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ABSTRACT
The last two decades have seen a renewed interest in sampling
theory, which is concerned with the conversion of continuous-
domain signals into discrete sequences. This conversion is
traditionally achieved by recording the intensity of the sig-
nal at specified time instants. Alternatively, sampling can be
based on timing rather than amplitude information. In this
paper, we investigate the problem of timing-based sampling
of non-bandlimited signals, within the Finite Rate of Innova-
tion (FRI) setting. We show how these signals can be non-
uniformly sampled using a compact-support kernel that satis-
fies the generalised Strang-Fix conditions, and a comparator.
We then prove that perfect input estimation is possible using
a novel local reconstruction algorithm.

Index Terms— Analog-to-digital conversion, non-uniform
sampling, finite rate of innovation, time encoding machine.

1. INTRODUCTION
Sampling theory, which bridges the continuous and discrete-
time domains, has recently experienced renewed interest [1].
This is mostly due to the emergence of two inter-related the-
ories, compressed sensing [2, 3] and finite rate of innova-
tion [4–8], that have shown that it is possible to sample and
perfectly reconstruct classes of sparse non-bandlimited sig-
nals. These approaches, however, are both essentially based
on recording the intensity of the signal at specific time in-
stants, as done in classical sampling.

An alternative method to classical sampling is the time en-
coding mechanism, which maps the amplitude information of
a signal into a non-uniform time sequence. Sampling based
on timing is inspired by nature as it captures the way neu-
rones encode information, and leads to energy-efficient ana-
log to digital conversions. In this context, typical acquisi-
tion models are based on an integrator, whilst other devices
capture the timing information using a comparator. Meth-
ods for reconstructing signals from timing information have
been presented in [9–12], and are based on connecting this
problem to that of non-uniform sampling in shift-invariant
spaces [13,14]. Therefore, these methods mostly focus on the
retrieval of bandlimited signals, and signals in shift-invariant
spaces.

In this paper, we focus on particular classes of continuous-

time non-bandlimited signals such as streams of Diracs or
piecewise constant signals, and show that it is possible to per-
fectly reconstruct them, from samples obtained using a time
encoding mechanism based on a filter and a comparator. In
Section 2 we show that sampling kernels which reproduce
exponentials or polynomials preserve this property locally,
when sampling is based on timing information. Furthermore,
in Section 3 we propose a sequential algorithm for the re-
trieval of an input stream of Diracs, and extend this method to
piecewise constant polynomial signals. Then, in Section 4 we
highlight the sufficient conditions for perfect retrieval of these
signals from non-uniform samples. Section 5 shows that re-
construction of these signals from their timing information is
exact to numerical precision. Finally, we conclude in Section
6.

2. NON-UNIFORM SAMPLING OF FRI SIGNALS
In this section, we describe the acquisition model and high-
light key features of the kernel used in our sampling scheme.
In particular, we focus on the family of exponential and poly-
nomial reproducing kernels, as they have compact support
and have been extensively used in FRI sampling.

A. Acquisition Model

We consider the time encoding strategy depicted in Fig. 1,
which relies on a filter ϕ(−t), and a comparator with refer-
ence g(t). The output of the acquisition device is the sequence
{tn}, corresponding to the time instants when the filtered in-
put signal crosses the reference, i.e. when y(tn)− g(tn) = 0.
Moreover, since the value of the test function g(t) is known,
we can retrieve the amplitudes of the output samples, given
by yn = y(tn) = g(tn). Hence, decoding the input signal is
equivalent to a non-uniform sampling problem, where we aim
to reconstruct x(t) from the non-uniform samples defined as:

yn =

∫
x(τ)ϕ(τ − tn)dτ = 〈x(t), ϕ(t− tn)〉. (1)

Fig. 1: Crossing Time Encoding Machine.



B. Sampling Kernels

1. Polynomial reproducing kernels

A kernel is able to reproduce polynomials of maximum de-
gree P , if together with its shifted versions, it satisfies:∑

n∈Z
cm,nϕ(t− n) = tm,

where m ∈ {0, 1, ..., P}, and for a proper choice of cm,n.
Any function that satisfies the Strang-Fix conditions can

be used as a polynomial reproducing kernel [15]. One exam-
ple of such functions are the B-splines [16]. The zero-order
B-spline can reproduce constant polynomials, and is given by:

β0(t) =

{
1, −1 ≤ t < 0,

0, otherwise.
Moreover, the first-order B-spline is defined as:

β1(t) = (β0 ∗ β0)(t) =


−t, −1 ≤ t ≤ 0,

2 + t, −2 ≤ t ≤ −1,
0, otherwise.

