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ABSTRACT

The analysis of chains of double transform coders has been recently
addressed in the image forensic literature, especially for the case of
double JPEG compression. In that case, the transform is assumed to
be known a priori (e.g., 2D-DCT), whereas the quantization steps of
the first coder need to be determined. In this work, we generalize
the analysis to the challenging case in which nothing is known about
the first coder, but that the transform is orthonormal. Given a set of
vectors observed as output of a chain of two transform coders, we
identify both the transform and the quantizer of the first. The key
idea is to denoise the observed vectors exploiting the constraints im-
posed by the first quantizer and then apply our previously proposed
method, which successfully performs transform identification in the
case of noiseless observations. Experiments on real images validate
the proposed approach.

Index Terms— Transform coding, double compression.

1. INTRODUCTION

Transform coding plays a central role in all multimedia commu-
nication standards. Hence, the footprints left by transform coding
have been successfully exploited in the field of multimedia forensics
to reveal, e.g., evidence of tampering [1][2] and resampling [3][4].
Most of the literature focused on single [5][6], double [2], and mul-
tiple [7] JPEG image compression, whereas just a few works address
the case of video signals, for MPEG-2 [8][9], MPEG-4 [10][11] and
H.264/AVC [12], or for the identification of the motion estimation
algorithm [13] and the video coding standard [14]. For a survey,
see [15] and the references therein. In all these works, the adopted
transform is assumed to be known, in terms of both type (e.g., sep-
arable 2D-DCT) and size (e.g., 8 × 8). This simplifies the problem
considerably, since the analyst need only to estimate the quantization
matrix and, possibly, the shift and/or the resampling factor.

Although earlier standards (e.g., JPEG, MPEG-2 and MPEG-
4) adopted the Discrete Cosine Transform (DCT) on 8 × 8 blocks,
more recent coding architectures are more diversified in terms of
both the type of transform being used and the block size. For ex-
ample, H.264/AVC adopts an integer arithmetic approximation of
the DCT transform on either 4 × 4 or 8 × 8 blocks [16]. The re-
cent HEVC standard under development goes even further, support-
ing four different transform block sizes in the range from 4 × 4 to
32× 32 [17]. In addition, the adoption of hybrid transforms, which
can be obtained by means of a separable combination of DCT and
DST (Discrete Sine Transform) is being investigated in [18]. All this
indicates that the identification of the actual transform being used
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might give important clues about the processing history of a digital
signal.

Most of the methods appeared in the multimedia forensics liter-
ature [15] focus only on a specific type of multimedia signal (e.g.,
only images or only videos) and are to some extent heuristic. It
is therefore natural to try and develop a universal theory of trans-
form coder identification that is independent of the specific appli-
cation at hand. In our previous work [19][20], we considered the
problem of identifying a transform coder when observing its output,
by exploiting the footprints left by quantization and leveraging lat-
tice theory notions. However, in many realistic cases, the output is
processed further, as in the case of double compression, so that the
method in [20] cannot be directly applied. To the best of the au-
thors’ knowledge only [21] addresses a related problem, proposing
a method to reveal the color compression history, i.e., the colorspace
used in JPEG compression. However, the solution proposed in [21]
is tailored to work in a 3-dimensional vector space, thus avoiding the
challenges that arise in higher dimensional spaces. In parallel to our
contribution, a refined version of [21] was proposed in [22] based on
the notion of dual lattice.

In this paper we consider a general model that entails a process-
ing chain of two transform coders, which can describe a large vari-
ety of practical implementations that are found in lossy coding sys-
tems, including those adopted in multimedia communication. In [23]
we studied the effect of the above coding chain for the case of a
2-dimensional transform, in order to determine the analytical con-
ditions under which it is possible to navigate back up the signal’s
history to the first coding stage and determine the first encoder’s ex-
act transform parameters. Instead, in this work we address the more
challenging case of N -dimensional transforms, with N ≥ 2. Our
main contribution is a method that is able to identify the parame-
ters used by the first transform coder (i.e., the adopted transform and
quantizer), when observing the output of the second transform coder,
thus generalizing the work in [20].

