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Abstract

To understand a real-world scene from several multiview pictures, it is necessary to find

the disparities existing between each pair of images so that they are correctly related to one

another. This process, called image registration, requires the extraction of some specific

information about the scene. This is achieved by taking features out of the acquired

images. Thus, the quality of the registration depends largely on the accuracy of the

extracted features.

Feature extraction can be formulated as a sampling problem for which perfect re-

construction of the desired features is wanted. The recent sampling theory for signals with

finite rate of innovation (FRI) and the B-spline theory offer an appropriate new frame-

work for the extraction of features in real images. This thesis first focuses on extending the

sampling theory for FRI signals to a multichannel case and then presents exact sampling

results for two different types of image features used for registration: moments and edges.

In the first part, it is shown that the geometric moments of an observed scene can

be retrieved exactly from sampled images and used as global features for registration. The

second part describes how edges can also be retrieved perfectly from sampled images for

registration purposes. The proposed feature extraction schemes therefore allow in theory

the exact registration of images. Indeed, various simulations show that the proposed

extraction/registration methods overcome traditional ones, especially at low-resolution.

These characteristics make such feature extraction techniques very appropriate for

applications like image super-resolution for which a very precise registration is needed. The

quality of the super-resolved images obtained using the proposed feature extraction meth-

ods is improved by comparison with other approaches. Finally, the notion of polyphase

components is used to adapt the image acquisition model to the characteristics of real

digital cameras in order to run super-resolution experiments on real images.
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Chapter 1

Introduction

1.1 Background

O
VER the last ten years, digital image acquisition devices have outnumbered tradi-

tional film cameras and have made inroads across many sectors of society. This

recent shift in the way images are acquired has led to a large increase in the use of images

in new areas and in the demand for new applications. Consumers have access to a variety

of digital image acquisition devices ranging from web-cams and mobile phones to expensive

digital single lens reflex (SLR) cameras (Figure 1.1(a)). Depending on their components,

the quality of such devices can vary greatly. In the industry, intelligent automated sys-

tems increasingly rely on cameras and computer vision techniques to take decisions based

on their environment in order to help or extend the users abilities, like for example in

augmented cognition. In many cities, the use of large surveillance systems with CCTV

cameras is widespread in places like streets, banks or supermarkets to thwart crime, ana-

lyze behavior and prevent accidents. Digital image processing plays also a major part in

areas such as biomedical imagery, seismic imagery, satellite imagery or robot vision.

To be efficient, these technologies require good quality, detailed images of high

resolution. However, in practice, there are many constraints which make the use of high-

resolution cameras difficult, if not sometimes impossible. The quality and the resolution

of a camera are mainly dictated by two elements: its lens and its sensor (CMOS or

CCD). High quality lenses made of glass are fragile, heavy, bulky and very expensive to
29
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(a) (b)

Figure 1.1: (a) Digital image acquisition devices have made inroads across many
sectors of society but their quality can vary greatly according to their use and cost. (b)
A camera sensor network is made of independent sensors that communicate directly
to the receiver; each sensor has its own observation of the phenomenon of interest.

manufacture whereas low quality lenses found on small-sized cameras are made of shock-

resistant plastic and are relatively cheap to produce. Because perfect lenses do not exist,

even the finest lenses act like a low-pass filter on the observed scene. This removes its high

frequency content and adds blur to the image hitting the focal plane. Poor quality lenses

blur the images more than fine ones. The camera sensor is described by its resolution i.e.

the number of photosites, or pixels, it contains. Because of electronic limitations, it is not

possible to both reduce the physical size of the camera sensor and keep the same resolution

without inevitably introducing some noise (or errors) in the system and degrading the

quality of the image. Thus cameras with high quality lenses and high resolution sensors

have a large size, a heavy weight and are expensive. These characteristics are often not

suitable in many situations. Furthermore, for autonomous cameras running on batteries,

the compression of a high resolution image and/or its transmission between the camera

and a receiver can drain most of its computing power that should be used instead to

actually sense the environment.

Recently, advances in communications network technology and in signal process-

ing have permitted a new model to emerge: the sensor network that analyzes the phe-

nomenon of interest using several independent sensors disseminated inside or around it

(Figure 1.1(b)). Because the acquisition is distributed among a set of sensors, the design

constraints on each sensor can be relaxed. The framework of our research replaces the

traditional single camera setup with a system composed of several cameras referred as

distributed camera network. The same scene is observed by different sensors located at
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different positions so that a multiple view of the scene is available. Each sensor is a small,

independent, low power and low quality camera communicating only and directly to the

receiver. These cameras are less obtrusive, lighter, more resistant to shocks and cheaper to

produce. Most of the processing is done at the receiving end where the observed scene is

analyzed by fusing the information coming from the set of cameras. Using several sensors

to acquire a scene also makes a system that is naturally more robust to camera failure

than a system where only a single camera is used.

Moreover having a multiple view of a scene allows to develop advanced techniques

for scene analysis that are normally not possible with a single view. Such applications are

for example super-resolution, occlusion removals, depth segmentation or photogrammetry.

The very first task usually required when dealing with multiview images is their correct

registration. This consists in finding the disparities existing between the different views

so that the images can be overlaid as precisely as possible. Image registration is based on

the extraction of features of interest in each image of the set. The more accurate their

extraction, the more precise the registration. One example of application where a correct

registration is critical is found in the challenging problem of image super-resolution.

1.2 Problem Statement and Motivations

Multiview camera systems are composed of several cameras positioned at different loca-

tions and focusing on the same scene of interest. The absolute and relative locations

of the cameras are unknown. The i-th camera has its own (continuous) observation

fi (x, y) , x, y ∈ R, of the scene and is acquiring a sampled image gi [m, n] , m, n ∈ Z,

at any given time. In many situations, the disparities between the images gi, i = 0, 1, . . .,

must be calculated as accurately as possible so that each image can be correctly overlaid

on to another after appropriate warping. Thus the exact registration of two images con-

sists in finding the transformation Ti between the view fi of one camera and the view fj

of another camera. However, the observed continuous views are usually not available and

image registration is based on the acquired sampled images gi and gj .

By neglecting border effects during sampling, it is generally assumed that the dif-
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ferent observations fi can be related to a single observation of reference, say f0, via a

geometric transformation Ti of the coordinates (x, y):

fi (x, y) = f0 (Ti (x, y)) , x, y ∈ R, (1.1)

where T0 = 1. The transformations Ti can be of various types depending on the level

of complexity of the scene. These can range from simple translation to complex non-

linear transformations (see Figure 1.2). In this research, we consider the case of linear

transformations which are composed of translation, rotation, affine transformation and

homography. This imaging situation corresponds either to a flat observed scene or a 3D

scene that is observed from a distance much greater than the distance between cameras

so that parallax effects are negligible [18,31]. A homography is described by a 3x3 matrix

with eight degrees of freedom (plus an arbitrary scaling factor). It represents the most

complex of the linear transformations and can be retrieved from four pair of corresponding

points. The affine transformation is simpler and is characterized by 6 degrees of freedom.

In various situations, the homography transformation is well approximated by an affine

transform. The goal of image registration is thus to find the different transformations Ti as

accurately as possible given the available data which are the acquired images {g0,g1, . . .}.

As the resolution of these images decreases, less information is available and the correct

estimation of the Ti gets more and more difficult.

For many applications, image registration is a preprocessing step that can jeopardize

the entire success of the desired task. Since it is operating on the sampled images gi

instead of the original observed views fi, image registration is an inverse problem and

is dependent on the properties of the camera used for image acquisition: the sampling

rate (or resolution) of the sensor, the amount of blur introduced by the lens, and the

noise of the device. As the resolution of an image decreases, the local two-dimensional

structure of the image degrades and a correct registration of two low-resolution images

becomes increasingly difficult. In this respect, we observe that image registration and

image sampling are intimately related. The first way to achieve exact registration of low-

resolution images is to perfectly reconstruct the original views fi and fj from their sampled
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ScalingRotationTranslation

HomographyShearing Non-linear

Figure 1.2: Different types of geometric transformations T considered in registra-
tion. Rigid transformations consist of translations and rotations only whereas affine
transformations include also shearing and scaling. In certain imaging situations, the
homography can be approximated by an affine transformation. Non-linear transfor-
mations are particularly important in biomedical images for instance.

versions gi and gj and run a registration algorithm on fi and fj . A second option would

consist in extracting from gi and gj only the relevant image features of fi and fj using

sampling theory.

The first option raises the fundamental question of signal reconstruction in sam-

pling theory. For bandlimited signals, the well-known Nyquist-Shannon sampling theorem

shows that exact reconstruction is possible from the samples only. Moreover, following

the developments of wavelet theory (e.g. by focusing on the scaling function in a wavelet

multiresolution framework rather the wavelet itself), new sampling schemes have recently

emerged allowing perfect reconstruction of a certain class of non-bandlimited signals called

signals with Finite Rate of Innovation (FRI) [126] [27]. This theory allows the perfect re-

construction from the samples of continuous signals which were previously impossible to

recover exactly. The peculiarity of these signals resides in the fact that they can be com-

pletely described by a parametric expression having a finite number of degrees of freedom.
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By taking into account known properties of the acquisition device, the parameters of the

observed FRI signal can be exactly retrieved. Once these parameters are known, the orig-

inal FRI signal is also known. The new sampling schemes for FRI signals proposed by

Vetterli et al in [126] considers filters of infinite support like the sinc function. In [78], these

results were extended to 2-D signals. In [27], it was shown that similar sampling schemes

can also be obtained with physically realizable filters of compact support. In [110], Shukla

et al presented exact methods for local reconstruction of multidimensional FRI signals

from their samples using filters of compact support.

An alternative approach to signal reconstruction consists in extracting only relevant

features in the set of images. This avoids the difficulty of reconstructing exactly the

complete signal from its samples by looking only at interesting parts of the considered

signals. For image registration, various features can be considered. A popular choice

of features are corners or contours in the image which are points with a steep intensity

gradient. However, other features can be considered. In particular, image moments are

also extensively used in image registration either as global features when the moments of

the whole image are considered, or as local features when moments of shapes within the

image are considered. In all cases, the main challenge consists in recovering as accurately

as possible the features occurring in fi and fj given the information from gi and gj .

Features of interest like corners or edges are basically non-bandlimited signals and are

severely deteriorated during acquisition due to the low-pass effect of a real lens. When

considering the feature extraction problem as a sampling problem, this suggests that the

classical sampling theory for bandlimited signals is not suitable to retrieve exactly these

features and that recent advances offered by the sampling theory for FRI signals make

room for designing new feature extraction techniques that would strongly improve current

registration methods.

The first goal in this work is to understand how the sampling theory for FRI signals

fits in a multiview environment as this has not been studied yet. We thus first extend

the scope of application of some selected new sampling schemes for FRI signals to a

multichannel framework. Given these results, we then consider the case of real multiview

images. In particular we want to develop new feature extraction techniques based on FRI
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principles to obtain more accurate methods for registration of multiview images. Although

the signals initially considered by the FRI theory are synthetic ones and are very different

from real images, the main incentive in considering the theory for FRI signals is due to

the fact that some features used for image registration can be modeled as FRI signals.

Thus, if perfect reconstruction methods for FRI signals can lead to the exact extraction

of features in an image, then in turn, an exact registration of multiview images becomes

possible regardless of the resolution.

The main motivation of having a precise registration of low-resolution images is

to be able to improve multiview applications like image super-resolution. Image super-

resolution consists in generating at the receiver a single detailed high-resolution image by

fusing the information of a set of different low-resolution multiview images acquired with

a camera. One critical step in super-resolution is to obtain an accurate registration of the

set of images especially when the resolution of the images decreases. This technique has

recently received a lot of attention in the signal processing community and industry and

the reasons for this enthusiasm are varied. Today, the transition between analog television

(NTSC or PAL) to high definition television (HDTV) displays is fully engaged. The native

display of HDTV must be able to accommodate a variety of video formats which often

have a lower resolution than the display itself [63]. Simple upsampling methods like inter-

polation increase only the number of pixels but not the perceived resolution. Advanced

techniques like image super-resolution allow the increase of both the pixel density and

the perceived resolution. Besides, the drop in the price of low-quality image acquisition

devices like webcams makes multiview image systems affordable to produce. Finally the

miniaturization of cameras means that, in some situations, the hardware limitations have

to be overcome with a software approach in order to produce images with the desired level

of details.

Thus, overall, the research described in this thesis starts with a set of theoretical

sampling results from which new approaches for accurate feature extraction in real images

are developed. Registration methods using these extracted features are then proposed and

present the advantage of being very precise for the registration of low resolution images.

This characteristic makes them suitable for use in problems like image super-resolution
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for which various experiments are also conducted. Throughout this research, two main

assumptions are made: firstly, the transformation model between multiview images is a

linear one, and secondly, the properties of the acquisition device, like the sampling kernel,

are known exactly and follow the acquisition model used in the sampling theory for FRI

signals [27].

1.3 Previous Related Work

In the literature, the problem of feature extraction is sometimes further split into two

different problems: feature detection and feature location. Feature detection is merely

concerned by the existence at pixel accuracy of a given feature; feature location, often

written in parametric form, is concerned by the exact location of a feature, i.e. at subpixel

accuracy. We consider throughout this thesis the problem of recovering the description of

a feature as accurately as possible and we use the terms detection, location or extraction

invariably.

Various surveys and books on image registration are available for an in-depth review

of image registration techniques and feature extraction methods [13,46,132]. Registration

techniques are either operating in the spatial domain or in the frequency domain. Fre-

quency domain methods are computationally efficient but are generally limited to global

rigid motions i.e. translations and rotations [35, 74, 124]. Registration techniques in the

spatial domain are numerous. Earliest methods seek to maximize the cross-correlation

between two images so that the two images are correctly overlaid [100]. Many variations

of this model have been proposed like e.g. preprocessing the images with an edge detector

in order to lower the computational load [3]. In this work, we are interested in the set of

registration techniques occurring in the spatial domain and having the following sequential

structure:

1. feature extraction in each image,

2. feature matching across images,

3. transformation estimation based on the matched features.
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State-of-the-art feature extraction methods can be classified as contour-based,

model-based or intensity-based. Contour-based algorithms first extract contours of objects

and then locate features where the curvature on the contour is a local maximum [4,81,97].

Model-based methods aim at fitting a parametric model of the features of interest using

minimization techniques [12, 23, 103]. In practice, most algorithms are intensity-based.

Many detectors for corners or edges are traditionally implemented by filtering the signal

with an operator that usually computes the first or second derivative. A measure of ‘corner-

ness’ is then calculated from the local maxima of the first derivatives or the zero-crossings

of the second derivatives. Depending on its value and threshold, a corner is detected or

not. Various automatic corner detectors have been proposed and they essentially differ

in the way the local gradient and the measure of ‘cornerness’ are computed: we have

in chronological order: Moravec [86], Harris-Plessey [54], Noble [91], Shi-Tomasi [108],

Förstner [36], SUSAN [111]. In order to achieve subpixel accuracy, the position of the fea-

tures is further improved by fitting a local paraboloid model estimated with a least-square

method. A more detailed description and performance analysis of various corner detectors

are available in [102, 105]. Experimental results showed that such corner detectors based

on the gradient of the image can achieve an accuracy of approximately 1/3 to 1/4 of a

pixel. The Harris-Plessey corner detector and its variants (with subpixel accuracy) are

often considered as the current standard for detecting corners as this algorithm proved to

be fairly robust to change in illumination, camera position and internal camera parame-

ters [105]. The problem of feature detection is closely related to the problem of landmark

detection often encountered in medical imaging [40,43,59]. The two problems are however

different as automatic landmark detection usually consists in pruning a set of retrieved

features (obtained e.g. with a Harris corner detector as in [59]) in order to keep only the

features that correspond to the structures of the tissue of interest (e.g. a particular corner

of the jaw’s bone).

Similarly to corners, earliest edge detectors are obtained by convolving the image

with a directional gradient operator like Roberts, Prewitt and Sobel, or with a Laplacian

operator like Marr-Hildreth. A current standard in edge detection is the Canny edge

detector [17] which simply looks at the gradient in four directions (horizontal, vertical, and
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diagonals). Such a method does not give subpixel accuracy of edges. Subpixel accuracy

can be achieved but this approach is generally computationally expensive. Using the local

moments of an image calculated over a specific window together with least square fit allow

to retrieve the parameters of various edge models with an accuracy up to one twentieth of

a pixel [42,55,75,99]. Steerable filters that can be rotated at any arbitrary angle by linear

combination were also successfully used for detecting contours in noisy images [38, 61].

In [24], an overcomplete set of step functions called wedgelets was designed to find edges at

subpixel accuracy. In addition to points of high curvature on a contour, centers of gravity

(or barycenters) of closed contours can also be used as feature points for registration

purposes [34, 47,72].

Global features take into account the entire image to compute some global measure-

ment of the image for registration and object recognition purposes. A desirable property

of global features is that they provide a very concise representation of images as points in

a multi-dimensional feature space. Nevertheless techniques based on global features may

fail when objects in multiview images get occluded or merged. In all applications based

on global features, it is either assumed that images contain just one object or that objects

can be segmented beforehand from the background.

The prevailing global features used for image analysis are image moments which

provide accurate descriptors for shapes and textures [117]. There exists a vast amount

of literature available on moment theory and applications. Moments are used extensively

in various computer vision and other applications like pattern recognition [57]. Moments

have been used in a local fashion for image segmentation [71], image registration [34],

interpolation [39], and optical flow estimation [115]. They have been successfully applied

to the extraction of various features (e.g. DNA strand) in biomedical images [60, 115].