We show that the polynomial reproducing property of the
first-order B-spline is locally preserved in the context of non-
uniform sampling. In other words, we prove the following
condition is satisfied within a time interval I , for N ≥ 2:

N∑
n=1

cIm,nβ1(t− tn) = tm, (2)

where m ∈ {0, 1}, N is the number of overlapping splines
with no discontinuities in the interval I , and t ∈ I .

It is sufficient to show that the condition in Eq. (2) is
satisfied for N = 2, to prove that it holds for N > 2. Hence,
we aim to show that it is possible to find the coefficients cIm,1
and cIm,2 such that cIm,1β1(t− t1) + cIm,2β1(t− t2) = tm.

Any two non-zero regions v1(t) = β1(t− t1) and v2(t) =
β1(t − t2) form a basis for the vector spaces of constant and
linear polynomials. This is because they represent linearly
independent 2D vectors, and for any constant or linear poly-
nomial x, there is a unique sequence c ∈ C2 such that x =
c1v1 + c2v2. For example, v1(t) = −t + t1 and v2(t) =
−t + t2 are clearly independent for t1 6= t2. Moreover,
any constant polynomial C can be written as a linear com-
bination of v1 and v2: c0,1(−t + t1) + c0,2(−t + t2) = C,
with unique c0,1 = C

t1−t2 and c0,2 = C
t2−t1 . In addition,

any linear polynomial can be represented by v1 and v2 as:
c1,1(−t + t1) + c1,2(−t + t2) = at + b, and with unique
c1,1 = at2+b

t1−t2 and c1,2 = at1+b
t2−t1 .

Similarly, we can show that reproduction of constant and
linear polynomials is possible on any time interval spanned
by continuous non-zero segments of the two kernels. As a
result, Eq. (2) holds for N = 2 and therefore, for N > 2.
Fig. 2 illustrates the local reproduction of constant and lin-
ear polynomials, within two different intervals I1 and I2. It

Fig. 2: Perfect reproduction of constant and linear polynomials in
two different time intervals, I1 = [0.625, 1]s in (a) and (b), and
I2 = [1, 1.625]s in (c) and (d), overlapped by continuous regions
of two non-uniformly shifted first-order B-splines.

is evident that cI1m,n 6= cI2m,n, and that the polynomial recon-
struction breaks outside the continuous regions.

Furthermore, the convolution (β0 ∗ qθ)(t) locally repro-
duces constant and linear polynomials, in the interval I:

N∑
n=1

cIm,n(β0 ∗ qθ)(t− tn) = tm,

where β0(t) is the zero-order B-spline, m ∈ {0, 1}, N is
the number of splines with no discontinuities in I , and the
stretched box function is defined as:

qθ(t) =

{
1, 0 ≤ t ≤ θ,
0, otherwise.

(3)

2. Exponential reproducing kernels

An exponential reproducing kernel is a function ϕ(t) that, to-
gether with its uniformly shifted versions, reproduces expo-
nentials of the form eαmt, with αm = α0 +mλ:∑

n∈Z
cm,nϕ(t− n) = eαmt.

A family of functions suited for exponential reproduction
are the E-splines [17], that satisfy the generalised Strang-Fix
conditions [18,19]. As for the polynomial case, we can prove
that a linear combination of non-uniform shifts of the first-
order E-spline locally reproduces exponentials.

3. RECONSTRUCTION OF FRI SIGNALS FROM
NON-UNIFORM SAMPLES

In this section, we present a method for perfect estimation of
a single input Dirac, and extend this to a sequential algorithm
for reconstruction of a stream of Diracs and piecewise con-
stant polynomials, from their non-uniform samples. Then, we
present an extension of these methods to FRI reconstruction
using a multi-channel sampling approach.



A. Perfect Reconstruction of a Single Dirac
Let us consider a single input Dirac of amplitude |a1| ≤ 1:

x(t) = a1δ(t− τ1). (4)

We obtain the timing information of this signal using the
model in Fig. 1, where the filter ϕ(t) is a first-order E-spline
of support L. Moreover, assume that the first two output sam-
ples are located at t1, t2 ∈ [τ1, τ1 +

L
2 ], which holds provided

the period of the comparator’s signal satisfies Ts ≤ 2L
5 , as

shown in Section 4. Then, in the interval I = [t2 − L
2 , t1],

where there are no knots of either ϕ(t− t1) or ϕ(t− t2), we
can reproduce two exponentials as described in Section 2:

2∑
n=1

cIm,nϕ(t− tn) = eαmt, for m ∈ {0, 1}. (5)

Then, we define the signal moments sm, as a linear com-
bination of the measurements y(t1) and y(t2):

sm =
2∑

n=1

cIm,ny(tn)
(a)
=

2∑
n=1

cIm,n〈x(t), ϕ(t− tn)〉

(b)
=

∫
x(t)