Section 2 introduces the problem more formally. The proposed
algorithm for transform identification is illustrated in Section 3 and
validated on real images in Section 4. Section 5 concludes the paper.

2. PROBLEM STATEMENT

Let x denote a N -dimensional vector and W a transform matrix,
whose rows represent the transform basis functions. Transform cod-
ing is performed by applying scalar quantization to the transform
coefficients y = Wx. Let Qi(·) denote the quantizer associ-
ated to the i-th transform coefficient. We assume that Qi(·) is a
scalar uniform quantizer with step size ∆i, i = 1, . . . , N . There-
fore, the reconstructed quantized coefficients can be written as
ỹ = [ỹ1, ỹ2, . . . , ỹN ]T , with ỹi = Qi(yi) = ∆i · round[yi/∆i],
i = 1, . . . , N . The reconstructed block in the original domain is
given by x̃ = W−1ỹ.
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Fig. 1. Block diagram of a chain of two transform coders.

We consider the case in which an input signal is encoded by par-
titioning it into non-overlapping N -dimensional vectors, which are
then processed as illustrated in Figure 1, by cascading two trans-
form coders characterized, respectively, by the transform matrices
Wa and Wb and quantizers Qa,i(·), Qb,i(·), i = 1, . . . , N . We
assume that both transform coders work on vectors having the same
size N , and that the signal is not shifted or resampled in between
the two transforms. Let {ũ1, . . . , ũP } denote a set of P observed
N -dimensional vectors, which are the output of the second trans-
form coder. We assume that the second transform coder is com-
pletely known. Indeed, whenever this is not the case, it can be iden-
tified with the method previously proposed in [20]. Therefore, with-
out loss of generality, we will consider the set of observed vectors
{z̃1, . . . , z̃P }, such that z̃j = Wbũj .

Due to quantization, the observed vectors {z̃1, . . . , z̃P } are
constrained to belong to a lattice Lz described by the basis Bz =
diag(∆b,1, . . . ,∆b,N ). Similarly, the unobserved transform co-
efficients {ỹ1, . . . , ỹP } of the first coder belong to a lattice Ly

described by the basis By = diag(∆a,1, . . . ,∆a,N ). Hence, the
unobserved vectors {x̃1, . . . , x̃P } ∈ Lx with basis Bx = W−1

a By .
In this paper we study the problem of determining Bx from a

finite set of P ≥ N distinct vectors {z̃1, . . . , z̃P }. That is, we seek
to determine the parameters of the first transform coder in a chain of
two transform coders, when we observe the output of the second one.
This is a much more challenging problem than the one addressed
in [20], since the observed vectors do not lie on the lattice Bx. As a
consequence, a direct application of the method in [20] to the set of
vectors {z̃1, . . . , z̃P } would identify Wb rather than Wa.

In this paper, we show how to solve the problem in the case
the transform matrices are orthonormal, i.e., WT

a Wa = I and
WT

b Wb = I. For the sake of simplifying the notation, we assume
that the same step size is used to quantize the transform coefficients,
i.e., ∆a,i = ∆a and ∆b,i = ∆b, i = 1, . . . , N . However, this
condition can be relaxed.

3. AN ALGORITHM FOR TRANSFORM IDENTIFICATION

The key idea of the proposed method is to denoise the observed vec-
tors before applying our previously proposed algorithm in [20]. To
this end, we proceed according to the following steps:

1. We denoise a subset of the observed vectors {z̃1, . . . , z̃P } in
such a way that the resulting D ≤ P vectors {ẑl1 , . . . , ẑlD}
lie exactly on a lattice whose basis can be expressed as Bẑ =
RWbBx. The orthonormal matrix R represents the ambigu-
ity introduced by the denoising procedure.

2. We compute an estimate R̂ of R by formulating an orthog-
onal Procrustes problem, which seeks the best matching be-
tween the set of denoised vectors {ẑl1 , . . . , ẑlD} and the ob-
served ones {z̃l1 , . . . , z̃lD}.

3. We adopt our previously proposed method in [20] to the vec-
tors {x̂l1 , . . . , x̂lD}, x̂j = W−1

b R̂−1ẑlj , j = 1, . . . , D, to
obtain an estimate B̂x of Bx.

