Section VI.

II. PROBLEM FORMULATION

In order to study the problem of neural network topology
inference, one has to first understand how neural networks
process information. This is influenced by the connectivity of
the neurons, as well as by the way in which synaptic wiring
may cause a neuron to spike.

A. Definition of Connectivity

With reference to brain networks, there are three main
definitions of connectivity. First, the structural connectivity
describes the physical connections between different neurons,



or parts of the brain. Second, functional connectivity refers to
statistical dependencies between different units in the brain.

The statistical associations are described using tools such as
correlation [12], coherence [13] and mutual information [14].
Third, effective connectivity describes the causal relationships
between neurons, using techniques such as the Granger causal-
ity test [15] and Dynamic Causal Models [16].

The method presented in this paper aims to infer the effec-
tive connectivity within a static network of neurons, modelled
through the adjacency matrix. If i is a pre-synaptic neuron
of j, then the (i, j) entry in the adjacency matrix will have
a non-zero value proportional to the strength of the directed
connection from i to j.

B. Spiking Neuron Model

One of the most commonly used spiking models in com-
putational neuroscience is the Izhikevich model [1], which is
able to replicate thoroughly the spiking behavior of biological
neurons. The dynamics of the spiking events are given by the
following two equations:

dv(t)

dt
= 0.04v2(t) + 5v(t) + 140− u(t) + I, (1)

du(t)

dt
= a(bv(t)− u(t)), (2)

where:

v(t) = membrane potential,
u(t) = membrane recovery,
I = input noise due to unobserved neurons.

Moreover, the recovery of the neuron following an action
potential is given by:

if v(t) > 30mV, then

{
v(t)← c,

u(t)← u+ d.
(3)

The four static parameters a, b, c and d are used to model
different types of neurons. The two main classes are inhibitory
and excitatory neurons, which we can further classify into
regular spiking neurons and chattering neurons. The method
presented in this paper focuses on inference of a network
consisting of only excitatory regular spiking neurons. To model
this, the tuning parameters are set as in [1], to the values:
a = 0.02, b = 0.2, c = −65, and d = 8.

III. NETRATE ALGORITHM FOR NETWORK INFERENCE

The neuron connections are inferred using the NetRate
algorithm proposed by Rodriguez in [2]. The algorithm is
designed in the framework of diffusion processes over static
directed networks, with unknown connections. The spreading
model is the susceptible-infected one, where a node is initially
susceptible and once it becomes infected, it cannot recover
from the disease.

NetRate relies on modelling the pairwise interactions be-
tween the nodes using a probabilistic approach. In this sense,
each directed edge from j to i is assigned the conditional
likelihood f(ti|tj , αj,i ), of node i to be infected at time ti

given node j was infected at time tj . The parameters αj,i
represent the transmission rates associated with edges, and we
note that a rate αj,i = 0 represents the absence of an edge
between the two nodes.

In terms of data required, the algorithm assumes access to
multiple independent cascades of information. Each cascade
C is generated by randomly selecting a source node, which
is infected at time t = 0, and monitoring the entire network
within the observation window [0, Tc] after the infection starts.

The information is allowed to spread through the network
according to the likelihoods f(ti|tj , αj,i) of each pair of
nodes in the network. The generated cascade C contains
the first infection absolute times of all the N nodes in the
network, within a window of observation, tc := (tc1, ..., t

c
N ).

We note that NetRate is based on the assumption of complete
knowledge of the infections occurring during the observation
window.

The aim of the NetRate algorithm is to infer the transmission
edges αj,i using multiple independent cascades of information
(i.e. observing when nodes in the network get the infec-
tion), and knowledge of the shape of the likelihood function
f(ti|tj , αj,i). The method used is the maximum likelihood
(ML) estimation, which finds the optimal network connections
and their corresponding weights, such that the likelihood of the
observed cascades is maximized.

The likelihood of a cascade is calculated based on the
survival function, which is the probability that a node is un-
infected until the end of observation, T c, given the infections
at the other nodes. The probability that node i is not infected
by node j by time ti is given by the survival function:

S(ti|tj , αj,i) = 1− F (ti|tj , αj,i), (4)

where F (ti|tj , αj,i) is the cumulative density function, calcu-
lated from the transmission likelihood f(ti|tj , αj,i).

