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ABSTRACT

We propose a line-edge extraction algorithm that uses an E-
spline data acquisition model and a fast optimization algo-
rithm. The proposed method can retrieve line-edge parame-
ters, including orientation, offset, and amplitude at sub-pixel
accuracy almost independently of the resolution of the im-
ages. Because of the optimization approach, the proposed
method is robust against model mismatch such as noise, point
spread function (PSF) model mismatch, or step line-edge as-
sumption. These properties are verified by simulations using
images taken with a digital SLR camera.

Index Terms— Edge detection, line-edge, Hough trans-
form, E-spline, optimization

1. INTRODUCTION

Straight line-edge is one of the most important image feature
used in many applications including registration or vehicle
navigation. The standard method to extract straight lines is the
Hough transform and its extensions [1, 2]. Such techniques,
however, have limitations including the fact that many param-
eters need to be adjusted or the fact that they require high
computational costs. Further, the Hough transform uses cen-
ter position of a detected pixel as location of the line. Since
this is not true generally, preciseness of the method degrades
as the resolution of image decreases.

This difficulty was reduced by using more precise acquisi-
tion model. This approach was first taken by Baboulaz et al.,
who used B-spline functions for the acquisition model and
proposed a method which can retrieve line-edge parameters
including orientation, offset, and amplitude [3]. Hirabayashi
et al. then used a trigonometric E-spline [4] for the model to
improve noise robustness [5]. These methods can theoreti-
cally achieve infinite resolution. The key notion in the meth-
ods is a quantity computed by the product-sum of (horizon-
tally or vertically) differentiated samples of image pixels and
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appropriate coefficients determined by the acquisition model.
Its theoretical closed form provides analytic solutions for the
line-edge parameters. If model mismatch is not too severe,
then these analytic solutions can provide good estimates for
the parameters. If the model mismatch becomes greater, how-
ever, further processing is necessary.

Hence, in this paper, we introduce an optimization ap-
proach to the acquisition model based approach. Our method
performs line-edge extraction within a local area surrounding
a pixel on which an edge is detected by a standard method like
Canny. We define a criterion that evaluates closeness between
the product-sum quantity computed from the pixels within the
local area and that from the theoretical closed-form with can-
didate parameters. The criterion combines horizontal and ver-
tical evaluations in a single formulation. Minimizers for the
criterion are used to estimate the three parameters. Since the
criterion is quadratic in terms of the amplitude, its analytic
solution is available for fixed orientation and offset. Hence,
the optimization is performed only over these two parame-
ters. This problem is not globally convex, but locally around
the optimum solution. Hence, we apply a gradient method
with the analytic solutions for the initial values. Despite its
computational simplicity the proposed approach provides ex-
tremely stable results as verified by simulations with real im-
ages obtained by a commercial digital SLR camera.

This paper is organized as follows. Section 2 provides
mathematical preliminaries about the E-spline functions. In
Section 3, the criterion that evaluates the aforementioned
closeness is defined based on the closed forms for the hori-
zontal and vertical product-sum quantities. We then propose
our optimization approach. Section 4 is reserved for simula-
tions. Section 5 concludes the paper.

2. E-SPLINE FUNCTIONS

Let −→α = (α0, α1, ..., αP ) be a P + 1 dimensional complex
vector and βαp(t) be

βαp(t) =
{
eαpt (−0.5 ≤ t < 0.5),
0 (t < −0.5, t ≥ 0.5). (1)
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Fig. 1. Description parameters for a step line-edge. The xy
coordinates are local ones whose origin is the center of the
pixel detected as an edge. The grid shows sampled pixels.

Let β~α(t) be the convolution of the P +1 functions βαp(t) as

β~α(t) = (βα0 ∗ βα1 ∗ . . . ∗ βαP )(t).

The function β~α(t) is called the E-spline of order P and
proper linear combination of shifted versions of this spline
can reproduce exponentials of the form eαpt, p = 0, ..., P [4].

3. STEP LINE-EDGE EXTRACTION

By using orientation θ, offset γ, and amplitude λ, which are
defined as in Fig. 1, a step line-edge can be expressed as

f(x, y) = λH(−x sin θ + y cos θ + γ sin θ), (2)

where H(t) is the unit step function whose value is 1 if t ≥ 0
and 0 if t < 0. This continuous expression of the step edge
is sampled by the integer-shifted version of a sampling kernel
ψ(x)ψ(y) as

g[m,n] = 〈f(x, y), ψ(x−m)ψ(y − n)〉 + ε[m,n],

where ε[m,n] is additive noise. The sampling kernel ψ(t) is
modeled by the trigonometric E-spline of the first order (P =
1), which is the one where ~α = (iω0,−iω0) with ω0 ∈ IR,
and is given by

β~α(t) =

 sinω0(t+ 1)/ω0 (−1 ≤ t < 0),
− sinω0(t− 1)/ω0 (0 ≤ t < 1),

0 (t ≤ −1, t > 1).