3.1. Exact recovery of vector distances

The denoising operation indicated in Step 1 exploits the orthogo-
nality of the transform Wa to determine the quantization step size
∆a and, consequently, to recover inter-vector distances exactly. In-
deed, it is possible to express a constraint on the lengths δ̃j of the
unobserved vectors {x̃1, . . . , x̃P } as well as on the lengths δ̃j1,j2 of
vector differences. That is,

δ̃2
j = ‖x̃j‖2 = aj∆

2
a, aj ∈ N, j = 1, . . . , P, (1)

δ̃2
j1,j2 = ‖x̃j1−x̃j2‖

2 = aj1,j2∆2
a, aj1,j2 ∈ N, j1, j2 = 1, . . . , P.

(2)
In practice, both aj and aj1,j2 belong to the subset of integer num-
bers corresponding to those that can be written as the sum of (up to)
N squares. However, when N ≥ 4, this subset coincides with the
set of integer numbers, as proven by Lagrange’s four square theo-
rem [24].

In order to determine ∆a, which is unknown, we first note that
‖x̃i‖ = ‖zi‖, i = 1, . . . , P , since Wb is orthonormal. There-
fore, ∆a is the square root of the greatest common divisor of
{‖z1‖2, . . . , ‖zP ‖2}. However, we have no access to zi’s, but only
to their quantized versions z̃i. The second quantization can be seen
as a form of noise. Hence, we estimate ∆a by using the algorithm
in [25], which is a generalized Euclid’s algorithm for noisy mea-
surements. Given ∆a, to recover vector distances, we first note
that

|ρ̃j − δ̃j | = |‖z̃j‖2 − ‖x̃j‖2| ≤
1

2

√
N∆b . (3)

The quantization error on the length of a vector can be as large as
half of the diagonal of the quantization cell of the second quantizer.
In case of lengths of vector differences |ρ̃j1,j2 − δ̃j1,j2 |, the error
can be twice as that, since both vectors are quantized.

If the quantization error induced by the second quantizer is suf-
ficiently small, it is possible to recover the exact values of δ̃j and
δ̃j1,j2 from the observed vectors. Indeed, we exploit the fact that δ̃2

j

is a multiple of ∆a (a similar argument holds for δ̃2
j1,j2 ). To this end,

we compute an estimate δ̂j of δ̃j as follows:

δ̂j =
√
Q∆2

a
(ρ̃2

j ) . (4)

Note that any value of ρ̃j in the interval [lj , uj ]:[√
δ̃2
j −

∆2
a

2
,

√
δ̃2
j +

∆2
a

2

]
(5)

is quantized to δ̃j . Hence, if |ρ̃j − δ̃j | < min{uj − δ̃j , δ̃j − lj} =

uj − δ̃j , it is possible to guarantee that δ̂j = δ̃j .
Figure 2 illustrates an example in which two N -dimensional

(unobserved) vectors {x̃1, x̃2} are processed by a second transform
coder. The coordinate axes are aligned with the basis functions of
the known transform Wb. Hence, we display {z̃1, z̃2}. Figure 3
shows that the corresponding vector lengths, i.e., ρ̃1 and ρ̃2, and the
distance between vectors, i.e., ρ̃1,2, can be effectively denoised so
that δ̃1, δ̃2 and ρ̃1,2 can be recovered exactly.

We conclude that δ̂j = δ̃j whenever the following sufficient
condition is satisfied

1

2

√
N∆2

b < uj − δ̃j =

√
δ̃2
j +

∆2
a

2
− δ̃j = τ(δ̃j ; ∆a). (6)
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ẑ1

ẑ2
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Fig. 2. A toy example with two unobserved vectors {x̃1, x̃2} and the corresponding observed vectors {z̃1, z̃2}, in the coordinate system of
the known transform Wb.

