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ABSTRACT

Video forensics is becoming a popular field of research and an in-

creasing number of forensic techniques have been proposed in the

last few years. However, a simple yet effective method to fool many

detectors consists in recapturing a video sequence with a camcorder.

For this reason being able to detect video recapture is a topic of in-

terest for a forensic analyst. In this paper, we first characterize the

video recapture model, focusing on the common scenario of a se-

quence recaptured from a LCD monitor using a digital camcorder,

then we propose a recapture detector for this case. The detector is

based on the analysis of a characteristic ghosting artifact left by the

recapture process. The presented algorithm is finally validated by

means of tests on original and recaptured sequences. These tests

prove that the algorithm achieves high accuracy results.

Index Terms— video forensics, recapturing, ghosting

1. INTRODUCTION

With the increasing number of multimedia sharing platforms, a

growing number of video sequences is routinely acquired and up-

loaded for general diffusion on the Internet. However, automated

mechanisms for checking the legitimacy of the uploaded content

have not progressed at the same pace. Given the availability of pow-

erful video editing software and the possibility of easily duplicating

digital videos, in the last few years the need of determining the

authenticity of a video sequence has become more urgent. To this

end, an increasing number of techniques has been proposed in the

expanding field of video forensics [1].

Among these techniques, proposed methods generally fall into

two broad categories: techniques originally developed for images

and applied frame-wise to videos [2], and algorithms specifically

tailored to video sequences [3]. Belonging to the latter category are

methods that rely on the detection of characteristic footprints left

by video processing operations, such as the temporal correlation be-

tween encoded frames [4, 5]. However, these algorithms can be cir-

cumvented by hiding or removing such footprints. A well-known

method to achieve this goal is to recapture the tampered video or im-

age from a monitor [6]: in doing so, the sensitive numerical details

relative to the coding and processing steps are irretrievably scram-

bled, and detectors relying on these footprints may fail and classify

such tampered data as authentic.
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The possibility of distinguishing between original and recap-

tured sequences is then of great help for a forensic analyst: a positive

recapture test for a video sequence is a strong indicator of tampering

activity having taken place. To this end, several methods have been

proposed in the literature. An image recapture detector is described

in [7], where the authors are able to automatically identify the de-

vices used for first and second capture when sharp edges are present

in the image. A detector of screenshots from interlaced videos is

presented in [8]. In [9], the authors detect video recapture exploit-

ing the Photo Response Non-Uniformity (PRNU). In [10], projected

videos recaptured with a camera placed off-axis with respect to the

screen are identified by detecting inconsistencies in the camera in-

trinsic parameters. In [11], the authors show how to detect whether a

sequence has been recaptured by analyzing the high-frequency jitter

introduced by, e.g., a handheld camcorder.

In this paper, we propose a novel video recapturing technique

targeting the more difficult scenario of a video displayed on a Liq-

uid Crystal Display (LCD) monitor and recaptured by a camcorder

perfectly aligned with the monitor and kept fixed on a tripod. In or-

der to detect whether a sequence has been recaptured, we exploit a

characteristic ghosting artifact that is generated as a consequence of

the lack of synchronization between the camera and the monitor. To

the best of the authors’ knowledge, this is the first work analytically

describing the generative process behind ghosting artifacts, and to

exploit them for automatic video recapture detection. The robust-

ness of the proposed method is tested on a dataset of original and

recaptured sequences.

The rest of the paper is organized as follows. In Section 2,

the mathematical model of the recapture process and its relation to

ghosting artifacts are characterized. In Section 3, our detection al-

gorithm is presented. The evaluation results of the algorithm are

presented in Section 4, while in Section 5 we draw our conclusions

and discuss potential future avenues of research.

2. MODEL

In order to develop a recapture detector, we first analyze the recap-

ture process, highlighting the configurations of practical importance.

Focusing on these configurations, we mathematically characterize

the generative process behind the ghosting artifacts, which consti-

tutes the theoretical foundation of our proposed detector.