Finally, moments have also been used for the reconstruction of particular bilevel shapes

[28,82,83,110] or real images [87,88,131].
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1.4 Outline of Thesis

In this thesis, we present new feature extraction techniques based on the sampling theory

for FRI signals. We approach the problem of feature extraction from a sampling perspec-

tive and eventually present a complete image super-resolution algorithm implementing the

developed methods.

We start in Chapter 2 by reviewing the sampling theory for FRI signals. We present

different sampling results for both one and two dimensional FRI signals. We also present

the important properties of the sampling kernel which play a fundamental role in the

reconstruction procedure. We focus in particular on the family of B-spline kernels and

E-spline kernels.

In Chapter 3, we extend the current sampling results to the multi-channel acqui-

sition of FRI signals. We consider the case of 1-D FRI signals and the case of 2-D FRI

signals. In 1-D, the set of multiview signals are different shifted versions of same observed

signal. In 2-D, the multiview signals are related by various geometric transformations

which depend both on the scene itself and on the positions of the sensors. The main goal

is to have simpler acquisition devices and to be still able to reconstruct exactly each of

the observed FRI signals. We show how in the case of bilevel polygons, the different views

can be perfectly reconstructed using a method based purely on moments. Depending on

the type of kernels used, different solutions having either a symmetric or an asymmetric

distributed architecture are proposed. Finally, the case of analog-to-digital converters is

considered. In particular, we show how the new sampling results for FRI signals can

be used in a distributed fashion to improve problems associated with time interleaved

analog-to-digital converters.

With this extension to multiview FRI signals, we then show in Chapter 4 how these

results can be directly extended to low-resolution image acquisition devices and real-world

scenes. We first describe in more detail our image acquisition model and how it compares

with the FRI framework. In this chapter, two different feature extraction techniques are

proposed. The first method follows directly from the results obtained in the case of multi-

channel acquisition of FRI signals by retrieving the continuous moments of an image. The
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second approach allows the local extraction of edges in real images. For both techniques,

we show how these features can be used in order to obtain exact image registration results.

We finally apply these algorithms in different experiments and analyze their accuracy.

In Chapter 5, we apply the proposed registration methods to image super-resolution

as this application depends heavily on the quality of the registration step. We describe

in more details the problem of image super-resolution and present in particular different

methods for image reconstruction. We also compare the results obtained using our feature

extraction methods with the results obtained from traditional feature extraction methods.

We show that the quality of the super-resolved images is higher with the proposed feature

extraction methods than with standard ones.

Finally, we conclude this thesis in Chapter 6 and present some ideas and remarks

for future works.

1.5 Original Contribution

The main contribution of this thesis is in the development of exact feature extraction tech-

niques for image registration using FRI principles. To this end, we first study the sampling

theory for FRI signals in a multiview environment as detailed in chapter 3. Chapter 4

presents the novel approaches for feature extraction in real images and describes how to

use those features for image registration purposes. Finally, chapter 5 presents various new

results of image super-resolution based on the developed registration algorithms. To the

best of our knowledge, chapters 3, 4 and 5 of this thesis contain the original research work

which has led to the following publications:

• L. Baboulaz and P. L. Dragotti. Exact Feature Extraction using Finite Rate Of

Innovation Principles with an Application to Image Super-resolution, submitted to

IEEE Transactions on Image Processing, December 2007.

• P. Vandewalle, L. Baboulaz, P.L. Dragotti and M. Vetterli, Subspace-Based Methods

for Image Registration and Super-Resolution, to appear in Proc. of IEEE Interna-

tional Conference on Image Processing, San Diego, USA, September 2008.
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• L. Baboulaz and P. L. Dragotti. Local feature extraction for image super-resolution,

IEEE Int. Conf. on Image Processing, pages 401–404, San Antonio, TX, USA,

September 2007.

• L. Baboulaz and P. L. Dragotti. Image super-resolution with B-spline kernels, 7th

IMA Int. Conf. on Mathematics in Signal Processing, pages 114–117, Cirencester,

UK, December 2006.

• L. Baboulaz and P. L. Dragotti. Distributed acquisition and image super-resolution

based on continuous moments from samples, IEEE Int. Conf. on Image Processing,

pages 3309–3312, Atlanta, GA, USA, October 2006.

• L. Baboulaz and P. L. Dragotti. Beyond vision with image super-resolution, 9th

Great British Research Show for Early-Stage Researchers, SET for Europe, House

of Commons, Westminster, London, UK, March 20071.

• L. Baboulaz and P. L. Dragotti. Distributed Acquisition and Image Super-Resolution

with Sampling Kernels reproducing Polynomials, WavE 2006 Wavelets and Appli-

cations Conference, EPFL, Lausanne, Switzerland, July 20062.

A particular effort has been made to ensure that the results presented in this thesis

are also reproducible. Making research reproducible is an important aspect of science and

is promoted in [123]. Matlab code and data are available on demand.

1Received GlaxoSmithKline/SET Commendation Award.
2Received EPFL/Bernoulli Center Travel Grant Award.
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Chapter 2

Sampling Theory for Signals with

Finite Rate of Innovation

2.1 Introduction

T
HE notion of signals with finite rate of innovation (FRI) was first introduced by

Vetterli, Marziliano and Blu in 2002 [126]. They considered a set of 1-D signals

that are neither bandlimited nor belong to a given subspace. Because such signals are

not bandlimited, the classical sampling framework provided by Shannon’s theory cannot

provide perfect reconstruction strategies. They proposed new sampling schemes for perfect

reconstruction of the original continuous signal out of the discrete representation provided

by the samples. The particularity of the FRI signals resides in the fact that they possess

a finite number of degrees of freedom per unit of time, also referred to as the rate of

innovation. Examples of such signals are streams of Diracs or piecewise polynomial signals.

In other terms, at any given time, the observed signal can be completely characterized

by a finite number of parameters. The intuitive idea behind the sampling theory for FRI

signals is that by recovering exactly those parameters using the available samples, the

original signal can be reconstructed perfectly.

The sampling theory developed in [126] assumes an exact knowledge of the sampling

kernel of the acquisition device which describes the pre-filtering module together with the

sampling step. The kernels considered in [126] are the sinc and Gaussian kernels with
43
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an infinite support and are therefore not physically realizable. The reconstruction of the

FRI signals is based on a non-linear algorithm which involves the annihilating filter (a.k.a.

Prony’s method), a technique widely used in other fields like spectral estimation [113]

and error correcting code [9]. In [26], Dragotti et al obtained the same results but with

sampling kernels with finite support. Kernels with compact support facilitate the practical

implementation of the exact sampling scheme for FRI signals which are also based on

the annihilating filter method. Those sampling kernels have the particular property of

reproducing polynomials or exponentials.

The sampling and the perfect reconstruction of 2-D FRI signals like sets of 2-D

Diracs and bilevel polygons were also investigated by Maravić and Vetterli in the case of

kernels with infinite support [77,78]. More recently, Shukla and Dragotti proposed differ-

ent new local and global reconstruction schemes for 2-D FRI signals like the directional

derivatives approach, the complex moments approach or the tomographic approach [110].

In-depth treatments of sampling schemes for FRI signals can be found in the PhD the-

ses of Marziliano [80], Maravić [76] and Shukla [109]. The performance of the proposed

sampling schemes in the presence of noise has been analyzed for the case of 1-D signals

in [27,70,79].

Sampling theory for FRI signals has already found applications in several areas

such as resolution enhancement [27, 80], distributed compression [41], synchronization

and channel estimation for ultra-wide band signals [70, 76], biomedical signals like ECG

signals [52], A/D converters [65] and image super-resolution algorithms [5, 6].

This chapter first defines 1-D FRI signals, presents how to sample them and shows

various reconstruction procedures. It then considers the case of sampling 2-D FRI signals.

Finally more details are given on the functions that can be considered as valid sampling

kernels for sampling FRI signals.
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2.2 Sampling of 1-D FRI Signals

2.2.1 1-D Signals with Finite Rate of Innovation

Let us assume that the set of functions {φr (t − tk)}r=0...R−1 is known and define the signal

with the following parametric form:

x (t) =
∑

k∈Z

R−1∑

r=0

ak,rφr (t − tk) , t ∈ R. (2.1)

Since the {φr (t − tk)}r=0...R−1 are known, the only parameters that are unknown in the

signal x (t) are the coefficients ak,r and the time shifts tk. We can introduce the function

Cx (ta, tb) that counts the number of unknown parameters in x (t) over a given interval

[ta, tb]. The rate of innovation of x (t) is then defined as the average number of free

parameters present in this signal:

ρ = lim
ℓ→∞

1

ℓ
Cx

(
− ℓ

2
,
ℓ

2

)
. (2.2)

Thus, depending on the limit of Equation (2.2), one can characterize a signal on whether

its rate of innovation is finite or not.

Definition 1 (Vetterli, Marziliano, and Blu, [126]). A signal with a finite rate of

innovation is a signal whose parametric representation is given in (2.1) and with a finite

ρ as defined in (2.2)

Interestingly, bandlimited signals satisfy Definition 1. For instance, let fmax be

the maximum non-zero frequency in a bandlimited real signal xB (t). The well-known

reconstruction formula for bandlimited signals with a sampling period T = 1
2fmax

is:

xB (t) =

∞∑

n=−∞

xB (nT ) sinc

(
t − nT

T

)
. (2.3)

This is a particular case of Equation (2.1) and the corresponding rate of innovation is

ρ = 1/T . Therefore, a bandlimited signal is a signal with a finite rate of innovation since

it is defined by a finite number of coefficients per unit of time.

The rate of innovation of a signal can be finite but is not necessarily constant with
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ttt

(b) (c)(a)

Figure 2.1: Examples of 1-D signals with finite rate of innovation; (a) streams of
Diracs; (b) piecewise-constant signals; (c) piecewise-polynomial signals.

time. For this reason, one can define the local rate of innovation at time t over a moving

window of size ℓ [126]:

ρℓ (t) =
1

ℓ
Cx

(
t − ℓ

2
, t +

ℓ

2

)
. (2.4)

As ℓ → ∞, the local rate of innovation ρℓ (t) tends to ρ. When designing a local reconstruc-

tion scheme for FRI signals, the local rate of innovation plays a particularly important

role.

The first examples of FRI signals studied during the development of this sampling

theory are streams of Diracs, streams of differentiated Diracs and piecewise polynomials

(see Figure 2.1). Following Equation (2.1), a ν-periodic stream of Diracs with K Diracs

per period can be expressed as:

x (t) =
∑

n∈Z

K−1∑

k=0

akδ (t − tk − nν) . (2.5)

Since the k-th Dirac is described by its amplitude ak and its location tk ∈ [0, ν], the

periodic stream of Diracs x (t) has a rate of innovation equal to: ρ = 2K/ν. Similarly, a

ν-periodic stream of K differentiated Diracs per period can be written as:

x (t) =
∑

n∈Z

K−1∑

k=0

Rk−1∑

r=0

ak,rδ
(r) (t − tk − nν) , (2.6)

where δ(r) represents the r-th derivative of a Dirac which is defined as a distribution that

satisfies the following property:

∫ ∞

−∞
f (t) δ(r) (t − t0) dt = (−1)r drf

dtr
(t0) .
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Such a signal consists of K differentiated Diracs per period and
∑K−1

k=0 Rk weights per

period. It thus has a finite rate of innovation of ρ =
(
K +

∑K−1
k=0 Rk

)
/ν. Finally, ν-

periodic piecewise polynomials signals with K pieces per period with maximum polynomial

degree R − 1 ≥ 0 have the following expression:

x (t) =
∑

n∈Z

K−1∑

k=0

R−1∑

r=0

ak,r (t − tk − nν)r
+ . (2.7)

The R-th derivative of this signal leads to a stream of K differentiated Diracs, so

the rate of innovation of a K-piecewise polynomial signal of order R is given by ρ =
(
K +

∑K−1
k=0 Rk

)
/ν.

2.2.2 Sampling Setup

Sampling theory is concerned with the perfect reconstruction of a continuous signal from its

discrete representation obtained by sampling. The sampling setup presented in Figure 2.2

is a typical sampling architecture composed of pre-filtering, sampling and reconstruction

steps.

The impulse response r (t) of the pre-filtering is the time-reversed version of the

sampling kernel ϕ (t). The signal y (t) resulting from the convolution of x (t) with r (t) is

then uniformly sampled at a period T to give the samples y [n] , n ∈ Z. The samples can

be equivalently expressed as:

y [n] = x (t) ∗ r (t) |t=nT

=

∫ ∞

−∞
x (t)ϕ (t/T − n) dt

= 〈x (t) , ϕ (t/T − n)〉 . (2.8)

It is in this classical sampling setup that FRI signals are considered. We assume

that we know perfectly the sampling kernel ϕ (t) and the sampling period T . The sam-

pling theory for FRI signals takes full advantage of this knowledge in the reconstruction

procedures. There does not exist a single reconstruction algorithm for all FRI signals.

Thus, given a particular type of FRI signal (e.g. stream of Diracs or piecewise polynomial
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x(t) T

r(t) = ϕ(−t/T )
Reconstruction

procedure

x̂(t)

Acquisition device

y(t) y [n]

Figure 2.2: 1-D sampling setup. The input signal x (t) is a 1-D continuous FRI signal;
the impulse response of the acquisition device with a sampling period T is r (t); the
acquired samples are: y [n] = 〈x (t) , ϕ (t/T − n)〉. The reconstructed signal x̂ (t) from the
samples y [n] is equal to the original signal x (t) in case of perfect reconstruction. The
reconstructed procedure varies depending on the type of FRI signal.

signal), it is important to determine which sampling kernels can be employed and the

corresponding reconstruction method. In-depth coverage and analysis of sampling kernels

is provided in Section 2.4. At the moment we just mention that the sampling kernels we

are considering have a compact support and are able to reproduce exactly polynomials or

exponentials as introduced in [26]. This means that for a given kernel, there exists a set

of coefficients
{

c
(p)
n

}

p=0,1,...,P
such that a linear combination of ϕ (t) can either reproduce

polynomials up to a certain degree P :

∑

n

c(p)
n ϕ (t − n) = tp, (2.9)

or a finite set of exponentials {αp ∈ C}p=0,1,...,P :

∑

n

c(p)
n ϕ (t − n) = eαpt, (2.10)

where we consider that αp = α0 + pλ and λ ∈ C. It is also possible to define functions

ϕ (t) that are able to reproduce polynomials and exponentials [122].

2.2.3 Annihilating Filter Method and Reconstruction Procedure

The first part of this section is dedicated to the annihilating filter method as this technique

is at the heart of the sampling theory for FRI signals. We then consider for the sake of

clarity the case of reconstructing a stream of Diracs from its sampled version. This case

constituted the driving motivation behind the emergence of the sampling theory for FRI

signals and also provides much insight on the reconstruction procedures for other types of
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FRI signals. Although the initial sampling kernels considered were the sinc and Gaussian

kernels with infinite support [126], we consider here exclusively sampling kernels ϕ (t) with

compact support of length L as in [27].

Annihilating Filter Method

The annihilating filter method originates from the work of Baron de Prony on powersum

series [22] and is thus sometimes referred as Prony’s method in certain fields. A powersum

series is defined as:

Definition 2. A Powersum series of K components is given by:

τp =
K∑

k=0

ak (uk)
p , p = 0, 1, . . . , P, (2.11)

where {ak, uk} ∈ C are K pairs of unknown parameters and P +1 is the number of available

measurements.

Baron de Prony showed that the unknown parameters {ak, uk} in such powersum

series can be exactly calculated provided that the number P of available consecutive

measurements τp is at least 2K − 1. The annihilating filter method is a widely used tool

in high resolution spectral estimation or error correction coding. Vetterli et al introduced

the use of the annihilating filter method in the case of sampling of FRI signals [126] as

this method offers a powerful tool to isolate the innovative part of such signals.

Let τp be a powersum series as in Equation (2.11) where the parameters ak and uk

are sought and K is known. The annihilating filter B (z) is defined such that its roots are

at the locations uk:

B (z) =
K∑

p=0

bpz
−p =

K−1∏

k=0

(
1 − ukz

−1
)
.

This filter B (z) has a finite impulse response bp of length K + 1. We then have:

bp ∗ τp =
K∑

i=0

biτp−i =
K−1∑

k=0

aku
p
k

K∑

i=0

biu
−i
k

︸ ︷︷ ︸
=0

= 0. (2.12)

The signal τp is thus annihilated by the filter B (z). Assuming b0 = 1, the K remaining
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coefficients of B (z) can be retrieved from Equation (2.12) if any 2K consecutive values of

τp are known:




τK−1 τK−2 · · · τ0

τK τK−1 · · · τ1

...
...

. . .
...

τ2K−1 τ2K−2 · · · τK−1




·




b1

b2

...

bK




= −




τK

τK+1

...

τ2K−1




.

The filter coefficients bi are obtained by solving the above Toeplitz system and the pa-

rameters uk are obtained by finding the roots of B (z). The ak’s are then determined by

solving Equation (2.11) with K of the known values τp. This leads to solving the following

Vandermonde system:




1 1 · · · 1

u0 u1 · · · uK−1

...
... · · · ...

uK−1
0 uK−1

1 · · · uK−1
K−1




·




a0

a1

...

aK−1




=




τ0

τ1

...

τK−1




.

Such a system has always a unique solution if uk 6= ul,∀k 6= l.

Reconstruction of a Stream of Diracs

Let x (t) be a stream of Diracs defined by {ak, tk} (respectively the amplitudes and loca-

tions of the Diracs) and which is sampled at a sampling period T by a kernel ϕ (t). The

sampling kernel has a compact support of size L and is able to reproduce polynomials or

exponentials. The samples y [n] of x (t) are given by:

y [n] = 〈ϕ (t/T − n) , x (t)〉 .

In [27], it was shown that a stream of Diracs can be perfectly reconstructed from its

samples y [n] as long as there are at most K Diracs in an interval of length 2KLT .