3.2. From distances to transform basis functions

Given the denoised values of vector lengths and inter-vector dis-
tances, it is possible to write the following set of constraints in the
unknown vectors {ẑ1, . . . , ẑP }

‖ẑj‖2 =
√
Q∆2

a
(ρ̃2

j ) = δ̃j j ∈ O, (7)

‖ẑj1 − ẑj2‖2 =
√
Q∆2

a
(ρ̃2

j1,j2
) = δ̃j1,j2 (j1, j2) ∈ D, (8)

where O denotes the set of indexes of the vectors whose length can
be recovered exactly, i.e., those that satisfy (6). D is similarly de-
fined, denoting the set of indexes of pairs of vectors whose distance
can be recovered exactly.

Consider a subset of the unknown vectors {ẑl1 , . . . , ẑlD} for
which the distances from the origin are known, i.e., lj ∈ O, and the
distances between all pairs are also known, i.e., (lj1 , lj2) ∈ D. If
D ≥ N , the position of the vectors can be determined exactly, apart
from an ambiguity that can be represented by means of an arbitrary
orthonormal transform, which accounts for the rotation around the
origin and mirroring with respect to the coordinate axes. Therefore,
we proceed in two steps. First, we seek an arbitrary feasible solution
{ẑ1, . . . , ẑP } of (7). It can be shown that a feasible solution can be
found by setting ẑl1 = [δ̃l1 , 0, . . . , 0]T . Then, remaining vectors are
iteratively estimated, by setting ẑlj = [ẑlj ,1, ẑlj ,2, . . . , ẑlj ,j ,0

T ]T ,
j = 2, . . . , N , and finding a solution in a j-dimensional subspace,
which can be shown to be formulated as the intersection of a line
with a hypersphere centered in the origin and radius δ̃j . Details are
omitted due to space limitations. Figure 2(b) illustrates a feasible so-
lution corresponding to the toy example in Figure 2(a). The solution
is not unique. However, for the problem at hand, it suffices to select
arbitrarily a feasible solution.

The resulting vectors {ẑl1 , . . . , ẑlD} lie exactly on a lattice
whose basis can be expressed as Bẑ = RWbBx. The orthonor-
mal matrix R represents the ambiguity introduced by the arbitrary
choice of the reference system, as well as the arbitrary choice when
selecting the feasible solution. In order to solve such ambiguity,
we seek an estimate R̂ of the matrix R by matching the posi-
tions of the vectors {ẑl1 , . . . , ẑlD} to those of the observed vectors
{z̃l1 , . . . , z̃lD}. This can be formulated as the following orthogonal
Procrustes problem

R̂ = arg min
R
‖RẐ− Z̃‖F

s.t. RTR = I (9)

0 1 2 3 4 5 6 7 8 9 10
δ̃2 [×∆2

1]

ρ̃2 →

ρ̃1 →
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a]

Fig. 3. Square distance values δ̃2 are constrained to be integer mul-
tiples of ∆2

a. On the y-axis, it is illustrated the corresponding quan-
tizer applied to denoise observed distances ρ̃.

where Ẑ = [ẑl1 , . . . , ẑlD ] and Z̃ = [z̃l1 , . . . , z̃lD ] and ‖·‖F denotes
the Frobenius norm.

Finally, we obtain an estimate of the unobserved vectors as x̂j =

W−1
b R̂−1ẑlj , j = 1, . . . , D. The set of vectors {x̂l1 , . . . , x̂lD} is

guaranteed to lie on a lattice B̂x, which represents an estimate of
the lattice induced by the first transform coder Bx. In our previ-
ous work [20] we showed that it is possible to recover B̂x with high
probability, provided that the number of observed vectors exceeds
the dimensionality of the space, that is, D ≥ N + n. Experimen-
tally, we found that an excess of n = 6 vectors is sufficient for the
algorithm in [20] to converge to the correct lattice defined by B̂x,
rather than to one of its sub-lattices. The basis functions (row vec-
tors) of the transform Wa can be obtained as ŵa,i = b̂x,i/‖b̂x,i‖,
exploiting the orthonormality of the transform.