2.1. Recapture Model

Let us consider the recapturing setup depicted in Figure 1. An orig-

inal video sequence X = {Xi}, i = 1, ..., I , with a nominal frame

rate of FS = 1/TS is displayed on an LCD monitor with a refresh
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Fig. 1: Recapturing model showing frames Xi on a monitor (top) and recap-
tured frames Yj (bottom). TS is the nominal original frame length, which is
multiple of the screen refresh time TL, TI is the integration time, TC is the
recaptured frame length, and φ is the phase term.

rate of FL = 1/TL. The sequence is recaptured with a camcorder to

obtain Y = {Yj}, j = 1, ..., J , with a frame rate of FC = 1/TC .

Each frame Yj is obtained by integrating the light that hits the cam-

era sensor over a time window TI . Since the monitor and the camera

are not synchronized, the start of the recapturing process is delayed

by a phase term φ.

In order to fully understand the practical implications of our

problem formulation, let us consider inner workings of the moni-

tor and camera system. First of all, based on current technologies

it is possible to approximate the functional behavior of an LCD dis-

play as a system in which all the pixels are simultaneously refreshed

at intervals of TL, with negligible switching time for our purposes.

Because of this, no evident recapture footprints such as Cathode Ray

Tube scan-line artifacts are generated at refresh time. Moreover, in

order to display the video at the correct frame-rate, the condition FL

(mod FS) = 0 must in principle be verified. Indeed, the length

of a displayed video frame TS should match a multiple of the re-

fresh time TL. When this condition is not verified, the displayed

sequence must be edited using either frame-interpolation or frame-

repetition. Both techniques however alter the temporal correlation of

the sequence introducing detectable artifacts. Detecting recapturing

when FL (mod FS) = 0 is then more difficult, since there are no

additional artifacts to rely on.

Regarding the camera integration window TI , this can in princi-

ple be set arbitrarily. However, some general practical rules have to

be observed: if TI is too high, moving objects within the scene may

be affected by motion blur; if TI is too low, the resulting video will

appear less smooth and also noisy, since the equivalent ISO setting

of the sensor needs to be increased to capture enough light. Since

low-end cameras typically do not allow the user to set this parame-

ter, a general rule of thumb is that TI = TC/2. However, the value

of TI does not negatively affect the validity of our model or the per-

formance of our detector.

Bearing this in mind, the j-th camcorder frame Yj depends on

what is displayed on the LCD during the integration window TI .

More specifically, we can distinguish two cases:

1. If the integration window falls either completely within the

bounds of the i-th frame or between two frames of the original

sequence, which are identical because of frame repetition (i.e,

between Xi and Xi+1 = Xi), then Yj = Xi.

2. If the integration window covers the transition between two

frames Xi and Xi+1, then Yj is a weighted average between

the two displayed frames. In particular, if within TI the frame

Xi is kept for a time T 0
I , and the frame Xi+1 is kept for T 1

I ,

such that TI = T 0
I + T 1

I , the resulting camera frame can be

expressed as Yj = αXi+(1−α)Xi+1, where α = T 0
I /TI ∈

(0 : 1). In this case, a ghosting artifact is present on Yj (as

shown in Figure 3b).

Depending on the relative magnitude of the parameters FS and

FC , the ghosting artifact may affect the recaptured sequence dif-

ferently, as shown in Figure 2. We will now show how all cases

are either of no practical relevance or can be easily solved, relying

on previously proposed methods, with the exception of the scenario

where FC = FS .

If FC ≪ FS (Figure 2a), the recaptured sequence consists

solely of heavily ghosted frames, and some frames from the original

sequence are skipped. In this scenario, Y is too distorted to be

used as a copy of X by a malicious user. Conversely, in order to

have FC ≫ FS (Figure 2b), the used camera should be either a

high-end, high-speed camera, or the video sequence should have a

very low frame-rate, which are unlikely conditions. Moreover, such

a recaptured sequence would consist of many consecutive repeated

frames. If FC ≃ FS (Figures 2c and 2d), Y consists of a mixture

of ghosted frames and original frames. The occurrence of ghosted

frames forms a pattern, with a period depending on the relationship

between FS and FC . Since ghosted frames are interpolated versions

of original frames, and this interpolation appears periodically in the

sequence, these sequences can be detected using an interpolation

detector such as the one proposed in [12].