The way to retrieve the parameters {ak, tk} requires to compute the linear combi-

nations of the samples y [n] with the coefficients c
(p)
n used for polynomial reproduction as



2.2 SAMPLING OF 1-D FRI SIGNALS 51

in Equation (2.9) or for exponential reproduction as in Equation (2.10). In the case of

coefficients c
(p)
n used for polynomial reproduction, we have (T = 1):

τp =
∑

n c
(p)
n y [n]

=
〈
x (t) ,

∑
n c

(p)
n ϕ (t − n)

〉
from Equation (2.8),

=
∫ ∞
−∞ x (t) tpdt from Equation (2.9),

=
∑K−1

k=0 akt
p
k, p = 0, 1, . . . , P,

whereas in the case of coefficients c
(p)
n used for exponential reproduction, we have:

τp =
∑

n c
(p)
n y [n]

=
〈
x (t) ,

∑
n c

(p)
n ϕ (t − n)

〉
from Equation (2.8),

=
∫ ∞
−∞ x (t) eαptdt from Equation (2.10),

=
∑K−1

k=0 ake
αptk , p = 0, 1, . . . , P.

Notice from the third line of both expressions that, in the polynomial case, the measure-

ments τp are actually the moments of the FRI signal x (t) and that, in the exponential

case, the τp are the Fourier coefficients of x (t) when αp is a purely imaginary number.

We also observe that, in both cases, the linear combination leads to measurements

τp that can be expressed as a powersum series (see Definition 2). Thus, provided that

the sampling kernel can reproduce up to P ≥ 2K − 1 polynomials or exponentials, it is

possible to find 2K consecutive measurements τp and find exactly the parameters of the

K Diracs using the annihilating filter method.

2.2.4 Reconstruction of noisy FRI signals

The introduction of these new sampling schemes for FRI signals is fairly new and only two

studies have recently considered the presence and the effect of noise on these reconstruction

methods [79] [10].

In any real acquisition system, the presence of noise is almost inevitable. Noise can

arise from many different sources and can in some cases substantially degrade the desired

performances if it is not appropriately considered during processing. The perturbations
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on the system have usually three main origins: channel mismatch (e.g. use of the wrong

sampling kernel), analog noise on the input signals and digital noise on the samples. In

order to compensate for the noise, the sampling rate has to be increased so that redundancy

in the available data is introduced.

It is in this context that Blu et al analyzed the reconstruction of a ν-periodic stream

of Diracs x (t) in a noisy environment and with a sinc window of a given bandwidth as

sampling kernel [10]. The proposed method to solve the noisy case combines a total least-

squares approximation based on a singular value decomposition (see [98]) and an iterative

signal enhancement algorithm based on Cadzow’s work [15].

In the case of a single Dirac (K = 1), Blu et al derived the theoretical lower Cramér-

Rao bounds for the minimal uncertainties on the retrieved location and amplitude of the

Dirac from noisy samples using an unbiased algorithm. For K ≥ 2, the Cramér-Rao

bounds derived for one Dirac are still giving a good estimate as long as the Diracs are

sufficiently far apart. They showed empirically in the case of two Diracs that the proposed

reconstruction algorithm is almost optimal for noise level above 5dB of SNR power for

which the computed uncertainties reach the theoretical lower Cramér-Rao bounds.

2.3 Sampling of 2-D FRI Signals

2.3.1 2-D Signals with Finite Rate of Innovation

The extension of the definition of FRI signals from 1-D to 2-D is possible and quite

straightforward. Given a set of known 2-D functions {φr (x − xi, y − yj)}r=0...R−1, we can

define a 2-D signal with the following parametric form:

f (x, y) =
∑

i,j∈Z

R−1∑

r=0

ai,j,rφr (x − xi, y − yj) . (2.13)

The only unknown parameters in the signal f (x, y) are the coefficients ai,j,r ∈ R
2 and the

spatial shifts (xi, yj) ∈ R . Let Cf (xc, yc, ℓx, ℓy) be the function that counts the number

of unknown parameters in f (x, y) over the window of size ℓx × ℓy and centered in (xc, yc).
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Figure 2.3: Examples of 2-D FRI signals: bilevel polygonal images. Because the poly-
gons are convex, they are completely characterized by the location of their corners.

The local rate of innovation of f (x, y) can then be defined as follows:

ρℓxℓy
=

1

ℓxℓy
Cx (xc, yc, ℓx, ℓy) . (2.14)

If φr (x, y) = δr (x, y), the resulting 2-D FRI signal is a set of 2-D Diracs which can be

considered as a particular realization of a 2-D Poisson process. Various geometrical shapes

that have a finite degree of freedom also fall into the definition of FRI signals. For example,

2-D lines, convex bilevel polygons and algebraic curves like ellipsis can all be characterized

by a finite number of parameters. Figure 2.3 presents examples of convex bilevel polygonal

images which are completely characterized by the location of the polygon’s vertices.

2.3.2 2-D Sampling Setup

The sampling setup for 2-D FRI signals is shown in Figure 2.4. The input signal f (x, y)

is a 2-D FRI signal and is convolved with a 2-D sampling kernel ϕ (−x/Tx,−y/Ty) to give

rise to a smoothed version of f denoted by g (x, y). The signal g (x, y) is then uniformly

sampled at periods Tx ∈ R
+ and Ty ∈ R

+ along the x axis and y directions respectively.

We obtain the set of samples g [m, n]:

g [m, n] = f (x, y) ∗ r (x, y) |(x,y)=(mTx,nTy)

=

∫ ∞

−∞
f (x, y) ϕ (x/Tx − m, y/Ty − n) dt

= 〈f (x, y) , ϕ (x/Tx − m, y/Ty − n)〉 . (2.15)
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Reconstruction
procedurer(x, y) = ϕ

(
−x
Tx

, −y

Ty

) g(x, y) g [m, n] f̂(x, y)f(x, y)

Acquisition device

(Tx, Ty)

Figure 2.4: 2-D sampling setup. The input signal f (x, y) is a 2-D continuous FRI
signal; the impulse response of the acquisition device with a sampling period (Tx, Ty)
is r (x, y); the acquired samples are g [m,n] = 〈f (x, y) , ϕ (x/Tx − m, y/Ty − n)〉. The re-

constructed signal f̂ (t) from the samples g [m,n] is equal to the original signal f (x, y)
in case of perfect reconstruction. The reconstructed procedure varies depending on
the type of FRI signal.

Unless explicitly specified, we assume Tx = Ty = T . As in 1-D, we assume that we

have a perfect knowledge of the sampling kernel ϕ (x, y) and the sampling period in the

reconstruction procedures. We assume at present that the considered sampling kernels

have a compact support and that they are able to reproduce 2-D polynomials exactly.

Thus there exists a set of coefficients
{

c
(p,q)
m,n

}
, p = 0, 1, ..., P and q = 0, 1, ..., Q such that

a linear combination of ϕ (x, y) can reproduce polynomials up to a certain degree P in x

direction and Q in y direction:

∑

n

c(p,q)
m,n ϕ (x − m, y − n) = xpyq. (2.16)

Again, unless explicitly specified, we assume P = Q.

2.3.3 Reconstruction Procedures

The first schemes for the sampling and perfect reconstruction of 2-D FRI signals are

attributed to Maravić et al in [76, 78]. In the proposed methods, the Fourier coefficients

are computed from the samples of a periodic set of 2-D Diracs or bilevel polygons obtained

with a sinc kernel. The Fourier coefficients are then used in the annihilating filter method

to calculate the innovation of the FRI signal. A second approach uses the Radon transform

to project a 2-D FRI signal along several directions. Each of the projections is a 1-D FRI

signal that can be perfectly recovered from its Fourier coefficients using the sampling

theory for 1-D signals. Provided that enough projections are available, the 2-D FRI signal

can be reconstructed using back-projection (see Figure 2.5). Thus a set of K 2-D Diracs
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Figure 2.5: The Radon projections along different directions of a 2-D FRI signal are
1-D FRI signals. Here the projections of a bilevel convex polygon result in piecewise-
linear signals. Each projection can be reconstructed independently (using Fourier
coefficients or moments). By back-projecting the reconstructed FRI projections, it is
possible to reconstruct the 2-D convex polygon.

requires K + 1 projections, each one being a stream of K 1-D Diracs. Similarly, a bilevel

polygon with K vertices can be reconstructed perfectly from K + 1 projections if 2K

samples for each projection are available. In that case, each projection consists of 1-D

piecewise linear signals.

In [109,110], Shukla et al considered using finite support sampling kernels that re-

produce polynomials. This type of kernel is physically realizable and makes it particularly

appealing. While Maravić used the Fourier coefficients, Shukla considered the moments

of FRI signals and proposed three different approaches to reconstruct perfectly different

2-D FRI signals from their samples.

The first approach examines the problem of recovering planar polygons using direc-

tional derivatives. Consider one particular corner of a polygon and the two sides joined by

that corner; by applying two successive finite differences on the samples in the directions

of the two sides, it is shown that the location of the considered corner can be exactly

retrieved from its samples.

The second approach, called the Annihilating Filter based Back-Projection algo-

rithm (AFBP), is a Radon-based approach that makes use of the annihilating filter method.

It allows the reconstruction of 2-D polynomials with convex polygonal boundaries from
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the samples. It is shown that the exact moments of the Radon projection for a given

orientation can be retrieved from the moments of the samples differentiated along the

same direction. Using the annihilating filter method, the Radon projections can be recon-

structed one by one until there are enough Radon projections to allow the reconstruction

of the original 2-D polynomials with convex polygonal boundaries.

Finally, the third approach also makes use of the annihilating filter method and

reconstructs bilevel polygons from the samples by determining directly the exact locations

of the vertices from the complex moments. After recalling the theory of moments, this

method is described in more details in the next chapter as it is used in an extension to

multiview 2-D FRI signals.

2.4 Sampling Kernels

2.4.1 Kernel Properties

We now give more detail on the sampling kernels considered in the sampling theory of FRI

signals. In most acquisition devices, the observed signal is usually first filtered before sam-

pling. Very often, this filter corresponds to intrinsic physical properties of the acquisition

device and it is therefore very difficult, if not impossible, to design it freely. The sampling

kernel is the time reversed version of the filter’s impulse response of the acquisition device.

It is therefore important to consider a class of kernels as general as possible in order to

accommodate many types of devices. In [27], a wide range of kernels ϕ (t) are proposed

to study FRI signals and are divided into three families:

1. Polynomial reproducing kernels: the set of shifted versions of ϕ (t) can reproduce

polynomials up to a certain degree P :

∑

n

c(p)
n ϕ (t − n) = tp, p = 0, . . . P, (2.17)

for given coefficients c
(p)
m .

2. Exponential reproducing kernels: the set of shifted versions of ϕ (t) can reproduce
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up to P + 1 complex exponentials αp ∈ C, p = 0, 1, . . . , P :

∑

n

c(p)
n ϕ (t − n) = eαpt, αp = α0 + pλ, λ ∈ C, (2.18)

for given coefficients c
(p)
m .

3. Rational kernels whose Fourier transform can be written with the following rational

form:

ϕ̂ (ω) =

∏I
i=0 (jω − bi)∏P
p=0 (jω − αp)

, I < P, αp = α0 + pλ, p = 0, 1, . . . , P, (2.19)

where ϕ̂ (ω) is the Fourier transform of ϕ (t)

The parameter P here will depend on the rate of innovation of the signal under observa-

tion. In this thesis, we only consider the first two families and we focus in particular on

polynomial reproducing kernels.

In those two cases, the set of shifted functions ϕ (t − n) spans the shift-invariant

function space V (ϕ) defined as:

V (ϕ) :

{
fV (t) =

∞∑

n=−∞

cnϕ(t/T − n) : cn ∈ l2

}
.

Any function fV (t) in V (ϕ) is completely characterized by a unique discrete time sequence

cn which can be considered as its coordinates in the basis formed by the integer shifts of

ϕ. The space V (ϕ) is a closed subspace of L2 if ϕ (t − n) forms a Riesz basis [2]:

A‖c‖2
l2 ≤

∥∥∥∥
∞∑

n=−∞

cnϕ(t − n)

∥∥∥∥
2

≤ B‖c‖2
l2 , B > A > 0,

where A and B are two constants.

Let f (t) be a function in L2 not necessarily in V (ϕ), then its least-square represen-

tation fV (t) ∈ V (ϕ) is the orthogonal projection of f (t) onto V (ϕ). In this case, fV (t)

is identical to f (t) if and only if f (t) is already in V (ϕ). The basis ϕ (t − n) is generally

not orthogonal so the coordinates cn of fV (t) are obtained by inner product with the dual
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f (t)
1
T

ϕ (t/T )

fV (t)T cn

Analysis SynthesisSampling

1
T

ϕ̃ (−t/T )

Figure 2.6: Approximation theory principles: the analysis filter ϕ̃ projects orthogo-
nally the function f (t) on the shift invariant space Vϕ spanned by ϕ (t/T − n). The
projected function fV (t) has for coordinates cn in Vϕ and is only equal to f (t) if
f (t) ∈ Vϕ initially. The functions ϕ and ϕ̃ are dual functions of each other.

(biorthogonal) function ϕ̃ (t) (see Figure 2.6) [11]:

cn =

∫ ∞

−∞
f (x) ϕ̃ (x/T − n)

dx

T
. (2.20)

If the basis ϕ (t − n) is orthogonal, then ϕ̃ (t) = ϕ (t). If not, the dual function ϕ̃ (t)

still belongs to the same space V (ϕ) and can be expressed as a linear combination of the

synthesis function ϕ (t) [2]:

ϕ̃ (t) =
(
(a)−1 ∗ ϕ

)
(t) where an =

∫ ∞

−∞
ϕ (x)ϕ (x − n) dx, (2.21)

or equivalently in the Fourier domain:

̂̃ϕ (ω) =
ϕ̂ (ω)

â (ω)
, â (ω) =

∑

n

|ϕ̂ (ω + 2nπ)|2 , (2.22)

where ̂̃ϕ and ϕ̂ are the Fourier transforms of ϕ̃ and ϕ respectively.

In [114], Strang and Fix enounced the necessary and sufficient conditions for a

function ϕ (t) to be able to reproduce a polynomial up to a degree P :





ϕ̂ (0) 6= 0 and

d(p)ϕ̂(2iπ)
dωp = 0 for i ∈ Z

∗, p = 0, . . . , P,
(2.23)

where ϕ̂ (ω) is the Fourier transform of ϕ (t). These conditions are referred as the Strang-

Fix conditions of order P + 1 and are well-known in the wavelet theory in which the

approximation order of a scaling function is directly related to the number of vanishing

moments of a wavelet. There exists a variety of functions satisfying Strang-Fix conditions.

On Figure 2.7, a Daubechies scaling function of order 6 (orthogonal function) is used
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Figure 2.7: (a) Daubechies scaling function of order 6; (b) The summation of several
scaled and shifted versions of the Daubechies function (in blue) can reproduce locally
the monomial t (reproduction is the red curve and the actual monomial is the dotted
black curve); (c)The summation of several scaled and shifted versions (in blue) of the
Daubechies function can reproduce locally (in red) the monomial t2 (in black).

to reproduce the polynomials t and t2. The space Vϕ is the shift invariant polynomial

subspace of degree P and Equation (2.20) becomes:

c(p)
n =

1

T

∫ ∞

−∞
tpϕ̃ (t/T − n) dt p = 0, . . . , P. (2.24)

We notice that the coefficients c
(p)
n are the moments of order p of the dual function ϕ̃ (t − n).

Let m̃p be the moments of the centered dual function ϕ̃ (t):

m̃p =

∫ ∞

−∞
tpϕ̃ (t) dt, p ∈ Z.

The knowledge of the first P + 1 moments m̃p is in theory sufficient to compute all the

coefficients c
(p)
n since Equation (2.24) can be rewritten by using the binomial theorem as

follows:

c(p)
n = T p

p∑

k=0

(
p

k

)
np−km̃k, p = 0, . . . , P. (2.25)

Thus, in addition to the biorthogonal case, it is possible to define a less constraining basis

ϕ̃q (t) called quasi-biorthogonal basis. In this scheme, the analysis function ϕ̃q (t) can be

any function as long as its first P + 1 moments are equal to the moments m̃p of ϕ̃ (t) for

p = 0, . . . , P : ∫ ∞

−∞
tpϕ̃q (t) dt = m̃p.



60 SAMPLING THEORY FOR SIGNALS WITH FINITE RATE OF INNOVATION 2.4

Similar results can be derived for two dimensional kernels ϕ (x, y). In particular,

we consider 2-D kernels ϕ (x, y) that are variable separable. Such kernels are obtained by

tensor product of two 1-D functions ϕ1 (x) and ϕ2 (y):

ϕ (x, y) = ϕ1 (x) × ϕ2 (y) .

Computing the coefficients c
(p,q)
m,n for reproducing polynomials xpyq with ϕ (x, y) is in this

case simply obtained by multiplying the coefficients c
(p)
m and c

(q)
n for ϕ1 (x) and ϕ2 (y) as

follows:

∑

m,n∈Z

c(p,q)
m,n ϕ1 (x/T − m) ϕ2 (y/T − n) = xpyq p = 0, . . . , P, q = 0, . . . , Q, (2.26)

where

c(p,q)
m,n = c(p)

m c(q)
n .

The theory related to exponential reproduction is quite recent and relies at the

moment on a single family of functions called exponential spline, or E-splines [122]. These

functions are treated in more detail in Section 2.4.3.

2.4.2 B-spline kernels

An important family of functions that reproduce polynomials is the family of polynomials

spline functions [119]. A polynomial spline is a continuous piecewise polynomial curve

and is characterized by the maximum degree of the polynomials constituting its segments.