Moreover, the hazard function is defined as the instantenous
infection rate, and given by:

H(ti|tj , αj,i) =
f(ti|tj , αj,i)
S(ti|tj , αj,i)

. (5)

Assuming the infections happen independently across dif-
ferent network edges, the likelihood of a cascade of infection
times tc is:

f(tc;A) =
∏
ti<T c

∏
tm>T c

S(T |ti, αi,m)×∏
k:tk<ti

S(ti|tk, αk,i)
∑

j:tj<ti

H(ti|tj , αj,i) (6)

The cascades are assumed independent, and hence the like-
lihood of all cascades is the product of individual likelihoods.
Hence, the NetRate algorithm aims to solve the network
inference problem given by:

minimize
A

−
∑
c∈C

logf(tc;A)

subject to αj,i ≥ 0, j = 1, . . . , N, i 6= j,

where A := {αj,i|i, j = 1, . . . , N, i 6= j} (7)



Fig. 1: Cascades generated by sequentially stimulating each
node in the network. Each time a neuron is given a constant
input, it periodically spikes for 1000ms (illustrated in red),
generating a different cascade in the network.

The optimization problem defined by Eq.(7) is convex when
f(ti|tj , αj,i) follows the exponential, power-law or Rayleigh
models and a detailed proof of this result is found in [2].

IV. TEMPORAL DYNAMICS OF NEURAL NETWORKS

In this section we show that interactions within a neural
network can be modelled as a diffusion process equivalent
to the one assumed by NetRate. First, the propagation of
action potentials within a neural network is governed by the
transmission rates between individual nodes, and creates a
cascade of initial infection times. Second, the neuron has a
binary state: it is either spiking or not. In order to comply to
the framework imposed by the NetRate algorithm, we need
to ensure a neuron only spikes once, which is achieved by
altering the input stimulus model described in Section II-B.
Third, although the spike propagation model proposed by
Izhikevich illustrates a deterministic behaviour of individual
neurons, we prove that it is feasible to describe a neural
network probabilistically.

A. Cascade Generation

The cascades represent the input to the NetRate algorithm,
which uses these initial infection times to determine the
pairwise transmission rates within the network. Supplying an
excitatory regular spiking neuron with a constant input in
Eq.(1) will make neurons spike periodically, generating an
independent cascade within each period. This is illustrated
in Fig. 1, where node 1 spikes 10 times within the interval
[0, 1000]ms, generating 10 cascades. For all the other neurons,
the input I will be Gaussian random noise.

Allowing sufficient time between consecutive spikes ensures
the network settles into a steady state before a new indepen-
dent disease is introduced. This would ensure no duplication
of information between consecutive generated cascades, and
hence, their independence. A constant input is achievable in
practice, using recent advances in optogenetic actuators [6].

B. Stability Region of Regular Spiking Excitatory Neuron

To identify the causes of neuron spikes, we analyze the
stability of the dynamical system of Eq.(1) and (2), around
the equilibirium points. The random noise I is an input to
the system and it can therefore be excluded from the stability
analysis. The solutions to the set of equations is given by
the following two equilibria: (v1, u1) = (−70,−14) and

Fig. 2: Stability boundary of excitatory regular spiking neu-
rons.
(v2, u2) = (−50,−10). The Jacobian helps us find the stabil-
ity of the linearized system, around the equilibrium points. The
eigenvalues of the Jacobian for the first equilibrium, (v1, u1) =
(−70,−14), are negative real numbers, and hence, this point
is stable. On the other hand, one of the eigenvalues corre-
sponding to the second equilibrium (v2, u2) = (−50,−10),
is positive, making this point unstable. This means that a
small perturbation around this point would make the neuron’s
potential diverge to infinity, which is equivalent to a spike.
When this happens, we reset the membrane potential v to the
value of c = −65, once this value goes over the threshold
value of v = 30, shown in Fig. 2. Furthermore, the second
eigenvalue corresponding to (v2, u2) = (−50,−10) is negative
and real, which allows us to determine the stability boundary
of the system, as illustrated in Fig. 2.

A neuron in a state above the stability boundary will
converge to the equilibrium point (v1, u1) = (−70,−14),
whereas the points below the boundary will result in spiking
of the neuron and the resetting of the v and u states. The
trajectory of the neuron’s state is illustrated in Fig. 3, where
the time to spike is approximately 7s when the neuron’s initial
unstable state is (vinit, uinit) = (−80,−20). On the other
hand, if the initial state was (vinit, uinit) = (−40,−30), the
time to spike would be 1s. This highlights the fact that the
neuron’s initial values of the membrane potential and recovery
will determine the time this neuron takes to spike.

Moreover, the pre-synaptic neuron j which triggers i, spikes
at the moment when i enters the unstable region. If no such
neuron j exists, then neuron i fires as a result of unobserved
neuron activity.

C. Formulation of Transmission Likelihood

Given the general shape of the underlying distribution
f(ti|tj , αj,i) which describes how infections spread within the
network, the NetRate algorithm is able to infer the values of
the transmission rates αj,i.