The only case of practical importance without a known solution

is therefore when FC = FS . In this study, we propose a method that

focuses on this challenging scenario. Indeed, depending on the time

delay φ, the time window TI may fall either within a single frame

window Xi (Figure 2e) or between two consecutive frames Xi and

Xi+1 (Figure 2f). In the first case, we obtain Y = X, which is

the only situation in which nothing can be detected. In the second

scenario, the ghosting artifact is present on all recaptured frames

with the same magnitude, without any non-ghosted frames perfectly

recaptured from the input signal being available.

2.2. Ghosting Artifact Model

The presence of the ghosting artifact is the footprint we use to de-

tect recapturing. In order to exploit it, we model the artifact as the

outcome of a filtering operation. Let us define a mapping between

the indexes i and j of original and recaptured frames respectively,

such that i = j and Yi = αXi + (1 − α)Xi+1, where α repre-

sents the relative proportion of Xi within the integration window TI .

This is possible since we only consider the case FC = FS . Let us

then consider the k-th object in Xi (e.g., the rectangle in Figure 3a)

whose position moves according to the motion of a characteristic

point pk
i = (mk

i , n
k
i ). If the object moves in time such that it ap-

pears in pk
i+1 = (mk

i+1, n
k
i+1) in Xi+1 we can compute the motion

vector vk
i = pk

i+1 − pk
i . If we capture the screen during the tran-

sition between Xi and Xi+1, in the recaptured frame Yi we observe

a ghosted version of the object (e.g., the ghosted rectangle in Fig-

ure 3b). Indeed, we are averaging two pictures of the same object at

two different positions related by the motion vector vk
i . If the motion

can be locally approximated by a translation (e.g., small motion with

respect to FC ), and we consider a patch P k
i in the neighborhood of

pk
i , the same ghosted patch can be obtained by convolution as

P̂ k
i = P k

i ∗Hk
i (α), (1)

where Hk
i (α) is a two-dimensional filter composed by two Dirac

pulses: the first pulse of magnitude α in the origin of the filter (i.e,

(0, 0)) takes into account the contribution of the patch centered in

pk
i ; the second one of magnitude (1− α) is located at vk

i , and takes

into account the contribution of the patch in pk
i+1. Figure 3c shows

the result of the convolution P k
i ∗Hk

i (α).
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Fig. 2: Different recapturing cases. In each figure the top row (blue) represents frames on the monitor, and the bottom row (red) frames after recapturing.
Numbers show the relation between original and recaptured frames.

(a) original (b) recaptured (c) synthesized

Fig. 3: Close-up view of a patch P k
i in an original frame Xi (a), in the

recaptured frame αXi+(1−α)Xi+1 (b), and its synthesized version P̂ k
i =

P k
i ∗Hk

i (α) (c).
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Fig. 4: |E(ω)| for three different sequences in the original case (a), recap-
tured case with (FC , FS) = (25, 25) (b), recaptured case with (FC , FS) =
(30, 25) (c), and recaptured case with (FC , FS) = (25, 30) (d). Peaks at
high-frequencies in the last two cases means that a detector for periodic arti-
facts can be applied.

3. DETECTOR

Our detector targets the case FC = FS . For this reason we first

need to remove the sequences affected by periodic ghosting (i.e.,

recaptured with FC ≃ FS) from the dataset. This can be done using

the video interpolation detector proposed in [12]: first we build an

estimate Ỹ of the sequence Y computing its frames as Ỹi = (Yi−1+
Yi+1)/2, then we compute the frame-wise error ei summing over

every pixel of |Yi − Ỹi|
2, and analyze the periodicity of this error.

Figure 4 shows that in the Fourier transform E(ω) = F(ei) peaks

are present on three test sequences synthetically recaptured using

both (FC , FS) = (25, 30) and (FC , FS) = (30, 25), while they

do not show up in the original sequences and in the recaptured ones

using (FC , FS) = (25, 25).