There is some confusion on this matter in the literature: mathematicians usually define

the order of a spline in the sense of its approximation order, i.e. a spline of order P + 1

can reproduce polynomials from degree 0 to P and each segment of the spline is therefore

made of a polynomial of degree P [106]; researchers in the signal processing community

define the order of a spline as the maximum degree of the polynomial of each segment so

that a spline of order P can reproduce polynomials from degree 0 to P [120]. To avoid

confusion, this research has adopted this last convention and we refer indifferently to the

order or the degree of a spline as the maximum degree of the polynomials constituting its
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pieces.

The segments of a spline of order P are connected at points called knots (or nodes)

and are such that the (P − 1)-th derivatives of the spline are continuous (i.e. a function

of class CP−1). Although the space between knots can be nonuniform, in this work we

consider only splines with knots distant by one unit. In this framework, the splines of odd

orders have knots located at integers {i} , i ∈ Z, whereas for spline of even orders, they

are located at half of integers
{
i + 1

2

}
, i ∈ Z. For each order P , there exists a unique

polynomial spline with a compact support of shortest size P + 1 and centered in 0. This

function βP (t) is symmetrical and is called centered B-spline of order P . This function is

originally defined as the evaluation of a certain integral [106]:

βP (t) =
1

2π

∫ +∞

−∞

(
2 sin u/2

u

)P+1

eiutdu P = 0, 1, . . . , (2.27)

which is the inverse Fourier transform of the sinc function sinc (x) = sin (x) /x elevated to

the power P + 1. This function can also be written in the time domain as:

βP (t) =
P+1∑

j=0

(−1)j

P !

(
P + 1

j

) (
t +

P + 1

2
− j

)P

· u
(

t +
P + 1

2
− j

)
, t ∈ R,

where u (t) is the unit step function:

u (t) =





0, t < 0

1, t ≥ 0

The B-splines of order 2 and 3 are plotted in Figure 2.8 together with the location of the

knots. From its definition in Equation (2.27), the Fourier transform BP (ω) of βP (t) is

given by:

βP (t) ⇔ BP (f) = [sinc(f)]P+1.

It can be verified that the B-splines satisfy Strang-Fix conditions (Equations (2.23)):





BP (0) = 1

dpBP (2πk)
dfp = 0, k ∈ Z, p = 0, 1, . . . , P.
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Figure 2.8: (a) B-spline of order 2: this function has a support of size 3 and has
knots at locations tknots = [−1.5,−0.5, 0.5, 1.5]; (c) B-spline of order 3: this function has
a support of size 4 and has knots at locations tknots = [−2,−1, 0, 1, 2]. Each segment
between two knots is a polynomial of same degree as the order of the considered
B-spline.

The B-splines also satisfy Riesz conditions so the shifted versions of B-splines form a basis

of a closed vector space V
(
βP

)
which comprises all spline functions s (t) of degree P with

unit spacing between knots:

V
(
βP

)
:

{
s(t) =

∞∑

n=−∞

cnβP (t − n) : c ∈ l2

}
.

By scaling, or expanding the B-spline by a factor T , it is possible to obtain a multiscale

representation and to design spline subspaces at different scales [121]:

V
(
βP

T

)
:

{
sT (t) =

∞∑

n=−∞

cnβP (t/T − n) : c ∈ l2

}
.

When scaling by a sampling period T , the spacing between the knots of βP
T (t) = βP (t/T )

is equal to T . As observed from its Fourier transform, the B-splines can be recursively

obtained by convolution of the box spline β0 (t):

βP (t) = β0(t) ∗ . . . ∗ β0(t)︸ ︷︷ ︸
P + 1 times

, β0(t) =





1, |t| < 1
2

1
2 , |t| = 1

2

0, otherwise

(2.28)

Discrete B-spline kernels bP
T (k) are obtained by sampling the continuous B-spline

functions βP
T (t):

bP
T (k) = βP (t/T ))

∣∣
t=k

, k ∈ Z.
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It is possible to generate discrete B-splines by using a convolution procedure similar to

Equation (2.28) but one has to be careful about the parity of the order and scale of the

desired B-spline to implement it properly [120]. Thus we have the following:

• T odd > 1:

bP
T (k) =

1

TP
(b0

T ∗ b0
T ∗ . . . ∗ b0

T︸ ︷︷ ︸
P+1 times

) ∗ bP
1 (k)

• P odd and T even > 1:

bP
T (k) =

1

TP
· δP+1

2
∗ (b0

T ∗ b0
T ∗ . . . ∗ b0

T︸ ︷︷ ︸
P+1 times

) ∗ bP
1 (k)

• P even and T even > 1:

bP
T (k) =

1

TP
· δP+2

2
∗ (b0

T ∗ b0
T ∗ . . . ∗ b0

T︸ ︷︷ ︸
P+1 times

) ∗ cP
1 (k)

where cP
T (k) is the discrete B-spline shifted by 1/2:

cP
T (k) = βP (k/T +

1

2
),

and δi (k) is the shift operator such that δi ∗ s (k) = s (k − i). The starting conditions are

given by:

b0
T (k) =





1 for T/2 ≤ k ≤ T/2

0 otherwise
,

c0
T (k) =





1 for 1 − T ≤ k ≤ 0

0 otherwise
,

and the following recursive equations are used to evaluate the values of bP
1 (k) and cP

1 (k)

at higher orders:

bP
T (k) =

( k
T + P+1

2 )cP−1
T (k) + (P+1

2 − k
T )cP−1

T (k − T )

P
,

cP
T (k) =

( k
T + P+2

2 )bP−1
T (k + T ) + (P

2 − k
T )bP−1

T (k)

P
.
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Figure 2.9: (a) cubic B-spline; (b) cubic dual B-spline; (c) The summation of several
scaled and shifted versions (in blue) of the cubic B-spline can reproduce locally (in
red) the polynomial t3 − 120t (in black).

The set of shifted versions of the B-spline is not an orthogonal basis. It is therefore

necessary to define the dual B-spline function β̃P (t) in order to have a set of biorthogonal

basis functions for the subspace V
(
βP

)
. Using Equations (2.21), it is possible to show that

for any spline s (t) =
∑

n dnβP (t − n), there exists a dual spline function s̃ (t) expressed

as [121]:

s̃ (t) =
∞∑

n=−∞

(
d ∗ b2P+1

1

)−1
(n) · βP (t − n) ,

where:
(
d ∗ b2P+1

1

)−1
(n) ↔

(
D (z)B2ρ+1 (z)

)−1
. (2.29)

Here, D (z) and B2ρ+1 (z) are respectively the z-transforms of d [n] and b2ρ+1
1 [n]. The dual

B-spline β̃P (t) is thus defined as

β̃P (t) =
∞∑

n=−∞

(
b2P+1
1

)−1
(n) · βP (t − n) .

Figure 2.9(a) and (b) show respectively a cubic B-spline and its dual. Figure 2.9(c)

presents the reproduction of the polynomial x3−120x over the interval [−4, 4] with shifted

cubic B-splines. 2-D B-spline kernels are obtained by tensor product of two 1-D B-spline

functions. Figure 2.10(a) presents a 2-D B-spline kernel obtained by tensor product of

two cubic B-splines. Such a kernel is rotationally symmetric as both underlying functions

are symmetric. Finally Figure 2.10(b) shows the reproduction of the polynomial plane x3

using this kernel.

The B-spline kernels are interesting functions in image acquisition. When an ac-
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(a) (b)

Figure 2.10: (a) 2-D cubic B-spline; (b) reproduction of the plane x3 (Different grid
scale).
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Figure 2.11: Comparison of B-splines (dashed line) and Gaussians (solid line). (a)
quadratic B-spline (ρ = 2); (b) cubic B-spline (ρ = 3).

quisition device is modeled, the point-spread function of the lens is very often assumed

to be a Gaussian pulse. As mentioned in [121], B-splines of order P ≥ 2 are increasingly

similar to Gaussian functions. It can also be demonstrated that for P → ∞, the B-spline

becomes a Gaussian curve. This similarity is shown in the two plots of Figure 2.11 where

a scaled B-spline of order 2 and a scaled B-spline of order 3 are compared to a Gaussian

pulse. The variance of each Gaussian was calculated so that the curve has the same full

width at half maximum as the B-spline they are compared with.

2.4.3 E-spline kernels

The theory of functions reproducing exponentials is rather recent and is based on the

theory of exponential splines (E-splines) developed by Unser et al [122]. An exponential
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spline is a piecewise exponential curve connected at knots in such a way that it is continu-

ous with its (P − 1) derivatives. As with a B-spline, an E-spline is defined by its order P

but it is also characterized by (P + 1) complex parameters α = (α0, · · · , αP ) ∈ C
p. These

parameters correspond to the exponentials that an E-spline βα(t) can actually reproduce.

For a given order P , the E-spline is the shortest possible exponential spline with support

equal to (P + 1) . The set of shifted E-splines {βα(t − k)}k∈Z constitutes a biorthogonal

(Riesz) basis to the exponential spline vector space Vα defined as:

Vα =

{
s (t) =

∑

n∈Z cnβα (t − k) |cn ∈ l2

}
.

The E-spline βα0(t) of order 0 with a single parameter α and its Fourier transform Bα (ω)

are defined as:

βα(t) =





eαt, 0 ≤ t < 1,

0, otherwise.
←→ Bα (ω) =

1 − eα−jω

jω − α
.

The construction of E-splines of a higher order with parameter α = (α0, · · · , αP ) is very

similar to the construction of B-splines, as it is obtained by successive convolutions of the

zero-th order E-splines with the desired parameters:

βα(t) = βα0 ∗ βα1 ∗ . . . ∗ βαP
(t).

The Fourier transform of an E-spline of order P is thus given by:

Bα (ω) =
P∏

p=0

1 − eαp−jω

jω − αp
.

We now see that the E-splines are natural extensions of the B-splines. If the P +1 desired

parameters are all zeros, i.e. α = 0, then the obtained function is a B-spline of order P .

Interestingly, if the E-spline of order P has a single parameter α of multiplicity P +1, then

the E-spline reproduces exponential polynomials of the type tpeαt, p = 0, . . . , P which is a

generalized version of the polynomial B-spline. The E-spline of order 0 with real parameter

α0 = −0.1 and the E-spline of order 1 with parameters α = (−0.05 − 0.5j,−0.5j) are
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Figure 2.12: (a) Real E-spline of order 0 and parameter α0 = −0.1; (b) Complex E-
spline of order 1 with parameters α0 = −0.05 − 0.5j, α1 = −0.5j; (c) Complex E-spline
of order 2 obtained by convolution of the two previous E-splines (α0 = −0.05 − 0.5j,
α1 = −0.5j, α2 = −0.1). The solid line corresponds to the real part and the dashed line
to the imaginary part.

sketched in Figure 2.12 (a) and (b) respectively. In Figure 2.12 (c), the E-spline of order

2 obtained by convolution of the two previous E-splines is shown. This complex E-spline

has three parameters α = (−0.05 − 0.5j,−0.5j,−0.1).

The reconstruction of FRI signals like streams of Diracs with an E-spline sampling

kernel requires the necessary coefficients c
(q)
n to be found in order to be able to reproduce

exponentials (see Equation (2.10)). The method to find the coefficients c
(q)
n is however

more challenging than in the B-spline case since the dual E-spline is not well defined in

the literature. One way to overcome this difficulty is to solve the set of equations in order

to find the right coefficients. Suppose we want to reproduce the exponential eαp with an

E-spline of order P :

eαpt =
∑

n

c(i)
n βα (t − n) ,
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then for t = 1:

eαp =
∑

n

c(p)
n βα (1 − n)

=

⌊(P+1)/2⌋−1∑

n=−⌊(P+1)/2⌋

c(p)
n βα (1 − n) (2.30)

since the size support of the E-spline βα (t) is P + 1 and it is equal to 0 at 0 and P + 1.

We then observed that :

c(p)
n = enαp · c(p)

0 . (2.31)

By using Equation (2.31) in Equation Equation (2.30) and by solving for c
(p)
0 , we obtain

finally:

c(p)
n =





enαp · c(p)
0 , n 6= 0,

eαp

/ ∑⌊(P+1)/2⌋−1
k=−⌊(P+1)/2⌋ ekαpβα (1 − k) , n = 0.

(2.32)

Note that this equation requires the value of βα (t) at integers k = 1, . . . , P to be known.

This can either be obtained by adequately convolving discrete E-splines of order 0, or by

using the analytical expression of the desired E-spline as given below for the order 0, 1,

and 2:

• βα0 (t) = eα0t, t ∈ [0, 1[.

• β(α0,α1) (t) =





eα0t−eα1t

α0−α1
, t ∈ [0, 1[,

eα1t+α0−α1−eα0t+α1−α0

α0−α1
, t ∈ [1, 2[.
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• β(α0,α1,α2) (t) =





eα0t−eα2t

(α0−α1)(α0−α2) −
eα1t−eα2t

(α0−α1)(α1−α2) , t ∈ [0, 1[,

eα2t

α0−α1

[
eα0−α2−e(t−1)(α0−α2)−et(α0−α2)+α1−α0+eα1−α2

α0−α2

− eα1−α2−e(t−1)(α1−α2)−et(α1−α2)+α0−α1+eα0−α2

α1−α2

]
, t ∈ [1, 2[,

eα2t

α0−α1

[
e(t−1)(α0−α2)+α1−α0−eα0+α1−2α2

α0−α2

− e(t−1)(α1−α2)+α0−α1−eα0+α1−2α2

α1−α2

]
, t ∈ [2, 3[.

As it can be observed, the complexity of the analytical expression grows very rapidly

with the order of the E-spline. An implementation to find the analytical expressions of

E-splines is available in Mathematica (see [122]). Using the coefficients from Equation

(2.32) and the E-spline of order 2 as shown in Figure 2.12 (c), we show the reproduction

of exponentials e−0.1t, e−0.5jt and e(−0.05−0.5j)t in Figure 2.13, 2.14 and 2.15 respectively.
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Figure 2.13: The summation of several scaled and shifted versions (in blue) of a
complex E-spline of order 2 with parameters α0 = −0.05 − 0.5j, α1 = −0.5j, α2 = −0.1
can reproduce locally (in red) the exponential e−0.1t (in black). (a) real part; (b)
imaginary part.

2.5 Conclusion and further considerations

The sampling theory for FRI signals thus uses a completely deterministic framework in

order to recover the innovations in the sampled signal. The strength of this theory is

in providing a fast algorithmic method that provides a unique solution to the sampling

problem. Moreover, this theory also provides the minimum number of measurements that
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Figure 2.14: The summation of several scaled and shifted versions (in blue) of a
complex E-spline of order 2 with parameters α0 = −0.05 − 0.5j, α1 = −0.5j, α2 = −0.1
can reproduce locally (in red) the exponential e−0.5jt (in black). (a) real part; (b)
imaginary part.
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Figure 2.15: The summation of several scaled and shifted versions (in blue) of a
complex E-spline of order 2 with parameters α0 = −0.05 − 0.5j, α1 = −0.5j, α2 = −0.1
can reproduce locally (in red) the exponential e(−0.05−0.5j)t (in black). (a) real part;
(b) imaginary part.

is required to reconstruct a given FRI signal in the noiseless scenario. With regard to noise

issue, optimal theoretical bounds (Cramér-Rao in particular) can be derived to evaluate

the robustness of reconstruction algorithms.

The problem of retrieving a stream of Diracs could also be formulated in vari-

ous ways. For example, a statistical formulation of the parameter determination can be

expressed as:

p(a1, a2, ...aK , t1, t2, ...tK |x(t)) =
p(x(t)|a1, a2, ...aK , t1, t2..tK)p(a1, a2, ...., aK)p(t1, t2, ...tK)

p(x(t))
,

where x (t) is a stream of K Diracs with real parameters {ak, tk} , k = 1, . . . , K. The
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set of parameters maximizing the left hand side above are the parameters of the Diracs

occurring in x (t). However, the search of the optimal parameters can be difficult as it

operates in a multidimensional space and requires the knowledge of the joint distribution

p(x(t)|a1, a2, ...aK , t1, t2..tK). Such a search over a possibly large multidimensional space

poses the problems of developing suitable algorithms that are fast enough and which ensure

the unicity of solution. Such difficulties are not encountered using the sampling theory

for FRI signal. This probabilistic framework however can easily be accommodated to deal

with the presence of noise.

The approach taken by compressed sensing in [25] and [16] can be related to the

sampling of FRI signals because of the sparsity of such signals. The main difference though

resides in the fact that the retrieved parameters can take real values (e.g. the locations of

the Diracs) in the FRI framework whereas the compressed sensing approach is designed

on a discrete grid. As described in [10], the problem of recovering a stream of Diracs

can be considered using a compressed sensing framework if the locations of the Diracs are

assumed to be on a known discrete grid {θn′}n′=0,1,...,(N ′−1):

min
x′

0,x′

1,...,x′

N′
−1

N ′−1∑

n′=0

∣∣x′
n′

∣∣ under the constaint
N∑

n=1

∣∣∣∣∣y [n] −
N ′−1∑

n′=0

x′
n′ϕ (nT − θn′)

∣∣∣∣∣

2

≤ Nσ2,

(2.33)

where σ2 represents the noise power. The minimization in ℓ1 of the above equation can

provide the parameters of the discrete Diracs with high probabilities [16], but requires

iterative methods and significantly more measurements (O (K log N ′)) than by using the

direct annihilating filter method (2K + 1 samples). Various optimization algorithms us-

ing gradient projections can be considered to solve Equation (2.33) (see e.g. [32] for the

state-of-the-art algorithms used in compressed sensing). The compressed sensing approach

does not put the same tight requirements on the sampling kernel (e.g. reproduction of

polynomial, annihilation property) and can thus be more adaptable than the FRI frame-

work. In the presence of noise, the advantage of using the ℓ1 norm, as it is in compressed

sensing, becomes less evident and no comparison with the Cramér-Rao bounds is available

for validating the optimality of this technique.
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Chapter 3

Distributed acquisition of FRI

Signals

3.1 Introduction

I
N various areas of computer science and electrical engineering, a similar trend has been

observed over the past decade and consists in the distribution to several independent

devices a task that is normally completed by only one single instrument. The motivation

behind distributing the workload is the possibility to design smaller, simpler and lighter

devices that require less power and that are also cheaper to produce. Using a swarm of

devices instead of a unique one also brings robustness to the whole system: if one device

fails, the system can still often operate normally. This is clearly illustrated for example in

computer networks which saw the emergence of peer-to-peer networks: the weaknesses of

a network relying on a single centralized server with a fixed allocated bandwidth can be

overcome by considering a distributed client/server network architecture which adapts to

the number of users and does not have a single point of failure.