For the purpose of this analysis, it is assumed that the
topology of the network is known. Then, a histogram of time
delays between the pre-synaptic and post-synaptic spikes can
be formed for each value of αj,i, using the following method.
For each neuron i that spikes, we find the neuron j which
spiked at the moment when i became unstable. We treat j



Fig. 3: Trajectories of a neuron’s state for a given initial point.

as a cause for neuron i’s spike, and measure the time delay
between the two spikes as tj,i = tj − ti.

This firing event is then placed into the bin corresponding
to the time delay tj,i and the value αj,i. If no neuron is found
to have caused i to enter the unstable region, then the firing
event is not included in any of the histograms.

Fig. 4 explains how the shape of the transmission likelihood
is formed. For example, neuron 5 fires at time t = 257. It
enters the unstable region at time t = 254, the exact time
when neuron 6 fires. The transmission rate from neuron 6 to
neuron 5 is α6,5 = 21, and the time delay between the two
spikes is t6,5 = 3. Hence, we place this event in the third bin
of the histogram corresponding to parameter value α = 21.

Fig. 4: Spike propagation used to infer the shape of the
transmission likelihood.

The histograms in Fig. 5 show the conditional likelihood
function f(ti|tj , αj,i), for different values of the transmission
rate parameter. For small values of αj,i, the distribution is
approximately exponential, whereas for large values of the
parameter, the distribution becomes approximately Rayleigh.
NetRate algorithm assumes a unique distribution for all the
transmission rates, and in this context, we choose Rayleigh
distribution to model the propagation of spikes through the
neural network. This is because we aim to identify with greater
accuracy the edges that have larger α weights, rather than
minor edges.

V. EXPERIMENTAL RESULTS

The following results demonstrate the suitability of NetRate
for biological neural network inference. The performance is

analysed using accuracy, recall and precision.
Accuracy is defined as

∑
j,i|J(αj,i)−J(α∗

j,i)|∑
j,i J(αj,i)+

∑
j,i J(α

∗
j,i)

, where J(α) =
1 if α > 0 and J(α) = 0 otherwise. This metric captures the
situations when an edge is wrongly inferred, e.g. it is inferred
as absent, but is actually present. Recall is calculated as the
ratio of true edges in the inferred network, to the absolute
number of true edges. Finally, precision is the ratio of true
inferred edges to the absolute number of inferred edges. In
order to preserve the sparsity of the inferred network, we set
some of the estimated edges to 0. In the case of an N nodes
small-world network of average node degree d = 2, we only
keep the d×N major edges. Similarly, if the sparseness of a
random graph as defined in [17] is s, then we consider only the
first s×N2 major edges. Fig. 6 shows the results for a random
geometric graph, and small-world network of 10 nodes each.
The software used to generate the spike data is Brian Simulator
[17]. This package also generates the random graph, whilst
the small-world network was created using the Watts-Strogatz
model [18]. In addition, the optimisation problem imposed by
NetRate is solved using the CVX package [19]. The sparseness
of the random graph is 0.1 and the small-world network has
average node degree d = 2 and rewiring probability β = 0.2.
Each node is stimulated for 1000ms, as described in Section
IV-A. The experiment is repeated over 10 different networks
and the results are then averaged.

From the metrics in Fig. 6 it is evident that NetRate is
indeed a suitable algorithm for biological neural network in-
ference, achieving more than 65% accuracy and 60% precision
for both small-world and random graphs. The recall is 65%
for the small-world network, and 74% for a random graph,
proving that the majority of the detected edges are indeed
true edges.

Finally, Fig. 7 shows that the performance of the algorithm
is dependent on the absolute number of cascades. The per-
formance generally increases as we lenghten the simulation
time for each node in the network, and hence, as we increase
the number of cascades. The suitability of the algorithm is
supported by comparing the results obtained for a neural
network, to typical results on a Kronecker graph: around 80%
accuracy, 80% precision and 100% recall, when assuming
5000 cascades of information [2].



Fig. 5: Empirical node-to-node transmission probability distribution.

Fig. 6: Averaged performance metrics for inference of 10-node
networks.

Fig. 7: Averaged performance metrics as a function of the
stimulation time of each neuron in the network.

VI. CONCLUSIONS

In this paper we proposed a novel method to infer the
topologies of biological neural networks, using the NetRate
algorithm. We have shown that it is possible to model prop-
agation of neuron action potentials as a diffusion process.
Moreover, we have demonstrated the probabilistic nature of
spike propagation, and empirically found the shape of the
likelihood function. This is approximately Rayleigh for large
values of the transmission rate parameter, which ensures the
optimisation problem NetRate aims to solve is convex. Finally,
experimental results further indicate the suitability of the
proposed method for brain structure estimation.
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