2∑
n=1

cIm,nϕ(t− tn)dt

(c)
=

∫
a1δ(t− τ1)

2∑
n=1

cIm,nϕ(t− tn)d

(d)
=

∫
I

a1δ(t− τ1)ejωmtdt = a1e
αmτ1 = b1u

m
1 ,

(6)

where b1 := a1e
jω0τ1 , u1 := eiλτ1 , and the frequencies

ωm = ω0 + λm, for m ∈ {0, 1}.
The unknowns {b1, u1} can be uniquely retrieved from

the signal moments, using the annihilating filter method [20],
also known as Prony’s method [21]. Then, we get the Dirac’s
amplitude and location, using b1 = a1e

jω0τ1 and u1 = eiλτ1 .
In the derivations above, (a) follows from Eq. (1),

(b) from the linearity of the inner product, and (c) from
Eq. (4). Moreover, (d) follows from the assumption that
t1, t2 ∈ [τ1, τ1 +

L
2 ], which means τ1 ∈ I , and from the local

exponential reproduction property of ϕ(t) in Eq. (5).
Finally, the derivations in Eq. (6) hold in any interval I =

[tN − L
2 , t1] where there are no knots of any kernel ϕ(t− tn),

for tn ∈ [τ1, τ1 +
L
2 ], n = 0, 1, ..., N and N ≥ 2.

B. Perfect Reconstruction of a Stream of Diracs
We now consider the case of K Diracs:

x(t) =

K∑
k=1

akδ(t− tk), (7)
where |ak| ≤ 1.

When we filter the input signal with kernel ϕ(t), we ob-
tain the non-uniform output samples based on the acquisition
model of Fig. 1, y(tn) = 〈x(t), ϕ(t− tn)〉, for n ≥ 1. Then,
using y(t1) and y(t2), we can uniquely estimate the first Dirac
in the stream using the method in Section A.

Furthermore, let us assume that the separation between in-
put Diracs is larger thanL, and denote with y(tn) and y(tn+1)

the samples located after τ1 + L. This means that the loca-
tion of the second Dirac satisfies τ1 + L < τ2 < tn. More-
over, we assume that y(tn), y(tn+1) ∈ [τ2, τ2 + L

2 ], which
holds provided the period of the comparator’s signal satis-
fies Ts ≤ 2L

5 , as shown in Section 4. Then, in the interval
I = [tn+1 − L

2 , tn], where there are no knots of any of the
shifted kernels ϕ(t− tn) or ϕ(t− tn+1), perfect exponential
reproduction can be achieved:

cIm,nϕ(t− tn)+ cIm,n+1ϕ(t− tn+1) = eαmt, for m ∈ {0, 1}.
Then, we can compute the signal moments as in Eq. (6):

sm = cIm,ny(tn) + cIm,n+1y(tn+1) = a2e
αmτ2 . (8)

Finally, we can estimate the free parameters a2 and τ2
from the signal moments, using Prony’s method.

Once the second Dirac has been estimated, we use sub-
sequent non-uniform output samples after τ2 + L in order to
sequentially retrieve the next Diracs.

C. Perfect Reconstruction of Piecewise Constant Signals
We show that the sampling of piecewise constant signals is
equivalent to sampling a stream of Diracs [6].

Using the acquisition device depicted in Fig. 1, we filter
the piecewise constant input x(t) with the kernel ϕ(t), which
is able to reproduce constant polynomials. Then, using the
output samples yn = 〈x(t), ϕ(t− tn)〉, we define:

zn = yn+1 − yn = 〈x(t), ϕ(t− tn+1)− ϕ(t− tn)〉. (9)

Denoting tn+1 − tn = θn, using the definition of qθn(t)
from Eq. (3), and leveraging the proof in [6], Eq. (9) be-
comes:

zn = 〈 d
dt

(x(t)), (ϕ ∗ qθn)(t− tn)〉.

The modified outputs zn = yn+1 − yn are equivalent to
the samples that would be obtained by filtering the input sig-
nal d

dt (x(t)), with the kernels (ϕ ∗ qθn)(t), and sampling the
filtered signal at times tn. Hence, sampling the piecewise
constant signal x(t) with the spline ϕ(t) is equivalent to sam-
pling the corresponding stream of Diracs d

dt (x(t)) with the
new kernel (ϕ ∗ qθn)(t), which can reproduce linear polyno-
mials, as discussed in Section 2. We can therefore perfectly
reconstruct x(t) by leveraging results in Section 3.A and 3.B.