The same developments can also be seen in signal processing with for example

the concept of distributed sensor networks. The acquisition and recording of a physical

phenomenon into a digital or analog format that can be handled for further processing

represents a critical stage. In a traditional setup with a unique sensor, acquiring an

accurate discrete representation g of an observed scene f usually requires a relatively
73
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Figure 3.1: Model of a distributed acquisition system with N sensors. Each sensor i =
1 . . . N −1 observes a modified version fi (x, y) of the scene of reference f0 (x, y) observed
by the 0-th sensor. The transformation between the i-th view and the view of reference
is denoted Ti. Each sensor outputs a set of samples gi [m,n]. The reconstruction
procedure takes into account all the sets of samples gi [m,n] , i = 0, . . . , N − 1 to find

the various transformations Ti and the observed signal f̂ (x, y). In case of perfect

reconstruction, we have f̂ (x, y) = f (x, y).

high sampling rate, accurate electronic components and a high power consumption. By

distributing the acquisition to several sensors instead of one, each sensor can work at a

lower sampling rate, use less power and be part of an architecture that is more robust

to failure. Finally, new applications can be designed as the phenomenon of interest is

observed from different perspectives (in time or space).

A model of a distributed acquisition system is presented in Figure 3.1. Each sensor

observes a signal fi, i = 0, . . . , N − 1, which is a transformed version of the signal of

reference, f = f0. The transformation between f and fi, i = 1, . . . , N − 1 is denoted by

Ti. Since the sampling rate at each sensor is lower, less information is actually available

from the sampled signals gi so that it is usually not possible to reconstruct fi given only

gi. The aim instead is to be able to reconstruct the signal fi, i = 0, . . . , N − 1, from the

joint observation of the sampled signals gi, i = 0, . . . , N − 1. One way to achieve that is

to reconstruct f and find exactly the transformations Ti, i = 1, . . . , N − 1 so that all the

different views are found.

The main part of this chapter is dedicated to the distributed acquisition of FRI

signals. The results of the sampling theory for FRI signals are extended to the distributed

scenario for which there is no known study. The framework considered here is when a

FRI signal is acquired from different and unknown locations in such a way that current

reconstruction methods cannot be applied at each sensor independently. For example, if
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K close Diracs are acquired by a device whose kernel ϕ cannot reproduce at least 2K

polynomials, then the set of Diracs cannot be recovered. This chapter investigates ways to

use the samples from different sensors jointly so that the different observed FRI signals can

be exactly reconstructed. This problem raises the feasibility of sampling FRI signals in a

truly distributed fashion. With such an architecture, none of the sensors can recover the

original signal independently. As shown in the next sections, the nature of the sampling

kernel is of considerable importance.

Two cases are treated in this chapter: in the first part, 2-D FRI signals like convex

bilevel polygons are considered together with polynomial reproducing sampling kernels.

In the second part, the case of streams of Diracs sampled with exponential reproducing

sampling kernels is considered.

The reconstruction approach considered for the case of convex bilevel polygons is

based on complex moments. Hence, the chapter starts by recalling the basics of the mo-

ment theory before detailing the sampling result that allows the reconstruction of polygons

from its samples as described in [110]. We then present a distributed architecture where

one sensor of reference can reconstruct its view f directly from its own samples and where

the other sensors need to calculate the transformations Ti relative to the sensor of refer-

ence in order to find their own views. This chapter does not focus on how to retrieve the

transformations Ti. Instead, we are merely interested in determining the characteristics

needed by the acquisition devices in a distributed environment in order to achieve perfect

reconstruction of FRI signals.

In the 1-D case, we consider the distributed acquisition of a stream of Diracs with

kernels reproducing exponentials and this allows us to exhibit some noticeable differences

with polynomial kernels. In 1-D, the set of observed signals are delayed versions in time.

We show how the observed streams of Diracs and the different time delays can be retrieved

exactly in a truly distributed architecture. We finally broaden the scope of this chapter

by presenting an application of the use of exponential kernels to time-interleaved analog-

to-digital converters where the framework of FRI signals is relaxed and sampled signals

do not need to be FRI signals.
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3.2 Theory of Moments

3.2.1 Definitions

Moments are features of signals and are characterized by a type and an order p. A general

mathematical definition of the moments of a function f (t) can be expressed as:

Ψp =

∫ ∞

−∞
f (t)Ψp (t) dt, p ∈ N, (3.1)

where the function Ψp (t) is referred as the basis function (or moment weighting kernel).

Depending on the choice of the basis function, many different types of moment can de-

fined: geometric, central, complex, Legendre, Zernike, Hermite or Chebyshev (Tchebichef)

. . . (see e.g. [107]). Orthogonal polynomials like Zernike, Legendre, Hermite or Chebyshev

are used as basis functions to generate the corresponding type of moments. The geometric

moments mp of order p ≥ 0 of a function f (t) are obtained by using the monomial tp as

basis function:

mp =

∫ ∞

−∞
f (t) tpdt, p ∈ N. (3.2)

A special point tb called barycenter of the function f (t) is defined at:

tb =
m1

m0
.

Let m
(1)
p and m

(2)
p be the moments of the function f (t) and the translated function

f (t − ∆t) respectively. It is quite straightforward to show the relation between those

two sets of moments:

m(2)
p =

∫ ∞

−∞
f (t − ∆t) tpdt

=

∫ ∞

−∞
f (x) (x + ∆t)p dx

=

∫ ∞

−∞
f (x)

p∑

k=0

(
p

k

)
xk∆tp−kdx

=

p∑

k=0

(
p

k

)
∆tp−km

(1)
k . (3.3)
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In fact, the translation ∆t can easily be retrieved from the barycenters t
(1)
b and t

(2)
b of f (t)

and f (t − ∆t) respectively as follows:

∆t = t
(2)
b − t

(1)
b . (3.4)

Given the value of tb, it is interesting to calculate the moments of the function f (t + tb)

centered in tb. These moments, called the central moments µp,q of f (t), are expressed as:

µp =

∫ ∞

−∞
f (t) (t − tb)

p dt

=

p∑

k=0

(
p

k

)
(−tb)

p−k mk. (3.5)

The weighted local moments are defined on a portion only of the function f (t) by

using a symmetrical positive window (or weight) function w (t) of support O. The local

weighted geometric moments centered at t0 are thus expressed as:

mp (t0) =

∫

O
w (t − t0) f (t) tpdx, p ∈ N. (3.6)

The use of a simple box function as the window w (t) is usually not used in practice as

it is often more desirable to increase the weights around the center of the window and

to gradually decrease the weights to zero as we move away from it. Therefore, various

local weighted moments can be defined depending on the choice of w (t). In [7], the choice

of a Lorentzian function was considered to computed the weighted moments for pattern

recognition purposes whereas in [115], a B-spline of a certain degree is chosen for the

detection of DNA strands and the estimation of the motion field. In [130], the notion of

cross-weighted moments between two functions is defined for registration and matching

applications.
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3.2.2 Image moments

Equation (3.1) can be applied to multiple dimensions in a straightforward manner. For

two dimensional signals like images, we have:

Ψp,q =

∫∫ ∞

−∞
f (x, y) Ψp,q (x, y) dxdy, p, q ∈ N, (3.7)

which thus gives for geometric and central moments of order p + q, p, q ∈ N:

mp,q =

∫∫ ∞

−∞
f (x, y) xpyqdxdy, (3.8)

µp,q =

∫∫ ∞

−∞
f (x, y) (x − xb)

p (y − yb)
q dxdy (3.9)

=

p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
(−xb)

p−k (−yb)
q−l mk,l, (3.10)

where the barycenter (xb, yb) of f (x, y) is given by:

xb =
m1,0

m0,0
and yb =

m0,1

m0,0
.

Interestingly, the moments can provide some basic information about the geometry of the

image f (x, y). Let C be the covariance matrix of f (x, y) given by:

C =




µ2,0 µ1,1

µ1,1 µ0,2


 .

The orientation of an image is given by the orientation of the eigenvector associated with

the largest eigenvalue of C. This direction is called the principal axis and is the line going

through the center of mass and around which the first order moments are minimized [62].

It can be shown that the orientation angle −π/4 ≤ θ ≤ π/4 is given by the following

relation :

θ =
1

2
arctan

(
2µ11

µ20 − µ02

)
. (3.11)

The complex moments Cp,q of order p + q are another type of moment that can be
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defined for 2-D functions on the complex image plane z = x + jy, j =
√
−1 as follows

(often attributed to Abu-Mostafa et al in [1] but already defined by Davis et al in [21]):

Cp,q =

∫∫ ∞

−∞
f (x, y) (x + jy)p (x − jy)q dxdy (3.12)

=

p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
jp−k+q+l (−1)q−l mk+l,p−k+q−l. (3.13)

Interestingly, the complex moments C
(1)
p,q and C

(2)
p,q of f (x, y) and their rotated version by

an angle α are related by the following expression:

C(2)
p,q = e−j(p−q)αC(1)

p,q . (3.14)

As it can be observed from Equations (3.10) and (3.13), the knowledge of the geometric

moments of a function f is sufficient to calculate the values of other types of moments

with a linear combination. Besides, it is also possible to derive similar relations for other

basis functions like Legendre polynomials. In this respect, the geometric moments are

considered as the fundamental set of moments in the theory of moments from which other

type of moments can be derived.

Moments have been extensively studied and used in signal processing [57, 117].

Moment theory has been most successful in areas like pattern recognition, object matching

or registration. One of the earliest works in image processing is provided by Hu on visual

pattern recognition which gives the following fundamental theorem [57]:

Theorem 1 (Hu’s Uniqueness Theorem, [57].). Let f (x, y) be a piecewise continuous

signal with a compact support O of the xy-plane where it is non zero. Then the set of

geometric moments {mp,q} is uniquely determined by f (x, y), and conversely f (x, y) is

uniquely determined by {mp,q}.

Therefore, piecewise continuous images can be uniquely represented by an infinite

set of moments {mp,q} and can be reconstructed exactly using the following expression [62]:

f (x, y) =

∫∫ ∞

−∞
e−j2π(xξ1+yξ2)




∞∑

p=0

∞∑

q=0

mp,q
(j2π)p+q

p!q!
ξp
1ξq

2


 dξ1dξ2. (3.15)
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However, if only a finite set of moments {mp,q} is available, it is in general not possible

to reconstruct exactly f (x, y). This is essentially due to the fact that the summation and

the integration signs in (3.15) are not interchangeable because the Fourier transform of

the term (j2πξ1)
p is not bounded [62]. However, some signals like bilevel polygons can

actually be perfectly represented by a finite set of moments.

3.2.3 On the Definitions of Continuous Moments and Discrete Moments

As seen from Equation (3.7), the basis function Ψp,q (x, y) and the observed signal f (x, y)

are both continuously-defined functions. However, in practice, the signal f (x, y) is not

available as-is and is approximated by its sampled version g [m, n] during acquisition.

Therefore, the integrals in Equation (3.7) are usually approximated by discrete summations

which lead to numerical errors in the calculated moments [88]. Therefore, strictly speaking,

these moments are different. However, in the majority of the works on moments, they are

often assumed which is not the case here.

In this thesis, it is fundamental to remember that a distinction is made between the

exact moments (from Equation (3.7)) called the continuous moments and their approxi-

mated calculations with discrete summations which are referred to as discrete moments:

CONTINUOUS MOMENTS: Ψp,q =

∫∫ ∞

−∞
f (x, y)Ψp,q (x, y) dxdy,

DISCRETE MOMENTS: Ψp,q =
∑

m,n

g [m, n] Ψp,q (m, n) .

Discrete and continuous moments have been defined in a different way in some works

as in [87, 88, 131] where the distinction between continuous and discrete moments was

made upon on whether the basis functions Ψp,q are continuous orthogonal polynomials

(e.g. Legendre) or discrete orthogonal polynomials (e.g. Chebyshev). A set of discrete

orthogonal polynomials tm (x) are satisfying the orthogonality condition are for discrete

values of x only [116].



3.3 RECONSTRUCTION OF BILEVEL POLYGONS WITH COMPLEX MOMENTS 81

3.3 Reconstruction of Bilevel Polygons with Complex Mo-

ments

The method of perfectly reconstructing convex bilevel polygons from samples as described

in [110] are given in this section. Such signals belong to the class of FRI signals since convex

polygons are completely and uniquely characterized by the location of their vertices. The

reconstruction approach focuses on retrieving the exact locations of the corners of the

polygon which is done by looking at the complex moments.

Let f (x, y) be the function describing a convex bilevel polygon with K vertices

{(xk, yk) |k = 1, . . . , K}. We now consider the image complex plane z = x + jy, j =
√
−1

where the vertices of the polygon are given by {zk = xk + jyk|k = 1, . . . , K}. In [20], Davis

proved that any complex analytic function h (z) in the closure Γ (see [104] for more details

on analytic functions) satisfies:

∫∫

Γ
f (x, y)h′′ (z) dxdy =

K∑

k=1

akh (zk) , (3.16)

where h′′ (z) denotes the second derivative of h (z) with respect to z. The complex coef-

ficients {ak ∈ C|k = 1, . . . , K} are independent of the function h (z). What the Equation

(3.16) essentially tells us is that the evaluation of the double integral is equal to a linear

combination of the function h evaluated at the location of the vertices zk of the polygon.

In [83], Milanfar et al considered Equation (3.16) by setting h (z) = zp which yields

to:

∫∫

Γ
f (x, y)h′′ (z) dxdy = p (p − 1)

∫∫

Γ
f (x, y) zp−2dxdy

︸ ︷︷ ︸
=Cp−2,0

,

= p (p − 1)Cp−2,0,

=
K∑

k=1

akz
p
k. (3.17)

Here Cp−2,0 are the complex moments of the polygon function f (x, y). In this case,

the complex moments Cp−2,0 weighted by p (p − 1) are equal to a powersum series

with unknown parameters {ak, zk}. By defining the weighted complex moments as
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τp = p (p − 1)Cp−2,0 with τ0 = τ1 = 0, Equation (3.17) can be rewritten in the following

more compact form:

τp =
K∑

k=1

akz
p
k. (3.18)

Thus, by utilizing the annihilating filter method (Section 2.2.3), it is possible to find the

unknown parameters {ak, zk} provided that at least 2K consecutive weighted complex

moments τp are available. Since τ0 = τ1 = 0, this requires us to know 2K − 2 consecutive

complex moments like the set {C0,0, C1,0, . . . , C2K−3,0}.

Finally, in [110], Shukla et al considered the problem of reconstructing perfectly

a sampled polygon in the light of the theory of sampling for FRI signals. Let gm,n be

the samples of the polygon f (x, y) obtained with a sampling kernel ϕ (x, y) reproducing

polynomials:

g [m, n] = 〈f (x, y) , ϕ (x/Tx − m, y/Ty − n)〉 . (3.19)

Now similarly to Equation (2.13), we have for p, q = 0, 1, . . . , P :

τp,q =
∑

m,n

c(p,q)
m,n g [m, n]

=

〈
f (x, y) ,

∑

m,n

c(p,q)
m,n ϕ (x − m, y − n)

〉

=

∫∫ ∞

−∞
f (x, y)xpyqdxdy,

= mp,q, (3.20)

where the coefficients c
(p,q)
m,n are for example given in Equation (2.26). The above equation

shows that it is possible to retrieve the exact geometric moments of the bilevel polygon

f (x, y) from its sampled version by properly combining the samples with some coefficients

related to the polynomial reproduction formula of the sampling kernel. When the moments

are calculated with Equation (3.20), these moments are referred to as the continuous

moments since they are the exact moments of the continuous function f and not the

moments of the discrete version g. Now, given the continuous geometric moments, it is

possible to find the exact complex moments of the polygon using Equation (3.13) and

therefore to find the vertices of the polygon. The following result can now be enounced:
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{Cp,q}

Complex Moments

g [m, n]

f (x, y)

ϕ (x, y) c
(p,q)
m,n

Vertices zk

Sensor SamplesBilevel Polygon

Geometric Moments

{mp,q}

Annihilating

filter method

Figure 3.2: From the acquisition to the perfect reconstruction of a bilevel polygon.
The polygon f (x, y) is acquired by a sensor with a sampling kernel ϕ (x, y) to give

the samples g [m,n]. The samples are combined with the coefficients c
(m,n)
p,q related

to ϕ (x, y) to obtain the exact continuous geometric moments mp,q of f (x, y). From
these moments, the continuous complex moments Cp,q are computed and used in the
annihilating filter method to retrieve the exact locations of the vertices of the original
polygon f (x, y).

Proposition 2 (Shukla and Dragotti, [110].). A bilevel and convex polygon

f (x, y) with K corner points is uniquely determined from the samples g [m, n] =

〈f (x, y) , ϕ (x/Tx − m, y/Ty − n)〉 provided that the sampling kernel ϕ (x, y) is able to re-

produce polynomials up to a degree 2K − 3 along the Cartesian axes x and y.

