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Abstract

In this paper we present a possible extension of the theory of sampling signals with finite rate of

innovation (FRI) to the case of multichannel acquisition systems. The essential issue of a multichannel

system is that each channel introduces different unknown delays and gains that need to be estimated for the

calibration of the channels. We pose both the synchronization stage and the signal reconstruction stage as

a parametric estimation problem and demonstrate that a simultaneous exact synchronization of the channels

and reconstruction of the FRI signal is possible. We also consider the case of noisy measurements and

evaluate the Cramér-Rao bounds (CRB) of the proposed system. Numerical results as well as the CRB show

clearly that multichannel systems are more resilient to noise than the single-channel ones.

I. INTRODUCTION

Sampling theory has experienced a recent revival due in part to a string of results that have extended

the classical Shannon sampling framework to classes of non-bandlimited structured signals [7], [6], [18]. In

these new sampling schemes, the prior that the signal is sparse in a basis or in a parametric space is taken

into account and perfect reconstruction is possible based on a set of suitable measurements. Depending on

the set-up used and reconstruction method involved, the above new sampling framework goes under different

names like compressed sensing (CS), compressive sampling [7], [6] or sampling signals with finite rate of

innovation (FRI) [18], [8].
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The set-up considered here is the one in [18], [8], where the acquisition process is modelled as in

Figure 1. In [18], [8], it is shown that perfect reconstruction of classes of FRI signals is possible by utilizing

the Prony’s method, which is also known as the annihilating filter method [15]. Signals that can be sampled

with this method include streams of Diracs, piecewise-polynomial and piecewise-sinusoidal signals [18],

[8], [3]. Further results on CS and FRI sampling have then appeared providing additional extensions to the

original schemes and new insights on performance bounds and reconstruction algorithms. We recommend

the recent Signal Processing Magazine issue on the topic for a detailed overview [2]. Most of the papers on

T

x(t)
ϕ

Acquisition Device

h(t)=   (−t/T) y =<x(t),   (t/T−n)>n ϕy(t)

Fig. 1. Sampling set-up. Here, x(t) is the continuous-time signal, h(t) the impulse response of the acquisition device and T the

sampling period. The measured samples are yn = 〈x(t), ϕ(t/T − n)〉.

sparse sampling focus on a single-channel acquisition model. However, modern and fast Analogue-to-Digital

Converters (ADC) use interleaved multichannel converters. This allows a reduction in the complexity of the

devices while keeping higher rates of conversion. Given the practical importance of multichannel acquisition

devices, it is natural to investigate extensions of sparse sampling theories to the multichannel scenario. The

critical issue in multichannel sampling is the precise synchronization of the various channels since different

devices introduce different drifts and different gains (due to imperfections of electronic circuits for example)

that need to be estimated together with the signal itself. In this paper we therefore consider the multichannel

sampling of FRI signals and extend the results in [8] to this new scenario. Multichannel sampling was first

proposed by Papoulis in the context of bandlimited signals [13] and extended by Unser et al. [17] for signals

lying in shift-invariant subspaces. A further extension related to union of shift-invariant subspaces has been

recently considered in [9]. The multichannel sampling of FRI signals has been considered in [12], [10]

and [14], but in all cases the drift problem was not addressed.

The paper is organized as follows: In the next section, we review the main results on sampling FRI signals

and in particular focus on E-spline sampling kernels. Then, in Section III, we present the extension of this

sampling framework to the case of multichannel acquisition devices. In particular, we show that it is possible

to estimate simultaneously the channel parameters (i.e., delays and gains) and the signal from the measured

samples. This is achieved by operating at a sampling rate proportional to 1/TM , where M is the number

of channels involved. In Section IV we consider the noisy scenario and show with both the Cramér-Rao

bounds and numerical simulations that multichannel sampling systems are more resilient to noise than the
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single-channel ones. We finally conclude in Section V.