Assuming that sequences with periodic ghosting have been de-

tected, we can run the detector for the most unfavorable scenario

(i.e., FC = FS and ghosting artifact not periodic). Our algorithm

aims to blindly estimate the presence of ghosting due to frame in-

terpolation. This kind of ghosting in the neighborhood of a patch

P̂ k
i can be described by a convolution of a clean patch P k

i (i.e, with

no ghosting) with the ghosting filter as described in the previous

section. Since the shape of this filter (i.e., the position of the delta

pulses) only depends on the motion between adjacent frames, the

method consists in testing the hypothesis that ghosting is present in

P̂ k
i . This can be done by: i) estimating Hk

i (α) from motion vectors

for each key-point; ii) exploring the search space α ∈ (0, 1) to verify

that such a filter can really have generated the artifact in P̂ k
i .

The first step consists in estimating the motion vectors. For each

frame Yi a set of key-points is extracted using the method described

in [13]. This method works with a multi-scale approach and returns

information about the cornerness and the degree of anisotropism of

every key-point. Using these values we select only the key-points

that are well approximated by right angle corners. For each one, we

select a patch P̂ k
i and search for the matching patch in Yi+1 to com-

pute the motion vector vk
i . From this motion vector we estimate the

shape of the filter Hk
i (α) associated to the possible ghosting artifact

in P̂ k
i .

The second step consists in verifying if P̂ k
i is actually affected

by ghosting. To do that we select the corner in a set of templates T ,

that best matches each patch as

T k
i = argmax

T

(corr(P̂ k
i , T )), T ∈ T , (2)

where the set T is composed of binary patches representing right

angle corners with different rotations, and corr(· , · ) represents nor-

malized cross-correlation. Notice that the use of a template is nec-

essary because we do not have any information about the original

sequence X and the related patches not affected by ghosting.

The next step consists in evaluating whether there is a value of

α such that P̂ k
i can be approximated by a template corner T k

i with

a ghosting artifact caused by the convolution with Hk
i (α). For this

purpose we compute a P̂ k
i approximation as

P
k

i (α, β) = T k
i ∗Hk

i (α) ∗B
k
i (β), (3)

where the operator ∗ indicates convolution, Bk
i (β) is a 2D oriented

filter that introduces a motion blur of length β in the direction

pointed by vk
i with β ∈ (0, |vk

i |], and α ∈ [0, 1]. The blur is

applied because corners in the original video X may suffer from a

slight motion blur effect, while the templates that we test are perfect

corners. A 2D cost function for each patch is evaluated as

Jk
i (α, β) = max

(

corr
(

P̂ k
i , P

k

i (α, β)
))

. (4)



For these patches we search for the α and β values that maximize

the cost function

(α̂k
i , β̂

k
i ) = argmax

α,β

Jk
i (α, β). (5)

If α̂k
i = 0 or α̂k

i = 1, Hk
i (α) consists of only one pulse (i.e., the

other one is set to zero). This means that no ghosting affects the

patch. On the other hand, if α̂k
i assumes any other value, we can

assume that ghosting is present.

In order to detect ghosting we define

N i
0 =

∣

∣

∣

{

P̂ k
i : Jk

i (α̂
k
i , β̂

k
i ) > th ∧ (α̂k

i = 1 ∨ α̂k
i = 0)

}∣

∣

∣
,

N i
1 =

∣

∣

∣

{

P̂ k
i : Jk

i (α̂
k
i , β̂

k
i ) > th ∧ (α̂k

i 6= 1 ∧ α̂k
i 6= 0)

}∣

∣

∣
,

(6)

which represent the number of features in a frame Yi whose Jk
i val-

ues are greater than the threshold th (i.e., that are well approximated

by the filtered template), and that indicates the absence (N i
0) or the

presence (N i
1) of ghosting. The threshold is selected as a percentage

of the maximum achievable value of Jk
i (i.e., the maximum value

of the auto-correlation of P̂ k
i ). Each frame is marked as ghosted if

N i
1 ≥ N i

0. Since ghosting depends on the motion of the sequence, it

may happen that a recaptured sequence does not show a perceivable

ghosting on all its frames. For this reason the ratio N between the

number of ghosted frames over a windows of W frames is computed

as

N =
|{i : N i

1 ≥ N i
0}|

W
. (7)

The final decision is then taken by thresholding the value N with

the threshold N , such that the sequence is considered recaptured if

N ≥ N .