When ω0 tends to zero, the trigonometric E-spline converges
to the B-spline of the first order.

The main stream of the algorithm we propose here is sim-
ilar to those in [3] or [5]. First, edge pixels are detected by
a conventional method like Canny operator. Then, for each
pixel detected as an edge, the surrounding pixel area is ex-
tracted, and the three parameters are computed from the pix-
els in the area. To suppress extraction errors, similar edges are
merged, while other edges are discarded. Within these steps,
we mainly discuss the second one. Therefore, the indices m
and n are assigned in a local manner: the focused detected
pixel is set to m = n = 0. The local area size is chosen
as 8 × 8 pixels since those affected by the focused edge are
mostly within this area. This is because the sampling kernel is
modeled by the E-spline of the first order (its support width is
two). Hence, the indicesm and n are from -3 to 4 (see Fig. 1).

To retrieve the parameters θ, γ, and λ from the pixel val-
ues g[m,n], we first compute a horizontal differentiated sam-
ple dH [m,n] which is given by g[m+1, n]−g[m,n]. We then
compute product-sum of dH [m,n] and coefficients C(αp)

m :

τ (H)
n,p =

3∑
m=−3

C(αp)
m dH [m,n]. (3)

The coefficients C(αp)
m are determined so that they satisfy

∞∑
m=−∞

C(αp)
m (βα2 ∗ ψ)(t−m) = eαpt (4)

for p = 0, 1, 2, where βα2(t) is defined by (1) with α2 = 0,
and they can be computed by

C(αp)
m = emαp/


P ′∑

k=−P ′

ekαp(βα2 ∗ ψ)(−k)

 , (5)

where P ′ is the maximum integer not exceeding (P + 2)/2.
Note that the convolved sampling kernel (βα2 ∗ψ)(t) can pro-
duce eαpt for p = 0, 1, 2.

To show a closed form of τ (H)
n,p , let us define

µ(H)
n,p (θ, γ) = −sgn(sin θ)eαp(γ+ n

tan θ −
1
2 )Ψ

( αp

tan θ

)
,

where sgn(t) is the function whose value is 1 if t > 0, 0 if
t = 0, and −1 if t < 0 and Ψ(s) =

∫ ∞
−∞ ψ(t)estdt. Assume

that dH [m,n] is equal to zero for |m| ≥ 4. Then, as shown in
[5], it holds for p = 0, 1, 2 that

τ (H)
n,p = λµ(H)

n,p (θ, γ). (6)

This equation yields closed formulas for tan θ, γ, and λ [5]. If
model mismatch is not too severe, then τ (H)

n,p can be computed
by (3) and the closed formulas can provide good estimates for
λ, θ, and γ. However, if model mismatch cannot be ignored,
it is getting hard for the formulas to work precisely. To over-
come this limitation, we search for θ, γ, and λ by which the
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right-hand side in (6) best approximates the left-hand side for
all n = −1, 0, 1 and p = 0, 1, 2.

As well as the horizontal one, we can do the same process-
ing vertically. That is, let us compute differentiated samples
vertically as dV [m,n] = g[m,n + 1] − g[m,n]. Then, the
product-sum of dV [m,n] and coefficients C(αp)

n is computed
by

τ (V )
m,p =

∞∑
n=−∞

C(αp)
n dV [m,n] (7)

and τ (V )
m,p has the following closed form:

τ (V )
m,p = λµ(V )

m,p(θ, γ), (8)

where

µ(V )
m,p(θ, γ) = sgn(cos θ)eαp{−(γ−m) tan θ− 1

2}Ψ (αp tan θ) .

Proof. The vertically differentiated sample dV [m,n] can be
expressed as

dV [m,n] =
〈
∂f(x, y)
∂y

, ψ(x−m)(βP+1 ∗ ψ)(y − n− 0.5)
〉
.

It follows from (2) that

∂f(x, y)
∂y

= λδ(−x sin θ + y cos θ + γ sin θ) cos θ,

where δ(t) is Dirac’s delta function. Substituting these rela-
tions and (4) into (7) yields

τ (V )
m,p = λeαp{−(γ−m) tan θ−0.5}Ψ(αp tan θ)

if cos θ > 0. If cos θ < 0, then the right-hand side becomes
its negative version. If cos θ = 0, then τ (V )

m,p = 0. These
relations are combined into (8).