D. Input Estimation using a Multi-Channel Approach
The reconstruction methods above can be extended to the es-
timation of signals of K bursts of 2 Diracs, of the form:

x(t) =

K∑
k=1

2∑
i=1

ak,iδ(t− τk,i),

where τk,1 and τk,2 are sufficiently close, and τk,2 and τk+1,1

are sufficiently separated.
This is achieved using the sampling approach in Fig. 1,

with 2 filter channels, ϕ1 and ϕ2. In this case, the signal mo-
ments give us 4 equations, from which we can retrieve the
4 free parameters of the input signal. This method can be
further extended to the retrieval of input bursts of M Diracs,



using an M-channel sampling scheme. Lastly but importantly,
the same results can be achieved using a multi-channel acqui-
sition scheme, where each channel consists of an integrate-
and-fire model [22].

4. SUFFICIENT CONDITIONS FOR PERFECT
RECONSTRUCTION OF FRI SIGNALS

In this section we present sufficient conditions, for perfect re-
construction of an input stream of Diracs, and a piecewise
constant signal. First, we impose constraints on the frequency
of the comparator’s reference function, to guarantee the out-
put non-uniform samples are sufficiently dense. Second, we
derive the minimum separation between consecutive spikes
in the input stream of Diracs and equivalently, between the
discontinuities of a piecewise constant signal. This ensures
sequential retrieval of the input parameters is possible.
Proposition 1. The timing information t1, t2, ..., tn, ... pro-
vided by the device shown in Fig. 1 is a sufficient representa-
tion of a stream of K Diracs as in Eq. (7), when the period
of g(t) = cos(wst) satisfies Ts ≤ 2L

5 , with L being the sup-
port of the sampling kernel, and when the minimum spacing
between Diracs is larger than L.
Proof. Suppose we aim to retrieve the Dirac δ1 of a stream of
spikes, given by δ1 = a1δ(t−τ1). In order for Eq. (5) to hold,
we need to ensure that the first two output samples after the
Dirac δ1 are located at t1, t2 ∈ [τ1, τ1 + L

2 ], or equivalently
that t2− τ1 < L

2 . Moreover, the assumption |a1| ≤ 1 ensures
|y(t)| ≤ 1 = max(g(t)). Therefore, given the hypothesis
Ts ≤ 2L

5 , then the maximum separation between the input
Dirac and the second output spike is t2 − τ1 = 5Ts

4 ≤
L
2 , as

depicted in Fig. 3. Furthermore, the sequential algorithm in
Section B requires a minimum separation between the Diracs
equal to L, such that the samples y(tn) and y(tn+1) in Eq.
(8) have contribution from one Dirac only.

Finally, using the results of Section 3, equivalent con-
straints can be derived for the case of a piecewise constant
polynomial: Ts < 4L

5 , and a minimum separation between
discontinuities of 2L, where L is the support of the zero-order
B-spline used as sampling kernel.

Fig. 3: Timing information of an input Dirac located at τ1.
5. SIMULATIONS

The sampling and reconstruction of a stream ofK = 4 Diracs
are depicted in Fig. 4. Here, the sampling kernel is a first-
order E-spline, of support L = 2, shown in Fig. 4(b). The

comparator’s reference signal has a frequency fs = 1.25 =
5
2L , and the inter-Dirac separation is larger than the kernel
support L, as seen in Fig. 4(a). The amplitudes and loca-
tions of the estimated Diracs are exact to numerical precision.
The reconstruction of a piecewise constant signal from non-
uniform samples is depicted in Fig. 5. The sampling kernel is
a zero-order B-spline, of support L = 1, and the frequency of
the comparator’s reference signal is fs = 1.25 = 5

4L . More-
over, the separation between consecutive input discontinuities
is larger than 2L = 2, as illustrated in Fig. 5(b). Finally, the
reconstructed input signal is exact to numerical precision.

Fig. 4: Sampling of a stream of Diracs. The input signal is shown
in (a), the sampling kernel in (b), the output non-uniform samples in
(c), and the reconstructed signal in (d).

Fig. 5: Sampling of a piecewise constant signal. The input piecewise
constant signal is shown in (a), the input discontinuities in (b), the
output non-uniform samples in (c), and the reconstruction in (d).

6. CONCLUSIONS

This paper addressed the problem of reconstructing classes of
non-bandlimited signals from time-based samples, obtained
by filtering the input with an exponential (polynomial) repro-
ducing kernel, and retrieving the timing information using a
comparator. We first showed that these kernels preserve lo-
cally the ability to reproduce exponentials or polynomials, in
the case of non-uniform sampling. Furthermore, we designed
an iterative reconstruction scheme, which can perfectly re-
trieve signals with finite rate of innovation from their timing
information. Simulations validated the claims of the paper.
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