3.3. Iterative estimation

Given a set of P observed vectors {z̃1, . . . , z̃P }, the numberD ≤ P
of vectors that can be effectively denoised depends on different fac-
tors: i) the statistical distribution of the source from which the origi-
nal vectors {x1, . . . ,xP } are sampled; ii) the quantization step sizes
used in the first and second transform coder. A careful analysis of
the bound in equation (6) reveals that it is easier to denoise vectors
whose length (expressed in ∆a units) is short, and when ∆b � ∆a.
In addition, when the dimensionality N increases: i) the average
length of vectors increases; ii) the bound in (6) is more stringent,
thus enabling to denoise shorter vectors. Therefore, in some cases,
it might not be possible to denoise at least N + n vectors at once,
since the sufficient condition in (6) may not be satisfied for a large
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Fig. 4. Number of denoised vectors D.

enough number of vectors. Hence, we propose to modify the algo-
rithm in such a way that the solution is sought incrementally. The
key idea is to start from the largest set of D(0) short vectors that can
be efficiently denoised. These are used to estimate a subset of the
basis functions of Wa, i.e., Ŵ(0)

a ∈ RM(0)×N , where M (0) is the
dimensionality of the span of the denoised vectors. Then, the re-
maining vectors are projected in the null-space of (Ŵ

(0)
a )T , and the

denosing procedure is applied to the result. The iterative procedure
terminates when eitherM (k) = N , or when all vectors are denoised.

4. EXPERIMENTS

We carried out experiments on synthetic data sampled from a N -
dimensional i.i.d. Gaussian distribution with variance equal to σ2

x.
This represents the most challenging scenario in our setting, since
the isotropic property of the source distribution does not provide
any information about the transform being used. For a fixed di-
mensionality N = 16, we sampled P > N vectors and fed them
into the processing chain depicted in Figure 1. We varied the signal-
to-noise (SNR) ratio due to the quantization of the first quantizer,
SNR ' 10 log10 σ

2
x/(∆

2
a/12), as well as the ratio between the

quantization step sizes of the first and second transform coder. The
goal of the experiment is to evaluate in which conditions it is possi-
ble to denoise a sufficient number of input vectors. Figure 4 illus-
trates the number D of vectors which are effectively denoised, when
P = 40 vectors were observed. It is possible to notice a “cliff” ef-
fect, such that the configurations in the top-right part of the figure
correspond to cases in which the proposed algorithm is able to find
a solution, since D ≥ N + n. When varying N , we observed that,
for a given value of SNR, a smaller value of ∆b is required when
N increases.

We also tested the proposed method on real images. In this case,
we considered the 1338 images from the UCID dataset. Each image
was compressed with a JPEG-like transform coder. That is, the DCT
transform was applied to non-overlapping 8 × 8 blocks (N = 64).
Transform coefficients were quantized with a step size in the set
∆a ∈ {20, 30, 40, 50, 60}. Then, the inverse transform is applied
to each block, and the result is rounded to the nearest integer in the
pixel-domain. Thus, Wb = I and ∆b = 1. In this case, it was pos-
sible to successfully recover the transform by adopting the iterative
version of the algorithm illustrated at the end of Section 3, although
it was not possible to find at least D > 64 vectors that could be
denoised at once. Figure 5 shows for each basis function wa,j as-
sociated to one of the DCT coefficients, the quantity E[ŵT

a,jwa,j ],
which indicates the average cosine of the angle between true and
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Fig. 5. Estimation accuracy.

estimated basis functions. We observe that when the PSNR is less
than 30dB, all basis functions can be estimated with very high ac-
curacy. At higher values of the PSNR, the error increases as more
basis functions are estimated. This is due to the fact that, at each it-
eration, we project in the null-space of the estimated basis functions
(Ŵ

(k)
a )T . Hence, the noise in the observed data is due not only to

quantization, but also to the non-ideal projection. We also repeated
the experiment using a content-dependent KLT transform, estimated
independently for each image. The results obtained are very similar
to those reported in Figure 5.

5. CONCLUSIONS

In this paper we have studied the challenging problem of estimating
both the transform and the quantizer of the first transform coder in
a chain of two transform coders. We have shown for the first time
that, under specific conditions, the effect of the second transform
coder can be removed, so that the problem can be addressed using
the algorithm in [20]. Then, we presented an iterative method that
successfully solves the problem even when the conditions are not
entirely satisfied. Preliminary results on real data show the potential
of this new approach also in vector spaces of large dimension.
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