Let us define eighteen dimensional vectors τ and µ(θ, γ)
as

τ = (τ (H)
−1,0, τ

(H)
−1,1, τ

(H)
−1,2, τ

(H)
0,0 , . . . τ

(V )
1,1 , τ

(V )
1,2 )T ,

µ(θ, γ) = (µ(H)
−1,0(θ, γ), µ

(H)
−1,1(θ, γ), µ

(H)
−1,2(θ, γ),

µ
(H)
0,0 (θ, γ), . . . , µ(V )

1,1 (θ, γ), µ(V )
1,2 (θ, γ))T .

Then, the differences between the left and right hand sides in
(6) and (8) can be simultaneously evaluated by

Jo(θ, γ, λ) = ‖λµ(θ, γ) − τ‖2.

For fixed θ and γ, the optimal λ is obviously given by

λopt(θ, γ) =
〈

τ ,
µ(θ, γ)

‖µ(θ, γ)‖2

〉
.

Hence, θ, γ, and λ which minimize Jo are given by θ and γ
which minimize

J(θ, γ) = Jo(θ, γ, λopt(θ, γ)), (9)

and then λopt(θ, γ) with the resultant values. Note that the
proposed approach elegantly combines horizontal and vertical
evaluations into a single formulation in the criterion J .

Since line-edge in our formulation has ‘direction’, a hor-
izontal edge, for example, with 0 and λ for the top and bot-
tom, respectively, is different from that with the counter order.
Hence, we have to search for θ from −π to π rather than −π/2
to π/2. On the other hand, since the edge should exist near
the focused pixel, γ is supposed to be a small number. Hence,
we searched for γ in the range of −1.5 to 1.5. The problem of
finding the minimizer within this area is not globally convex,
but we can treat it convex around the optimum values. There-
fore, we used a gradient method with the analytic solutions
for the initial values.
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Fig. 3. Edge extraction results by the proposed algorithm: (a)
original image, (b) Canny edge detection results, (c) results
by the proposed method, (d) results by the Hough transform.

4. SIMULATIONS

4.1. Resilience to Noise

To evaluate noise precisely, we applied the proposed method
and the closed form approaches to a synthesized image with
noise. The noiseless image is a step line-edge with θ = −π/4,
γ = 0, and λ = 100. The noise ε[m,n] is independently and
identically generated from Gaussian distribution with stan-
dard deviation σ, which was determined so that the signal-
to-noise ratios (SNRs), defined by 10 log10(λ/σ), were from
5dB to 25dB with step size 1dB. We used ω0 = π/8.

The results are shown in Fig. 2, in which (a) and (b) in-
dicate the standard deviations of estimated values for tan θ
and γ, respectively. They are shown in dB in order to clearly
show the difference for the large SNR values. In each figure,
the thick and thin solid lines show the results obtained by the
proposed method and the closed form approach based on E-
spline, respectively. The dashed line shows the result by the
B-spline counterpart. We can see that the proposed method
constantly outperforms both the closed-form approaches. The
gains of the proposed method compared to the closed form
approach with E-spline are at least 4.0 [dB] and 1.5 [dB] for
tan θ and γ, respectively. It should be noted that the proposed
method performs very stably even when the input SNR is less
than 11 [dB]. These results show the robustness against noise
of the proposed approach.

4.2. Real Images

We applied the proposed method to the real image obtained
by a Nikon D50 SLR camera. Its PSF is simply approximated
by the trigonometric E-spline of the first order with ω0 = π/8
without any calibration. Fig. 3 (a) shows the original image,
Fig. 3 (b) shows the Canny edge detection results. Figs. 3 (c)
and (d) show the extracted edges for the small area in the box
indicated in Fig. (a) by the proposed method and the Hough
transform, respectively. We can see that the Hough transform
extracts many wrong straight line edges along the curve on
the right while the proposed method does more precise results
and less wrong ones. We also note that the Hough transform
could not extract the top left straight line edge because the
area shown in Fig. (d) was not sufficient. Even though the PSF
for the camera is unknown, the proposed method showed the
good performance. This means that the proposed approach is
robust against the PSF model mismatch. The computational
time for the simulation by the proposed method was 0.7[s]
which can be accelerated by more dexterous initial values.

5. CONCLUSION

We proposed a line-edge extraction method using an E-spline
acquisition model and a fast yet effective optimization algo-
rithm. The proposed method estimated line-edge parameters
by minimizing a criterion that evaluates closeness between
quantities computed from theoretical closed form and pixel
values. The proposed method is robust against model mis-
match such as noise, PSF model, or step line-edge assumption
as shown by simulations with synthetic and real images.
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