II. SAMPLING SIGNALS WITH FINITE RATE OF INNOVATION

For the sake of clarity we assume that x(t) is a stream of K Diracs with amplitudes ak located at distinct

instants tk ∈ [0, τ [ (other 1-D FRI signals could also be considered):

x(t) =
K−1∑

k=0

akδ(t− tk). (1)

Furthermore, we assume the sampling period is T = τ/N where N is the number of samples. Consequently,

the measurements are:
yn = 〈x(t), ϕ(t/T − n)〉

=
K−1∑
k=0

akϕ(tk/T − n), n,= 0, 1, ...N − 1.

In [18], [8], it was shown that with a proper choice of the acquisition kernel, a perfect reconstruction of x(t)

from the samples yn is possible. The kernels used in [18] are the sinc and the Gaussian functions. In this

paper, we will focus on a specific class of kernels, used in [8], that are able to reproduce real or complex

exponentials. A kernel ϕ(t) is able to reproduce exponentials up to order P if there exists coefficients

cm,n ∈ C such that:

∑

n∈Z
cm,nϕ(t− n) = eαmt with αm ∈ C and m = 0, 1, ..., P. (2)

The coefficients cm,n in the above equation are given by the following equation:

cm,n =
1
T

∫ ∞

−∞
eαmtϕ̃(t/T − n)dt,

where ϕ̃(t) is chosen to form with ϕ(t) a quasi-biorthonormal set [5]. This includes the particular case

where ϕ̃(t) is the dual of ϕ(t), that is, 〈ϕ̃(t−n), ϕ(t− k)〉 = δn,k. In the sampling set-up of [8] the choice

of the exponents in (2) is restricted to αm = α0 + mλ with α0, λ ∈ C and m = 0, 1, ..., P . This is done to

allow the use of the annihilating filter method at the reconstruction stage. This will be more evident when

the reconstruction method is described later on.

Exponential splines (E-splines) [16] are central to the exponential reproduction property. The Fourier

transform of the (P + 1)-th order E-spline is:

β̂~αP
(ω) =

P∏

m=0

(
1− eαm−jω

jω − αm

)
. (3)

The above E-spline is able to reproduce the exponentials eαmt with m = 0, 1, ..., P . It is interesting to point

out that by choosing complex conjugate exponents for the E-spline sampling kernel, real-valued functions

will be obtained.

The time domain expression of a spline of order two is given by:
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β~αP
(t) =





eα0t−eα1t

α0−α1
0 ≤ t < 1

eα1t+α0−α1−eα0t+α1−α0

α0−α1
1 ≤ t < 2.

Moreover, since the exponential reproduction formula is preserved through convolution [16], any composite

function of the form ϕ(t)∗β~αP
(t) is also able to reproduce exponentials. Finally, in the case of E-splines, it

can be shown that the exponential reproduction coefficients can be computed using the following expression:

cm,n =





eamP1
k=−P+1 eαmkβ~αP

(1−k)
n = 0

eαmnc0,m n 6= 0.

Having gone through the sampling process, we will now explain the reconstruction process [8]. The

reconstruction scheme operates as follows: First the samples are linearly combined with the coefficients

cm,n of (2) to obtain the surrogate measurements:

sm =
N−1∑

n=0

cm,nyn m = 0, 1, ..., P. (4)

Then, assuming that the original signal is a stream of Diracs as the one in (1), we have that:

sm = 〈x(t),
∑

n

cm,nϕ(t/T − n)〉 =
∫ ∞

−∞
x(t)eαmt/T dt =

K−1∑

k=0

âku
m
k (5)

where m = 0, 1, ..., P , âk = ake
α0tk/T and uk = eλtk/T . Here we have used the fact that αm = α0 + mλ.