The power of this sampling result resides in the fact that the vertices of the polygon

can be located exactly given the samples. The whole approach of sampling and perfectly

reconstructing a bilevel polygon using the complex moments is summarized in the block

diagram of Figure 3.2. A simulation showing the reconstruction of a pentagon (K = 5

corners) from its samples is presented in Figure 3.3. Figure 3.3 (a) shows the original

bilevel pentagon (512x512 px). This image is then artificially sampled with a B-spline of

order P = 2K−3 = 7 and a scale T = 16 so that the resulting sampled image has a size of

32x32 px. The retrieved corners are plotted against the original image in Figure 3.3 (c).

The experiment shown in Figure 3.4 is based on a real acquired image. An image of

a scene containing a rectangle was acquired with a Nikon D70s digital camera and a lens

set out of focus. This image of size 2014x3039 px is then decimated by a factor 6 to give a

low-resolution image of size 335x507 px (Figure 3.4 (a)). An area of size 22x22 px is then

selected around the samples of the rectangle (K = 4) as shown on Figure 3.4 (b). In this

experiment, the sampling kernel is modeled by a B-spline of order P = 5 and a scale T = 6
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(a) (b) (c)

Figure 3.3: Simulation of sampling and reconstructing 2-D bilevel convex polygons.
(a) Original bilevel polygon with 5 corners f (x, y) (512x512 px); (b) Artificially sam-
pled image g [m,n] of size 32x32 px. The sampling kernel is a B-spline with P = 7 and
T = 16; (c) Original polygon and extracted corners (+).

(decimation rate). The four corners of the rectangle retrieved from the complex moments

are shown in Figure 3.4 (c) and Figure 3.4 (d) at a different zoom level. As opposed to

the simulation presented in Figure 3.3, it is important to notice that the samples in this

experiment are not artificially generated with a known sampling kernel but are the actual

samples from the camera. More details on how the camera is modeled are given in the

next chapter where the image acquisition model is described. It is the first time that such

experiments of bilevel polygons reconstruction from real samples have been conducted.

3.4 Distributed Acquisition with Kernels Reproducing

Polynomials

3.4.1 Distributed Acquisition of Bilevel Polygons

Problem statement

From the previous analysis, the perfect reconstruction of a bilevel polygon with K corners

from its samples requires 2K − 2 consecutive moments or equivalently a sampling kernel

that can reproduce polynomials up to degree P = 2K − 3. For the sake of clarity in

this section, we call the order P of a sensor when we want to refer to the maximum

polynomial reproduction degree P of the sampling kernel that constitutes that sensor. We

now consider the case of several sensors observing the same polygon with K corners from

different locations. We investigate here how the order of the sensors can be lowered such
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(a) (b)

(c) (d)

Figure 3.4: Experiment of reconstruction of a rectangle from real data. (a) Considered
image of size 335x506 px resulting from a decimation by T = 6 of a blurred image taken
out of focus. The square framed area is the region of interest of size 22x22 px; (b)
Region of interest containing the samples of the rectangle; (c) Retrieved corners (+)
and boundaries of the reconstructed rectangle. The sampling kernel is modeled by a
B-spline with P = 5 and T = 6; (d) Retrieved rectangle in the considered image.

that P < 2K − 3 while still preserving perfect reconstruction of the observed polygon

at each sensor. Since P < 2K − 3, independent reconstruction of the polygon at each

sensor is not conceivable and this suggests a joint reconstruction method that fuses the

information available from several sensors.

Using a sensor of lower order means that the sampling kernel has a shorter support

and that less samples are necessary. Take for example a B-spline kernel βP (t) of order P

and suppose that a single Dirac is located somewhere in [0, 1]. Because a B-spline of order

P has a support of length P + 1, the number of samples affected by the Dirac is exactly

P +1. Thus, the higher the order of a sensor, the larger the support of the kernel and the

more samples that are required.

We first look at the case where all the sensors have the same order P < 2K − 3
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and call this setup the symmetric distributed acquisition architecture. We then consider

the case where one main sensor has an order Pmain = 2K − 3 and all the other sensors

have the same order Paux < 2K − 3. This configuration is called asymmetric distributed

acquisition architecture. In each case, we first want to see whether perfect reconstruction

is possible at each sensor and what the minimum order is.

Symmetric Distributed Acquisition Architecture

Each sensor has an order P < 2K − 3 and observes a different transformed version of

the same polygon with K corners. The idea here is to examine whether each sensor can

generate only a subset of the necessary moments that are required to reconstruct the

polygon. As we shall see, this is not possible.

Suppose first that each sensor can extract the same subset of moments from order

0 up to order P < 2K − 3. Suppose the simplest case where two observed polygons fi

and fj are related by a translation (t1, t2). If an oracle gives the exact translation (t1, t2)

between fi and fj , then one can relate the moments m
(i)
p,q of fi and the moments m

(j)
p,q of

fj as follows:

m(j)
p,q =

p∑

k=0

q∑

l=0

(
p

k

)(
q

l

)
tp−k
1 tq−l

2 m
(i)
k,l. (3.21)

This is a direct extension to 2-D of Equation (3.3). This equation naturally shows that

the knowledge of the moments of a particular order of different view of a scene cannot give

the moments of higher order for another view. In other words, there is no new information

about a scene contained in the moments of the same order of two different views of the

same scene.

One could also perhaps design sensors that can output a different subset of moment

each so that by union of all the subsets, all the necessary moments are obtained. For

example, one sensor provides only the moments 0, 1 and 2 and another sensor provides

only the moments 3, 4 and 5. However, this is also not possible in the proposed framework

because, if a sampling kernel satisfies the Strang-Fix conditions and can reproduce a

polynomial of degree 3, it must also, by construction, reproduce all the polynomials of

degree 0 to 2. It is therefore impossible to distribute equally among several sensors the
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computation of moments.

Asymmetric Distributed Acquisition Architecture

Since it is not possible to have all the sensors with an order P < 2k − 3, we now look at

the case where one main sensor has an order Pmain = 2K − 3 and all the other sensors

have the same order Paux < 2K − 3 so that Pmain > Paux.

Since the main sensor can output all the necessary moments, it can reconstruct

the observed polygon independently. However, the other sensors cannot. The solution for

these auxiliary sensors is to calculate exactly the transformations Ti between them and the

main sensor so the reconstructed scene at the main sensor can be properly transformed to

give the view as observed by each sensor.

In this framework, the multiview reconstruction problem becomes a registration

problem and the minimum order necessary at each auxiliary sensor is the order required

to find the transformations Ti. It turns out that:

• if the Ti’s are translations, they can be retrieved from the moments of order 0 and

1: Paux = 1;

• if the Ti’s are rigid transformations (rotation and translation), they can be retrieved

from the moments of order 0 to 2: Paux = 2.

• if the Ti’s are affine transformations, they can be retrieved from the moments of

order 0 to 3 (see Section 4.3.2): Paux = 3.

Thus, as presented in Figure 3.5, perfect reconstruction at each sensor can be achieved with

an asymmetric distributed acquisition architecture whose main sensor has order Pmain =

2K − 3 and auxiliary sensors have an order Paux =1,2 or 3 depending on the assumed

transformation between the sensors. The only possible case where Paux and Pmain are equal

occurs when the observed polygon is a triangle (K = 3) and the assumed transformations

are affine transformations.
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Figure 3.5: Asymmetric architecture for distributed acquisition of bilevel polygons.

The main camera retrieves independently the vertices z
(0)
k of the observed polygon

from its moments whereas auxiliary cameras cannot. The relative transformation Ti

between the auxiliary sensors and the main sensor are obtained with a moment-based

registration method. The vertices z
(i)
k of the polygon observed by the i-th sensor are

then retrieved after transforming the vertices z
(0)
k with Ti.

3.4.2 Simulations and Experiments

We first show in Figure 3.6 a simulation of the distributed acquisition of a synthetic

pentagon with the architecture in Figure 3.5. The original pentagon observed by the main

sensor is shown in the middle column of Figure 3.6(a). The scene observed by the first

auxiliary sensor is shown on the left column of Figure 3.6(a). It is related to the pentagon

of the main sensor by the following affine transformation x′ = T1 (x):

T1 :

{
x′ = A1x + t1, A1 =




1.3 −0.5

−0.1 1.4


 and t1 =




−100

−80




}
.

The second sensor observes the scene depicted in the right column of Figure 3.6(a). It

is also related to the view of the main sensor by the following affine transformation x′ =

T2 (x):

T2 :

{
x′ = A2x + t2, A2 =




1.2 0.4

0.7 1


 and t2 =




13

50




}
.
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Each sensor samples independently its own view. Since the main sensor must be

able to reconstruct the pentagon (K = 5), it has a sampling kernel of order 2K − 3 = 7.

The sampling kernel used here is a B-spline of order P = 7 and sampling period T = 24.

The auxiliary sensors only need to be able to estimate the affine transformation between

themselves and the main sensor. Thus, the sampling kernels are a B-spline of order P = 3

with scale T = 64. The resulting sampled images are respectively displayed on the middle,

left and right columns of Figure 3.6(b). The resolution of the image at the main sensor

is 32x32 px whereas the resolution of the images at both auxiliary sensors is 8x8 px. The

continuous moments are computed at each sensor, then:

1. the corners of the polygon zk = xk + jyk, k = 1, . . . , 5 are retrieved at the main

sensor;

2. the affine transformations T1 and T2 are calculated to register both auxiliary sensors;

and

3. the corners of the polygon observed by the auxiliary sensors are inferred by applying

Ti on (xk, yk) , k = 1, . . . , 5.

The positions of the estimated corners are shown for each sensor in Figure 3.6(c)

where the corners are plotted against the original scenes. The estimated affine transfor-

mations T̃1 and T̃2 computed from the continuous moments are:

Ã1 =




1.3012 −0.5283

−0.0781 1.3935


 and t̃1 =




−99.3889

−79.6741


 ,

and

Ã2 =




1.2023 0.4027

0.6975 0.9989


 and t̃2 =




13.3637

50.0388


 .

In a second experiment presented in Figure 3.7, the samples are not generated

artificially but are the real samples acquired with a digital camera. Two out-of-focus

pictures of a rectangular polygon (K = 4) are taken from two different positions with a

SLR Nikon D70s digital camera, giving two blurred images of size 2014x3039 px. The

sampling kernel at the main sensor is modeled with a B-spline of order Pmain = 5 and
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scale Tmain = 6 whereas the sampling kernel at the auxiliary sensors is modeled with

cubic B-spline (Paux = 3) and a scale Taux = 9. Notice that in both cases, the support of

the kernel has a length of 36px. The two pictures are then decimated by Tmain and Taux

respectively to give an image of size 335x506 px at the main sensor and 224x338 px at the

auxiliary sensors (Figure 3.7(a)).

A set of samples containing the polygon is then selected on each image (red box in

(a) Original scenes (512x512 px each). Left: auxiliary sensor #1; middle: main sensor;
right: auxiliary sensor #2.

(b) Artificially sampled images. Left: auxiliary sensor #1: 8x8 px;
middle: main sensor: 32x32 px; right: auxiliary sensor #2: 8x8 px.

(c) Retrieved corners (+) plotted on original scenes (512x512 px).
Left: auxiliary sensor #1; middle: main sensor; right: auxiliary sensor #2.

Figure 3.6: Distributed acquisition of a pentagon. The sampling kernel of the main
sensor is a B-spline of order Pmain = 7 and scale Tmain = 16, and the sampling kernels
of the auxiliary sensors are a B-spline of order Paux = 3 and scale Taux = 64.
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3.7(a)). The regions of interest have a size of 22x22 px for the main sensor and 15x15 px

for the auxiliary sensor. As in the previous simulation, the corners of the polygon and the

affine transformation are calculated using the continuous moments. The locations of the

corners and the edges of the polygon recovered for each sensor is presented in Figure 3.7

(b) and (c) at a different zoom level. For information, the retrieved affine transformation

between the auxiliary and the main sensors is:

Ã1 =




0.821 0.0498

−0.0461 0.9157


 and t̃1 =




−8.1361

1.1065


 ,

The images presented in Figure 3.7 (d) are the “ideal”, focused and high resolution images

to help a visual comparison of the retrieved polygons and their locations in the scenes.

3.5 Distributed Acquisition with Kernels Reproducing Ex-

ponentials

3.5.1 Distributed Acquisition of a Stream of Diracs with E-spline Ker-

nels

In this section, the acquisition of 1-D signals is considered with sensors whose sampling

kernels can reproduce exponentials. Let us consider an acquisition system composed of

N sensors and let xi (t) , i = 0, . . . , N − 1, be the 1-D continuous signals observed by the

corresponding sensors. By convention, each sensor i > 0 observes a delayed version of

x0 (t) such that:

xi (t) = x0 (t − ∆ti) ,

where the time delays ∆ti ∈ R are unknown. The sampling kernel ϕi (t) at each sensor is

modeled by an E-spline of order P with a support of length L = P + 1:

ϕi (t) = βα(i) (t) , with α(i) =
{

α
(i)
0 , . . . , α

(i)
P

}
,
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(a) Low-resolution images from two locations. Left: main sensor 335x506 px;
right: auxiliary sensor 224x338 px. Red boxes show the regions of interest.

(b) Retrieved corners (+). Left: main sensor, 22x22 px; right: auxiliary sensor, 15x15px.

(c) Retrieved rectangle on each low-resolution images. Left/right: main/auxiliary sensor.

(d) High resolution and focused images of the same scenes for visual comparison.

Figure 3.7: Experiment of distributed acquisition of bilevel polygons. The sampling
kernel of the main sensor on the left is modeled by a B-spline with P = 5 and T = 6.
The auxiliary sensor on the right has a sampling kernel modeled by a B-spline with
P = 3 and T = 9.
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such that:

α(i)
p = α

(i)
0 + pλ(i), p = 0, 1, . . . , P for given λ(i) ∈ C and α

(i)
0 ∈ C.

We assume for simplicity that λ(i) = λ. The samples yi [n] acquired at the i-th sensor are

thus expressed as:

yi [n] =
〈
xi (t) , βα(i) (t/T − m)

〉
.

Let us now consider the case where x0 (t) is an infinite stream of Diracs with the k-th

Dirac described by the parameters (ak, tk) corresponding respectively to its amplitude

and its location. In the single sensor scenario, if the kernel ϕ0 (t) can reproduce up to 2K

exponentials (i.e. P = 2K − 1) as:

∑

n

c(0,p)
n ϕ0 (t − n) = eα

(0)
p t,

and provided that there are at most K Diracs in any interval of length 2KLT , then the

following measurements τ
(0)
p :

τ (0)
p =

∑

n

c(0,p)
n y0 [n]

=

∫ ∞

−∞
x0 (t) eα

(0)
p tdt

=
K−1∑

k=0

ake
α

(0)
p tk , p = 0, 1, . . . , 2K − 1.

provide enough information to retrieve exactly each Diracs with the annihilating filter

method [27]. Notice from the second line of the expression above that if α(0) is a set of

purely imaginary numbers, then τ
(0)
p are the Fourier coefficients of x0 (t).

As mentioned in the previous section, distributed acquisition aims to have sensors

of lower order P . As opposed to the polynomial case where only an asymmetric archi-

tecture is feasible, it is possible to truly distribute the acquisition of FRI signals with

kernels reproducing exponentials. Thus, the 2K parameters can be freely distributed

among the N available sensors. The reason why this is possible with kernels reproducing

exponentials is because such kernels offer a more general framework than kernels repro-
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ducing polynomials. With splines for example, B-splines kernels are a particular case of

E-splines with parameters αp = 0,∀p. It is now possible to design different kernels βα(i) (t)

and βα(j) (t) , j 6= i having the same order P but which are reproducing different sets of

exponentials α(i) 6= α(j). Thus the proposed architecture is symmetric in the sense that

each sensor now has the same order. However the reproduced exponentials are different

at each kernel.

In a distributed architecture, it is first necessary to register precisely the different

acquired signals so that they can be adequately combined. Assume that one parameter is

common to the sets α(0) and α(1) of the sensors observing x0 (t) and x1 (t) respectively.

For example, this parameter can be the first and the last parameter such that:

α
(0)
P = α

(1)
0 = α.

The corresponding measurements τ
(0)
P and τ

(1)
0 are then expressed as:

τ
(0)
P =

∫ ∞

−∞
x0 (t) eαtdt,

τ
(1)
0 =

∫ ∞

−∞
x1 (t) eαtdt.

Since x1 (t) = x0 (t − ∆t1), we can rewrite τ
(1)
0 as:

τ
(1)
0 = eα∆t1

∫ ∞

−∞
x0 (t) eαtdt,

which finally yields to the following relation:

τ
(1)
0 = eα∆t1 · τ (0)

P . (3.22)

This relation is a general expression of the well-known Fourier Shift Theorem for α ∈ C not

necessarily a pure imaginary number. Thus, if one common parameter is shared between

two sensors, the time delay ∆t1 between the two sensors can be retrieved exactly using
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Equation (3.22) as:

∆t1 =

ln
|τ

(1)
0 |

|τ
(0)
P

|
+ j

(
arg

(
τ

(1)
0

)
− arg

(
τ

(0)
P

))

α
. (3.23)

Once ∆t1 is known, Equation (3.22) can be used directly to register the measurements

τ
(1)
p , p > 0 with respect to the sensor of reference so that the annihilating filter method

can be run to retrieve the complete FRI signal.

As an illustration, consider that the observed signal is an infinite stream of Diracs

with at most K = 3 Diracs per interval Ω = 2KLT . With a single sensor, the required

sampling kernel must be able to reproduce 2K exponentials α = {α0, α1, α2, α3, α4, α5}.