4. RESULTS

In order to test the proposed method, we prepared a dataset of orig-

inal and recaptured sequences1 (Figure 5). The dataset is composed

of 18 sequences (9 original, 9 recaptured) with resolution 960× 540
shot at FS = 25 Frames Per Second (FPS). The recaptured se-

quences have been generated by displaying the original ones on a

LCD monitor running at FL = 75 Hz, and recapturing them at

FC = 25 FPS using a φ value that ensures the presence of ghosting

and TI = 1/50 seconds (i.e., case depicted in Figure 2f). Recap-

tured sequences have been downsized to a resolution of 960 × 540
pixels to match the original sequences.

The detector has been tested on all these sequences using W =
30. This is done to ensure the presence of frames affected by ghost-

ing due to motion. The value N has been computed for each se-

quence. In order to compute the threshold used on N for recapturing

detection, we performed a cross-validation analysis. This is done

by using 16 sequences (8 sequences in both original and recaptured

versions) as training set, and the remaining 2 sequences (1 origi-

nal sequence and its recaptured version) as test set. This procedure

is cycled over all the possible 9 configurations. In each case, the

threshold has been computed as

N =
µorig + µrec

2
, (8)

where µorig is the average N for original sequences, and µrec is the

average N for recaptured ones. Table 1 shows the values of µorig,

1Preview available at: https://www.youtube.com/watch?v=1E2-8Dtu648.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: Sample frames from the original tested sequences.

µtrain
orig µtrain

rec σtrain
orig σtrain

rec N Acc.

max 0.18 0.81 0.14 0.26 0.49 0.94

min 0.17 0.77 0.14 0.25 0.47 0.89

mean 0.17 0.78 0.13 0.24 0.48 0.91

Table 1: Mean and standard deviation of N values of original and recap-
tured sequences in training set. The selected threshold N and the achieved
accuracy are also shown. All the parameters are shown in three cases: i) max-
imum accuracy achieved (top row); ii) minimum accuracy achieved (middle
row); average value among all the cases (bottom row).

µrec, the standard deviations σorig and σrec, the threshold N , and

accuracy values for three cases: i) the one with the maximum accu-

racy; ii) that with minimum accuracy; iii) and the average between

all the 9 test cases. Notice that even in the worst case (i.e., that with

minimum accuracy), the values µ of both recaptured and original

classes indicates that recaptured sequences has an average of almost

80% of frames detected as recaptured, while original sequences has

more or less only the 20%. Moreover, the threshold N is almost

always set near 50%, which means that a sequence is classified as

recaptured if ghosting is detected on the majority of frames.

5. CONCLUSIONS

In this paper we characterized the video recapture process and devel-

oped a detector for a case that is still not addressed in the literature.

The detector is based on the analysis of characteristic ghosting arti-

facts left during the recapturing process. In particular, since ghosting

can be modeled as the effect of a filtering operation, our novel ap-

proach exploits the motion between frames to retrieve information

about the ghosting filter (i.e., the shape), and verifies if such a fil-

ter may have been used on the frames. If the answer is positive,

the frames are considered recaptured. The detector is validated on a

dataset of original and recaptured sequences, achieving a high level

of accuracy.

This method contributes theoretically and algorithmically to the

widening panorama of digital forensics. Further analysis could be

devoted to the exact quantification of the phase shift between camera

and monitor. Another interesting direction is the multimodal analy-

sis of video and audio streams to further increase the detector robust-

ness.

https://www.youtube.com/watch?v=1E2-8Dtu648
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