Notice also that sm represent the exact exponential moments of the continuous-time signal x(t). The new

pairs of unknowns {âk, uk} can then be retrieved from the power series sm =
∑K−1

k=0 âku
m
k using the classical

Prony’s method. The key ingredient of this method is the annihilating filter. Call hm, m = 0, 1, ..., K the

filter with z-transform:

H(z) =
K∑

m=0

hmz−m =
K−1∏

k=0

(1− ukz
−1)

where the roots of H(z) correspond to the locations uk. It clearly follows that:

hm ∗ sm =
K∑

i=0

hism−i =
K−1∑

k=0

âku
m
k

K∑

i=0

hiu
−i
k

︸ ︷︷ ︸
H(uk)

= 0. (6)

The filter hm is thus called annihilating filter since it annihilates the observed series sm. Moreover, the zeros

of this filter uniquely define the set of locations uk as the locations are distinct. The identity in (6) can be

written in matrix/vector form as follows:

SH = 0 (7)

which reveals that the Toeplitz matrix S is rank deficient. By solving the above system, we find the filter

hm and then retrieve the uk’s by computing the roots of H(z). Given the uk’s we retrieve the locations tk
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Fig. 2. Multichannel sampling set-up. Here, the continuous-time signal x(t) is received by multiple channels with multiple

acquisition devices. The samples yi,n from each channel are utilized jointly for the reconstruction process.

and finally the weights ak are obtained by solving, for instance, the first K consecutive equations in (5).

Notice that the problem can be solved only when P ≥ 2K − 1.

We thus conclude that perfect reconstruction of a stream of K Diracs is possible with any kernel able

to reproduce exponentials. If x(t) has more than K Diracs or possibly an infinite number of Diracs, we

cannot use the above method directly. However, since the kernels considered have compact support, the

above scheme can be applied sequentially. More precisely, it was shown in [8] that if there are no more

than K Diracs in an interval of size τ = 2KLT , then we are guaranteed that two groups of K consecutive

Diracs are sufficiently distant and that they are separated by some zero samples. By locating these zeros,

one can separate the two groups and apply the above reconstruction method on each group independently.

Here L indicates the support of the sampling kernel. If x(t) has more than K Diracs in an interval of size

2KLT then the only way to sample it is by increasing the sampling rate. In the next section we show that

this can be avoided by using a multichannel acquisition system.

III. THE MULTICHANNEL SCENARIO

In this section, we consider the multichannel sampling set-up shown in Figure 2. Here x(t) is a stream

of K Diracs located at distinct instants tk ∈ [0, τ [ and is acquired with a system made of M channels.

Each channel introduces a different unknown delay and gain. The sampling kernel in each channel is able

to reproduce exponentials, in fact, for simplicity we assume that each kernel is an E-spline of order P + 1.

The samples of the i-th channel are thus given by:

yi,n = 〈Aix(t−∆i), ϕi(t/T − n)〉,

with A1 = 1 and ∆1 = 0. Our goal is to have a reconstruction system that can perfectly retrieve both the
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input signal and the unknown delays and gains. Let us first assume that M = 2 and that:

ϕ̂1(ω) =
P∏

m=0

(
1− eαm−jω

jω − αm

)
and ϕ̂2(ω) =

2P−1∏

m=P−1

(
1− eαm−jω

jω − αm

)
.

Specifically, both kernels can reproduce the exponentials eαP−1t and eαP t. We now combine the samples

with the proper coefficients c
(i)
m,n, i = 1, 2 to obtain:

s(1)
m =

N∑

n=0

c(1)
m,ny1,n =

∫ ∞

−∞
x(t)eαmtdt, m = 0, 1, . . . , P

and

s(2)
m =

N∑

n=0

c(2)
m,ny2,n =

∫ ∞

−∞
A2x(t−∆2)eαmtdt = A2s

(1)
m eαm∆2 ,

m = P −1, P, . . . , 2P −1. As shown in the equations above, in our set-up we have two common parameters

between the exponents of the two channels, that is at m = P −1 and m = P . The gain factor and the delay

factor can therefore be calculated from the following two equations:

∆2 =
1

αP−1 − αP
ln

(
s
(1)
P s

(2)
P−1

s
(1)
P−1s

(2)
P

)
(8)

and

A2 =
s
(2)
P

s
(1)
P

e−αm∆2 . (9)

This reveals that, independently of x(t), it is possible to synchronize the two channels exactly from the

samples yi,n. However, a few considerations need to be addressed here. In the above analysis we have

implicitly assumed that s
(i)
m 6= 0 for m = P − 1, P and i = 1, 2 and this is not always true. Thus, for

a guaranteed synchronization of the channels, some constraints need to be imposed on the signal. In our

context we are interested in streams of Diracs and in this case the simple assumption that, given the K

locations of the Diracs, the amplitudes are drawn from a non-singular distribution over RK guarantees that

the event s
(i)
m = 0 has probability zero. This is clearly a fairly mild hypothesis and similar type of conditions

can be imposed on any other FRI signal. This type of recovery is also known as almost sure recovery [11].

Let us now return to the original problem of reconstructing the stream of Diracs x(t). Given the exact

gain and delay of channel two, we can now estimate the moments s
(1)
m , with m = P + 1, P + 2, ..., 2P − 1

from s
(2)
m as follows:

s(1)
m =

s
(2)
m

A2
e−αm∆2 , m = P + 1, P + 2, ..., 2P − 1.

It then follows that if 2P − 1 ≥ 2K − 1 or, more simply, P ≥ K then a perfect recovery of x(t) is possible

from the moments s
(1)
m , m = 0, 1, ...2P − 1 by using the annihilating filter method discussed in the previous

section. The advantage of the new set-up is that we now require splines of lower order (i.e., P ≥ K rather

than P ≥ 2K − 1) and this leads to shorter kernels.
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More precisely, for E-splines of order P we know that the support is L = P +1. So, in the single channel

case, the sampling of an infinite stream of Diracs requires that there are no more than K Diracs in an interval

of size 2KLT = 2K(P + 1)T ≤ 4K2T , where we have used the fact that in the single channel set-up

P ≥ 2K − 1. In the case of the two-channel acquisition system, the interval is reduced to (2K2 + 2K)T

since P ≥ K. This indicates that in the new set-up we can either sample signals with a higher concentration

of Diracs or alternatively for the same signal we can almost halve the sampling rate.

The extension to the case of M channels is now straightforward. By designing each sampling kernel

so that pairs of channels have two moments in common, it is possible to synchronize the channels using

equations (8),(9) and then reconstruct x(t). For M channels and K Diracs the requirement is now that

MP − (M−1) ≥ 2K−1 which implies P ≥ d(2K−2)/Me+1. This indicates that by using an M-channel

system we can either sample the same FRI signals with a reduced sampling rate proportional to ∼ 1/TM

or sample signals with a much higher density of Diracs.

In the next section, we will assess the resilience to noise of the proposed multichannel system.

IV. NOISY SCENARIO

We saw in the previous section that, in the noiseless case, a multichannel acquisition system achieves

perfect reconstruction of FRI signals with a sampling rate proportional to 1/TM . Thus, perfect reconstruction

is achieved at lower sampling rates. We now show that, if we do not reduce the sampling rate and leave it

fixed at T , a multichannel system is more resilient to noise than a single-channel one.

Consider the multichannel sampling set-up of Figure 2 and let us now assume that, due to the noise, the

samples we measure are given by:

ŷi,n = 〈Aix(t−∆i), ϕi(t/T − n)〉+ εi,n,

where n = 0, 1, ...N − 1, i = 1, 2, ...,M , εi,n is i.i.d. additive Gaussian noise with zero mean and variance

σ2 and T = τ/N , with τ = 1 seconds. For the sake of simplicity, we assume that the gains introduced by

the channels are all equal and known a-priori, that is, Ai = 1, i = 1, 2, ..., M , therefore only the delays

need to be estimated. Moreover, we assume that the input signal x(t) has K = 3 Diracs with known fixed

amplitudes. Our aim is to compare the performance of the single channel set-up (i.e., M = 1) against the

two-channel and three-channel systems.