Since L = 7 in this case, Ω = 42T . With two sensors of order P0 and P1 observing

respectively x0 (t) and x1 (t) = x0 (t − ∆t), the parameters can be distributed in the

two following sets where α3 is repeated: α0 = {α0, α1, α2, α3} and α1 = {α3, α4, α5}.

Since α3 is shared between the two sensors, the time delay ∆t can be calculated with

Equation (3.23). If the first sensor is chosen as reference, 3 Diracs can be perfectly re-

trieved by applying the annihilating filter method with {τ0, τ1, τ2, τ3} from the first sensor

and the registered data
{
e−α4∆t · τ4, e

−α5∆t · τ5

}
from the second sensor. Since the or-

der at each sensor is decreased, the support of the corresponding sampling kernel is also

reduced. Consequently, less samples are affected by a given Dirac at each sensor and

Ω = max (2KL0T, 2KL1T ) = 30T as L0 = 5 and L1 = 4. The streams of Diracs that

can now be reconstructed exhibit a higher rate of innovation ρ as the interval Ω where 3

Diracs can occur is reduced.

If K and N are given, the minimum order P required at each sensor to reconstruct

the stream of Diracs and find the N − 1 time delays of the sensors is:

P =

⌈
2K

N

⌉
+ 1.

The extreme case occurs when there are N = 2K − 1 sensors of order P = 2: each sensor

has one parameter that tracks the novelty of the observed signal and one parameter that

is shared to find the delay with other sensors.
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3.5.2 Time-interleaved Analog-to-Digital Converters

In this section, previous results are used in a more general framework than FRI signals.

Analog-to-digital converters (A/D converters) are necessary in the majority of signal pro-

cessing and communications systems. They are often decisive as far as the performance

of an electronic component is concerned. There exists a variety of different technolo-

gies for A/D converters such as flash, pipelined, successive-approximation or sigma-delta

converters [127].

The conversion time of an analog signal into its digital representation is however

not zero so if the input signal varies more than one least significant bit during that time,

the output will be incorrect. One way to handle this problem is to add a sample-and-hold

circuit (S/H) which holds the value of the signal so that the A/D converter has a stable

signal and some time to perform an accurate conversion. A S/H circuit is an analog circuit

with analog input/output and a digital control input [64]. A simplified model of a S/H

circuit is presented in Figure 3.8 [96]. It is composed of a first order RC circuit and a

switch driven by a clock. When the switch is closed (“Sample” mode), the input voltage

Vin (t) is connected to the capacitor C and the output signal Vout (t) follows the input

signal. When the switch is open (“Hold” mode), the capacitor is disconnected from the

input and maintains the last value the input had when the switch opened. We consider

that the time required by the A/D converter is short enough to assume that the hold value

is constant with time.

The accuracy of a S/H circuit is mainly dictated by how quickly the input value

is held according to the clock signal. Indeed, delays in the various components of a

S/H circuit can weaken its accuracy. The most important delays in such circuits are the

following [67]:

• the analog propagation delay ∆tb in the buffer amplifier;

• the switch driver digital delay ∆td;and

• the aperture time ∆ts of the switch, which is the time required to physically discon-

nect the hold capacitor from the input voltage.
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Input Sampling Clock

Buffer amplifier

R

Vout (t)Vin (t)
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Switch

∆td

∆ts

∆tb

Figure 3.8: Simplified Sample-And-Hold circuit modeled as a first order RC circuit.
When the switch is closed (“Sample” mode), the input signal Vin (t) is connected to
the capacitor C and the output signal Vout (t) follows the input signal. When the switch
is open (“Hold” mode), the capacitor C is disconnected from the input and maintains
the last value the input had when the switch opened. Various time delays can weaken
the accuracy of the circuit: the delay ∆tb in the buffer, the delay ∆td in the switch
driver and the aperture time ∆ts in the switch itself.

The overall delay ∆t called effective aperture delay time, aperture delay or time skew, is

given by [67]:

∆t = ∆td − ∆tb +
∆ts
2

.

In addition to aperture delays, the A/D converters suffer also from other errors like am-

plitude offset errors or gain errors which are not considered here. In the same conditions,

all A/D converters with S/H circuit experience a different static aperture delay ∆t. The

aperture delay of a given A/D converter can however vary if the temperature of the chip

changes, for example at start-ups or at different workloads.

A/D converter technologies are limited by the difficulty to achieve both high sam-

pling rate and high resolution. The limitation of the resolution of an A/D converter is

mainly determined by fundamental and inevitable imperfections of the physical device

like sampling jitter or sample-and-hold non-linearity. To overcome the speed limitation

of A/D conversion, an array of time-interleaved A/D converters can be considered [8].

This technique uses a number of A/D converters in parallel whose sampling times are

interleaved in order to achieve a high sampling rate. A model of time-interleaved A/D

converter array is presented in Figure 3.9. Each one of the N converters operates at a
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[Vout [n]]Q

Figure 3.9: Time-interleaved converter arrays can convert at high sampling rate by
using N A/D converters in parallel whose sampling times are interleaved. Each con-
verter operates at a period NT but the output signal of the array is sampled at a
period T .

sampling period NT but the overall conversion of the device is done at a sampling period

T . One particularly interesting advantage of this technique is that the die-size and process

requirements are reduced compared to other high-speed techniques. However, in addition

to problems common to all A/D converters, time-interleaved A/D converters also suffers

from new errors coming from the parallelization. Because in practice all manufactured

A/D converters are different, each channel of the time-interleaved A/D converter contains

errors called channel mismatches which results in a degradation of the resolution. Among

the possible causes of channel mismatch errors, the aperture delay different for each chan-

nel is probably the most harmful error as the resulting sampling becomes periodically

non-uniform [73] [69]. Indeed, since the A/D converters outputs data alternately, the

time difference between two consecutive samples is not T anymore. The corresponding

error is a function of the aperture delay and the slew rate (defined as dV/dt) of the input

signal [85]. The error shows a periodic pattern with the same period as each individual

converter. To compensate for different aperture delays and improve the resolution of the

time-interleaved A/D converter array, it is necessary to estimate as precisely as possible

the relative aperture delays ∆ti of each channel [29].

We now suppose that each S/H circuit has a sampling period NT = 1 and ignore

quantization. Therefore, the time-interleaved A/D converter has an overall sampling pe-
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riod T = 1/N . The physical RC circuit of each S/H device (Figure 3.8) can be described

by the following differential equation when the switch is closed (i.e. in “Sample mode”):

Vin (t) − Vout (t)

R
= C

dVout (t)

dt
.

The solution of this differential equation is:

Vout (t) =

∫ t

−∞
Vin (λ) e

λ−t
RC dλ. (3.24)

By defining the function:

ϕ (t) =





e
t

RC , t ≤ 0,

0, t > 0,

Equation (3.24) can be rewritten at time t = n ∈ Z as:

Vout [n] =

∫ ∞

−∞
Vin (t)ϕ (t − n) dt

= 〈Vin (t) , ϕ (t − n)〉 .

Since each S/H circuit in the time-interleaved array has a different static aperture delay

∆ti, the analog value hold at the output of S/H circuit for the i-th channel of the time-

interleaved A/D converter is:

V
(i)
out [n] = 〈Vin (t − ∆ti) , ϕ (t − n)〉 .

Similarly to [27], the filtering of V
(i)
out [n] with 1

α (eαz − 1) with α = 1/RC yields:

yi [n] =
1

α

(
eαV

(i)
out [n + 1] − V

(i)
out [n]

)

=
1

α
〈Vin (t − ∆ti) , eαϕ (t − n − 1) − ϕ (t − n)〉

= 〈Vin (t − ∆ti) , βα (t − n)〉 ,
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where βα (t) is an E-spline of order 0 with parameter α. By computing:

τ (i) =
∑

n

c(i)
n yi [n] ,

where c
(i)
n are the coefficients necessary to reproduce eα with βα (t − n), the different

aperture delays ∆ti of the channels relatively to the first channel can be effectively retrieved

with Equation (3.23):

∆ti =
1

α
ln

|τ (i)|
|τ (0)| . (3.25)

Once the information on the aperture delays is known, post processing correction

methods relocate the samples at the correct positions. The effect of the aperture delay

mismatch is removed and the different A/D converters at each channel behave identically.

Finally, the estimations of Equation (3.25) can be run appropriately to find the changing

aperture delays at different working temperatures of the chip.



Chapter 4

Image Feature Extraction and

Registration

4.1 Introduction

I
N this chapter, we do not consider exclusively the problem of multiview acquisition of

FRI signals but we look at the case of real images that are not necessarily FRI. In

particular, we focus on the case of multiview images and on the problem of their accurate

registration. However, the approach taken to tackle this problem is very similar to the

framework employed during the FRI analysis.

The registration of two images f1 and f2 is the problem of finding the transformation

T that relates them. This is often modeled as:

f2 (x, y) = f1 (T (x, y)) .

The difficulty of this problem comes from the fact that f1 and f2 are not available and

the registration has to be performed using the corresponding discrete images g1 and g2

that have been captured with an acquisition device like a digital camera. In addition to

sampling the observed scenes, the acquisition device also introduces non-linear modifica-

tions to the input signals. Thus, the estimation of T given g1 and g2 should take into

account as much as possible the various characteristics of the acquisition device and, when

possible, take advantage of them.
101
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The approach taken in this study is to consider the set of feature-based registration

methods whose accuracy depends on the way features are extracted from g1 and g2.

This chapter introduces two novel approaches for feature extraction that can be used for

registration purposes. Those two methods are based on FRI principles and achieve an

exact extraction of the desired features in real images.

The chapter starts by introducing the model of a digital camera that is considered

for image acquisition. In light of the previous chapter, it introduces an extraction method

for global features based on the continuous moments and show how they can be used

to retrieve up to an affine transform between images. A new local feature extraction

technique is then presented. It allows the exact location of multiple parallel step edges in

images from which corners can be inferred for registration. For each method, experiments

are conducted to evaluate the registration accuracies and results are compared with other

existing methods.

4.2 Image Acquisition Model

This section reviews the idealized image formation model considered in this thesis and

describes how the samples are related to the observed view via the Point-Spread Function

(PSF) of the camera lens. The diagram in Figure 4.1(a) presents the main components of

a camera which lead to a digital image given the observed view. The light rays are first

focused by the lens of the camera but, because a lens is never perfect, they are inevitably

blurred before hitting the image sensor. As the quality of the material and the size of the

lens decrease, the amount of blur introduced increases. Various other elements such as

motion blur or atmospheric blur can also deteriorate the observed view. However they are

not considered in this research. The blur introduced by the lens is characterized by the

Point-Spread Function (PSF). In the literature, the PSF of a lens is very often modeled by

a Gaussian pulse. In this research however, the PSF is modeled with B-spline functions

for mainly two reasons. First, the shape of B-spline functions is very similar to a Gaussian

pulse [121]. Second, B-splines possess properties such as polynomial reproduction that

we want take to advantage of. B-splines have already been used as a PSF model ( [95])
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Digital imageLensReal-world

Camera

Sensor

(a) From the real observed view to its digital representation

g [m, n]Tg(x, y)f(x, y)

ϕ(−x/T,−y/T )

(b) Model of a camera in terms of filter and analog to digital converter

Figure 4.1: Camera model; (a) the incoming irradiance light field is blurred by the
lens and sampled at the image sensor; (b) Equivalent model: f is the irradiance light
field, ϕ is the point-spread function of the lens, g is the blurred irradiance light field,
T is the sampling period and g is the sampled image.

but their polynomial reproduction capabilities have not been exploited yet. The last main

component of a camera is the image sensor, either a CCD (Charge Coupled Device) or

CMOS (Complementary Metal Oxide Semiconductor) array. It measures the amount of

light received and outputs a sampled image, the term digital image usually referring to

the quantized sampled image.

Figure 4.1(b) presents the equivalent idealized model to Figure 4.1(a) in terms

of filter and analog-to-digital converter. The incoming continuous irradiance light-field

f (x, y) is first filtered with the function ϕ (x, y). This two-dimensional function is the PSF

that characterizes the lens and is assumed as known. The blurred observation g (x, y) =

f (x, y) ∗ϕ (−x/T,−y/T ) is then uniformly sampled so that the discrete representation of



104 IMAGE FEATURE EXTRACTION AND REGISTRATION 4.2

the observed view is given by the following equivalent expressions:

g [m, n] = g (m, n)

= T ↓ (ϕ (−x/T,−y/T ) ∗ f (x, y))

=

∫∫

Ω
f (x, y) ϕ (x/T − m, y/T − n) dxdy

= 〈f (x, y) , ϕ (x/T − m, y/T − n)〉 (4.1)

where x, y ∈ R, m, n ∈ Z. We assume throughout this research that the sampling period

is equal to T in both dimensions in order to simplify notations. As seen on Equation

(4.1), the impulse response of the filter representing the lens is expanded by a factor T

corresponding to the sampling period. As in the sampling theory of FRI signals, the PSF

is thereafter referred to as the sampling kernel ϕ (x, y) of the acquisition device. The

sampling kernel is the time-reversed version of the impulse response of the filter in Figure

4.1(b).

The whole sampling process has noticeable properties and various assumptions can

be made to simplify the problem. The sampling process described by Equation (4.1) is

part of a more general framework represented by the so-called two-dimensional Fredholm

integral equation of the first kind defined as [37]:

g [m, n] =

∫∫
f (x, y) ϕ (x/T, y/T, m, n) dxdy. (4.2)

Any problem written in this form and which tries to find f given ϕ and g, is an ill-posed

inverse problem in the Hadamard sense [48]: a small perturbation on g can cause large

variations on the estimated solution. If we assume that the blur introduced by the lens

does not depend on the position in the image, then the sampling kernel ϕ in Equation

(4.2) is spatially invariant :

ϕ (x/T, y/T, m, n) = ϕ (x/T − m, y/T − n) .

Plugging this expression in Equation (4.2) gives the sampling Equation (4.1). The kernel
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ϕ (x, y) can also have a compact support Ω = [−L, L] × [−L, L]:

ϕ (x, y) = 0 ∀ (x, y) /∈ Ω.

Besides 2-D sampling kernels are often variable separable kernels which implies that the

two-dimensional function ϕ (x, y) is a tensor product of two one-dimensional functions:

ϕ (x, y) = ϕ1 (x) ⊗ ϕ2 (y) .

Under this assumption, Equation (4.1) becomes:

g [m, n] =

∫∫
f (x, y) ϕ1 (x/T − m)ϕ2 (y/T − n) dxdy. (4.3)

Two dimensional B-splines obtained by tensor product of the same 1-D function with

variables x and y are an example of 2-D kernels that are both variable separable and

rotationally symmetric.

4.3 Global Feature Extraction

4.3.1 Continuous moments of an image

Since the first work of Hu [57] on image moments, functions of moments have been ex-

tensively used in pattern recognition to build features that are invariant to a given trans-

formation [56]. Moments have also been used in various ways to perform image registra-

tion [34] [72] [130]. Traditionally, the observed view f (x, y) is not available so the true

moments mp,q of the continuous function f (x, y) cannot be directly computed. Instead,

they are approximated from the acquired image g using the discretized version of Equation

(3.8):

mp,q =
∑

m,n

g [m, n] (mT )p (nT )q . (4.4)

When the resolution of g gets low, the discrete moments mp,q do not provide a good

approximation anymore and the discrepancy between the true and the discrete moments

degrades the performance of any moment-based techniques.
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As shown in [27] and [110], it is possible to compute the exact moments of a FRI

signal from its sampled version, provided that the sampling kernel is known and satisfies

the Strang-Fix conditions. In fact, this result is correct not only in the case of FRI signals

but also for any signals. We thus propose to use these results on real images in order

to extract the true continuous moments of a real object f from its samples g. Following

Equation (2.13) and using Fubini’s theorem, the continuous moments are obtained by

linear combinations of the samples with the coefficients c
(p,q)
m,n for polynomial reproduction

(Equation (2.16)) as follows:

mp,q =

∫∫
f (x, y) xpyqdxdy

(a)
=

∫∫
f (x, y)

∑

m

∑

n

c(p,q)
m,n ϕ (x/T − m, y/T − n) dxdy

=
∑

m

∑

n

c(p,q)
m,n

∫∫
f (x, y) ϕ (x/T − m, y/T − n) dxdy

(b)
=

∑

m

∑

n

c(p,q)
m,n g [m, n] , (4.5)

where (a) and (b) come respectively from Equations (2.16) and (4.1). Once the continuous

geometric moments are obtained, other types of continuous moments (e.g. central or

complex moments) can be calculated as well with Equations (3.9) and (3.12).

Figure 4.2 shows how the estimation of the moments using Equation (4.4) or (4.5)

changes when the resolution decreases. For this experiment, 20 standard images (e.g.

Lena, Goldhill, Peppers, Mandril) of size 512x512 are each artificially blurred and down-

sampled to generate different square images with resolutions 256, 128, 64, 32, 16 and 8

pixels. Given these low resolution images, the estimated moments m̂p,q using either Equa-

tions (4.4) or (4.5) are compared to the true moments mp,q of the original image before

sampling by calculating the normalized distance between them:

dk =
∑

i+j=k

(m̂i,j − mi,j)
2

m2
i,j

,

where k defines the order of the moments considered. Figure 4.2 shows the variation of

the average normalized distance d2 with respect to the resolution of the sampled images

for moments of order 2. When the sampling kernel is known and reproduces polynomials,



4.3 GLOBAL FEATURE EXTRACTION 107

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

Image Resolution (pixel)

N
or

m
al

iz
ed

 D
is

ta
nc

e

Discrete moments order 2
Continuous moments order 2

Figure 4.2: Effects of the change of resolution in the estimation of image moments
of order 2. Dashed lines represent the normalized distances between the real mo-
ments and the discrete moments obtained from Equation (4.4). Solid lines represent
the normalized distances between the real moments and the continuous moments ob-
tained from Equation (4.5). As the resolution decreases, the discrete moments diverge
whereas the continuous moments remain very accurate, even in the presence of noise.
Similar observations are made for higher order moments.

the moments obtained with Equation (4.5) provide much more accurate results than those

obtained with Equation (4.4).