Since for all cases we have a standard parametric estimation problem, we use Cramér-Rao bounds to

compare the minimum bounds of the different set-ups and probe whether the multichannel systems are

in theory more resilient to noise. In the single-channel scenario, the reconstruction of x(t) involves the

estimation of three unknown parameters (i.e., the three locations of the Diracs). In the multichannel set-up

instead, one has to retrieve the unknown delays for the synchronization process and the unknown locations
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Fig. 3. (a) CRB for single channel and multichannel sampling systems. The input SNR is calculated as 10log10
||y||2

σ2 where σ2

is the noise variance and ∆t is the uncertainty on the estimated locations. (b) Theoretical uncertainties on the estimated locations

with varying sampling rates. (c) Numerical results with single and multichannel sampling. Dirac locations are set at 0.5, 0.6 and

0.7 set for all cases. The delays ∆2 and ∆3 are fixed at T
2

and T respectively.

of the Diracs. Therefore, there are four parameters to be estimated when M = 2 and five parameters when

M = 3. As the large number of unknown parameters leads to a fairly large Fisher information matrices,

it is simpler to evaluate the CRB numerically for all cases. The sampling kernel used in our analysis is

a complex-valued E-spline function with equally spaced, purely imaginary exponents with α0 = 0 and

λ = 0.18j. The order of E-splines for each channel is fixed and set to P = 9.

The CRB for the estimation of the Diracs for the three cases discussed above, assuming a fixed number

of samples N = 20, are shown in Figure 3(a). Interestingly, the results reveal that the CRB improves with

the number of channels. More precisely, the CRB improvement when going from single-channel to two

channels is approximately 0.86dB, while the improvement when going from single channel to three channel

system is approximately 1.1dB. It is interesting to see that, despite the fact that the unknown delays need
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to be estimated in order to synchronize the channels, there is still a noticeable gain by using multichannel

sampling set-up when compared to the single channel sampling set-up. Furthermore, in Figure 3(b) we show

the CRB of each sampling system at varying sampling rates. We can see that at a given uncertainty of the

estimated locations, there is a reduction in the number of samples needed when going from single-channel

to multichannel sampling systems. For example, at the reconstruction quality of ∆t
σ = 0.04, the number of

samples could be reduced from 38 samples to 27 samples when going from the single channel to the three

channel set-up.

To analyze the performance of the reconstruction algorithm, Figure 3(c) presents some actual numerical

results on the uncertainty of the estimated locations which are also compared against the theoretical bounds

from Figure 3(a). The delays are estimated using Eq. (8), while the locations of the Diracs are obtained

using a variation of the annihilating filter method, known as the matrix-pencil method [15] and also the

Cadzow’s algorithm [4] to further denoise the surrogate measurements sm. While none of the algorithms

achieve the CRB, the obtained results show that the gain in performance with multichannel sampling over

single channel sampling can be significant. For instance, at input SNR= 15dB, the gain in performance from

single channel to three channels is approximately 4.4dB.

V. CONCLUSIONS

In this paper we have extended the theory of sampling FRI signals to the case of multichannel acquisition

systems. We illustrated that by synchronizing the different channels of the proposed multichannel sampling

set-up, one can estimate the unknown delays and gains introduced within the channels, regardless of the input

FRI signal. For the case of noisy measurements, we showed by evaluating the CRB that, despite the fact

that the unknown delays are required to be estimated for synchronization, the number of samples required

can be reduced by the multichannel set-up. Moreover, our numerical results with the multichannel sampling

set-up revealed that the performance of the reconstruction algorithm improves over the single channel case.
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