4.3.2 Affine Registration of Signals using Moments

Moments of an image can be used as features for registration. Since they are obtained

from all the samples of the considered image, moments convey global information on the

image. Thus, in order to use the moments for registration, the observed views should not

have new objects appearing or disappearing. We consider the case of objects which are

always visible on a uniform background.

Let g1 and g2 be two acquired images of the views f1 and f2 obtained as in Equation

(4.1). Using the continuous moments, we want to find the transformation T2 which relates

the coordinates of f2 to the coordinates of f1 (see Equation (1.1)). We assume that the

transformation T2 is an affine transformation represented by a translation t in x and y

directions and by a 2x2 matrix A composed of a rotation θ, a scaling (Xscale, Yscale) and

a shear (Xshear, Yshear):

T2 (x, y) = A [x y]T + t (4.6)
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with

A =




cos θ − sin θ

sin θ cos θ


 ·




Xscale Xshear

Yshear Yscale


 .

Let Ci, i = 1, 2 be the covariance matrix of f1 and f2 respectively:

Ci =




µ
(i)
2,0 µ

(i)
1,1

µ
(i)
1,1 µ

(i)
0,2


 ,

where µ
(i)
p,q are the central moments of order (p + q) of fi. Sprinzak and Werman showed

in [112] that the problem of finding the affine transformation matrix A between two point

sets is equivalent to finding a 2x2 orthonormal matrix R between the point sets in their

canonical forms. The canonical form occurs when the covariance matrices Ci are equal

to the identity matrix. In [56], Heikkilä uses the following transform to convert the views

into their canonical forms. Let Fi be the Cholesky decomposition of Ci:

Ci = FiF
T
i where Fi =




√
µ

(i)
2,0 0

µ
(i)
1,1√
µ

(i)
2,0

√
µ

(i)
0,2 −

µ
(i)2
1,1

µ
(i)
2,0


 .

The affine matrix A can now be expressed as:

A = F2RF−1
1 . (4.7)

The previous transform on f1 and f2 gives rise to f̄1 and f̄2 respectively:

f̄i (x, y) = fi

(
F−1

i (x − m1,0, y − m0,1)
)
. (4.8)

These views are now related only by a rotation with a single unknown parameter α instead

of 4 parameters in the case of an affine transform:

f̄2 (x, y) = f̄1 (R (x, y)) , (4.9)

where R is the orthonormal matrix representing either a rotation or a mirror reflection
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and a rotation. By considering the complex moments C̄
(i)
p,q of f̄i, it is possible to calculate

the rotation parameter. Indeed, we have:

C̄(2)
p,q = ej(p−q)α · C̄(1)

p,q ⇒ α =
arg

{
C̄

(2)
p,q

}
− arg

{
C̄

(1)
p,q

}

p − q
mod

2π

p − q
,

where arg {·} is the phase angle of a complex number. Moreover, the complex moments

C̄p,q, p + q = 3, are related to the central moments µp,q, p + q ≤ 3 as follows [56]:

Re
{
C̄2,1

}
= (µ3,0µ0,2 − 2µ2,1µ1,1 + µ2,0µ1,2) µ

−1/2
2,0 κ−1,

Im
{
C̄2,1

}
=

(
−µ3,0µ1,1µ0,2 + µ2,1µ2,0µ0,2 + 2µ2

1,1µ2,1 − 3µ1,1µ2,0µ1,2 + µ2
2,0µ0,3

)
µ
−1/2
2,0 κ−3/2,

Re
{
C̄3,0

}
=

(
µ3,0µ0,2µ2,0 − 4µ3,0µ

2
1,1 + 6µ2,1µ1,1µ2,0 − 3µ2

2,0µ1,2

)
µ
−3/2
2,0 κ−1

Im
{
C̄3,0

}
= (−3µ3,0µ1,1µ0,2µ2,0 + 4µ3

1,1µ3,0 + 3µ2,1µ
2
2,0µ0,2 − 6µ2

1,1µ2,1µ2,0,

+3µ1,1µ
2
2,0µ1,2 − µ3

2,0µ0,3)µ
−3/2
2,0 κ−3/2, (4.10)

where κ = µ2,0µ0,2−µ2
1,1, and Re {·} and Im {·} refer respectively to the real and imaginary

part of a complex number.

Thus the whitening transform does not need to be applied explicitly as only the

continuous central moments of the original views are necessary and can be obtained using

Equation (4.5) and Equation (3.8). In this way, the matrices R and Fi can be computed

to estimate the matrix A. The translation t is calculated using the barycenters of each

image and Equation (4.6):

t =
[
x

(2)
b y

(2)
b

]T
− A

[
x

(1)
b y

(1)
b

]T
.

Since in the absence of noise we can retrieve the exact continuous moments, it is thus

possible in theory to register low-resolution images exactly.
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4.3.3 Registration Experiments with Continuous Moments

To measure the accuracy of the estimated transformation, the average and maximum

geometric registration error, ε and εmax respectively, are calculated as in [129]:

ε =
1

N2

∑

x

∑

y

‖T (x, y) − T̃ (x, y) ‖2, (4.11)

εmax = max
x,y

‖T (x, y) − T̃ (x, y) ‖2, (4.12)

where T̃ is the estimated affine transformation, T is the exact affine transformation and N

is the size of the considered images f1 and f2. These error measures compute the distance

between the calculated locations of a point (x, y) after transformation with T and after

T̃ . If the estimated transformation is perfectly calculated, then the distance between the

two new points is zero. In the case of translation only, ε and εmax are the same since the

registration error is the same over the whole image plane. However, if rotation occurs, εmax

and ε are different as an error in the estimation of the angle means that the registration

error will increase with the distance from the center of rotation.

In Figure 4.3 (a)-(b), two high resolution images of size 512x512 pixels are consid-

ered as the two different views f1 and f2 of the same scene. The affine transformation

between f1 and f2 consists of a rotation of an angle θ = 36 degrees, a scaling factor of

(Xscale, Yscale) = (0.8, 0.9), a shear factor of (Xshear, Yshear) = (0.1,−0.1) and a translation

of -12 pixels and 7 pixels in X and Y direction respectively. We therefore have:

T2 (x, y) = A [x y]T + t

with

A =




0.706 −0.4481

0.3893 0.7869


 and t =




−12

7


 .

These two views are sampled with a cubic B-spline to generate two low-resolution

images g1 and g2 of size 16x16 pixels (decimation factor of 32) as shown in Figure 4.3

(c)-(d). Given these two low-resolution images, we apply the registration method with the
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(a) (b)

(c) (d)

Figure 4.3: (a)-(b) The two original views f1 and f2: 512x512 pixels each; (c)-(d)
The two corresponding acquired low-resolution images g1 and g2: 16x16 pixels each.
Original image “Blue Marble” by NASA’s Earth Observatory.

continuous moments to estimate A and t. The calculated affine transform is:

Ã =




0.7064 −0.4471

0.3885 0.7872


 and t̃ =




−12.004

7.007


 .

The average and maximum geometric registration errors are:

ε = 0.0413 pixel,

εmax = 0.148 pixel.

When calculating the affine transform from the true moments computed from f1 and f2,

the same registration errors are obtained. For comparison, the same simulation is run with

the discrete moments mp,q. As expected, they do not perform as well at this resolution.
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The retrieved transformation is in this case:

Ã =




0.7244 −0.4475

0.3941 0.7953


 and t̃ =




−12.49

8.23




for average and maximum errors of:

ε = 11.2 pixel,

εmax = 40.4 pixel.

The improvement of the average registration error is by a factor of 280 in this simulation.

4.4 Local Feature Extraction

4.4.1 Step Edge as an FRI Signal

In this section, the considered features are local. When working at low-resolution, features

are usually more difficult to find and locate accurately as each sample integrates a larger

part of the original scene. Thus the properties of very localized features such as corners

can be lost when images are acquired at low resolution. One dimensional features like

edges are however more resilient to downsampling as they usually span a larger part of

the scene. We now focus on the extraction of straight step edges.

A straight step edge is described by three parameters, namely its amplitude α, its

orientation θ and its offset γ with respect to a given axis. This model of step edges is

presented in Figure 4.4. We demonstrate how to retrieve the exact parameters from the

samples. Let ~N be the vector normal to the edge and ~d the vector of any point (x, y) in

R
2:

~N =

(− sin θ

cos θ

)
, ~d =

(
x − γ

y

)
.

Given ~N and ~d, a step edge function h (x, y) can be expressed as:

h (x, y) = αH
(〈

~d, ~N
〉)

, (4.13)
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θ

Figure 4.4: Step edge model. A straight step edge is described by 3 parameters: its
amplitude α, its orientation θ and its offset γ.

where H is the unit step function defined as:

H (t) =





1, t ≥ 0

0, t < 0.

4.4.2 Step Edge Extraction

We now assume that the signal h (x, y) is sampled using a 2-D B-spline sampling kernel

ϕ (x, y). Therefore, following Equation (4.1), the obtained samples h [m, n] are simply:

h [m, n] = 〈h (x, y) , ϕ (x/T − m, y/T − n)〉 .

The set of samples is filtered with a finite difference operator to give the differentiated

samples d [m, n]:

d [m, n] = h [m + 1, n] − h [m, n] . (4.14)

It is shown in [27] that the samples d [m, n] are the samples that would have been directly

obtained from the inner product of the derivative of h (x, y) along x and the modified

kernel ϕ (x, y) ∗ β0 (x). The differentiation of a discrete sampled signal is thus related to
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the derivation of its continuous counterpart as follows:

d [m, n] =

〈
dh (x, y)

dx
, ϕ (x/T − m, y/T − n) ∗ β0 (x/T − m)

〉

=

〈
dh (x, y)

dx
, (ϕ1 (x/T − m) ∗ β0 (x/T − m)) ⊗ ϕ2 (y/T − n)

〉
,

where the kernel ϕ has been assumed to be separable. Compared to ϕ (x/T, y/T ), the new

kernel ϕ (x/T, y/T ) ∗ β0 (x/T ) can reproduce polynomials with one degree higher than ϕ

along the x direction and has a support increased by one unit on the x axis. When the

sampling kernel is ϕ (x, y) = βP (x) ⊗ βP (y), the modified kernel is a 2-D B-spline kernel

of degree P + 1 along x and P along y:

d [m, n] =

〈
dh (x, y)

dx
, βP+1 (x/T − m) ⊗ βP (y/T − n)

〉
.

Moreover, the first derivative of the unit step function is given by:

dh (x, y)

dx
= −α sin θ · δ

(
~d · ~N

)
,

which finally yields to the following relation:

d [m, n] = −α sin θ ·
〈
δ
(

~d · ~N
)

, ϕ (x/T − m, y/T − n) ∗ β0 (x/T − m)
〉

.

We now compute the weighted sum of the differentiated samples affected by the edge in

row n with the coefficients c
(p)
m used for reproduction of polynomial xp with the modified

kernel ϕ1 (x/T − m) ∗ β0 (x/T − m):

τp,n =
∑

m∈Sn

c(p)
m d [m, n] , (4.15)

where Sn is the set of column indices of the samples affected by the edge in row n. It can

be shown that (see Appendix A):

τp,n = −α

p∑

j=0

(
p

j

)
mp−j

(tan θ)p−j

(
γ +

n

tan θ

)j
, (4.16)
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where mj are the moments of the sampling kernel:

mj =

∫ ∞

∞
tjϕ2 (t) dt. (4.17)

Since ϕ2 (t) is known, its moments mj can be computed numerically once and stored.

Besides, we have m0 = 1 because ϕ2 (t) satisfies partition of unity. Also, for symmetric

functions like B-splines, the odd order moments are equal to zero: m2j+1 = 0. In the case

of B-spline, it turns out that the even order moments m2j can be calculated analytically.

To simplify notations, we now write the quantity un = γ + n
tan θ . For p = 0, 1, 2, 3, formula

(4.16) becomes:





τ0,n = −αm0

τ1,n = −α
[
m0un + m1

tan θ

]

τ2,n = −α
[
m0u

2
n + 2 m1

tan θun + m2

(tan θ)2

]

τ3,n = −α
[
m0u

3
n + 3 m1

tan θu2
n + 3 m2

(tan θ)2
un + m3

(tan θ)3

]
.

Solving directly this system of equations for α, γ and θ leads to an ambiguity about the

sign of the angle θ of the edge. To overcome this and find the angle θ, we consider instead

two consecutive rows, i.e. n and n+1 and compute τk,n and τk,n+1. It turns out that this

approach gives a simple relation for θ:

tan θ =
τ0,n

τ1,n+1 − τ1,n
. (4.18)

The complete solution for a single step edge is then given by:





α = −τ0,n,

tan θ =
τ0,n

τ1,n+1−τ1,n
,

γ =
(n+1)τ1,n−nτ1,n+1

τ0,n
,

(4.19)

where it has been assumed that m0 = 1 and m1 = 0. Thus Equations (4.19) allow the

calculation of the exact parameters of a step edge from a sampled version using only two

consecutive rows.

It is possible to extend this analysis to any number K of parallel step edges. Such
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signal is specified by 2K + 1 parameters, namely (αk, γk) for k = 1, . . . , K and the angle

θ. It is expressed as:

h (x, y) =
K∑

k=1

αkH
(〈

~dk, ~N
〉)

, (4.20)

with ~dk = (x − γk, y)T . We prove in Appendix B that the angle θ can be retrieved using

the same formula as in Equation (4.18). Moreover, by defining the quantity τ̂p,n as follows:

τ̂p,n =





τ0,n, p = 0,

τp,n − ∑p−1
j=0

(
p
j

) mp−j

m0(tan θ)p−j τ̂j,n, p > 0,
(4.21)

we show in Appendix C that this quantity can be written in the form of a powersum series:

τ̂p,n =
K∑

k=1

λk · (uk,n)p p = 0, 1, . . . , M − 1, (4.22)

where uk,n = γk + n
tan θ and λk = −αkm0. The K pairs of unknowns {λk, uk,n} can then

be retrieved by applying the annihilating filter method (a.k.a. Prony’s method) provided

that M ≥ 2K [27,113,126]. Finally, these results can be extended to polynomial edges and

higher order derivatives by considering the generalized annihilating filter method. Figure

4.5 shows the case of linear edges and is treated in details in Appendix D. A linear edge

(or roof edge) can be modeled as:

h (x, y) = H
(〈

~d, ~N
〉)

[λ (−x sin θ + y cos θ) + α] . (4.23)

Interestingly, Equations (4.18), (4.21) and (4.22) are valid in this case too.

To determine the correct set of samples affected by a given edge, we first run a

simple edge detector, e.g. a Canny edge detector. We then retrieve the samples on the row

surrounding each position labeled as an edge. Since the kernel has a compact support, the

number of samples affected by an edge is finite. The samples are then used to compute

the parameters of potential step edges from Equations (4.19). Edges having the same

parameters are fused together by averaging the parameters together and by increasing the

weight of this edge by one. Thus, a step edge that has been extracted k times has a weight

equal to k after fusion. Finally, edges with a weight below a given threshold are discarded
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θ

Figure 4.5: Linear edge model. A straight linear edge is described by 4 parameters:
the amplitude α of the plane at the origin, the slope of the plane λ, the edge orientation
θ and the edge offset γ.

in order to keep only edges with sufficiently large weights. This procedure is described

in the pseudo-code of Algorithm 1. By considering only horizontal differentiations as in

Equation (4.14), horizontal edges cannot be extracted. In practice, Algorithm 1 is run on

the sampled image and on the transposed image to find all possible step edges, and both

results are fused again.

Figure 4.6 shows how edge extraction is performed with algorithm 1 on a synthetic

image presenting different step edges with various orientations, amplitudes and offsets.

Figure 4.6(a) shows the original scene before acquisition. Figure 4.6(b) is the acquired

image of size 64x64 pixels obtained with a quadratic B-spline sampling kernel. Figure

4.6(c) shows the differentiated samples dm,n. Figure 4.6(d) shows the position of potential

step edges using the Canny Edge detector. The retrieved edges are presented in Figure

4.6(e) and are also plotted against the original scene in Figure 4.6(f).

4.4.3 Registration Experiment from Extracted Edges

The step edge extraction technique described in Algorithm 1 is used to find possible step

edges in low-resolution images. Then, edge intersections are used as local features for

registration. To assess the accuracy of the proposed feature extraction method in the

context of image registration, we compare it to the Harris corner detector in the following
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: (a) Original image (1024x1024pixels); (b) Sampled image with a B-spline
sampling kernel (64x64pixels); (c) Horizontally differentiated samples; (d) Canny edge
detection; (e) Retrieved edges with Algorithm 1; (f) Retrieved edges plotted against
the original image.

experiment.

Setup

A high resolution image of a simple scene favorable to both our method and the Harris

corner detector is first acquired. The scene contains step edges, sharp corners, letters and

textures. The acquired picture is then cropped at two different known locations to create

two pictures f1 and f2 of size 512x512 pixels each with a slightly different field of view

(see Figure 4.7 (a) and (b)). The transformation, here a translation, between each picture

is therefore known exactly and is given by:

t =




0

28


 .

Each image is then artificially downsampled with a quadratic B-spline of scale 8 giving two

images of size 64x64 pixels each (see Figure 4.7 (c) and (d)). Features are then extracted

from g1 and g2 using either the Harris corner detector or our step edge detector.
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Algorithm 1 Subpixel Edge Location

1: Define weight = 1,
2: Run a Canny-like edge detector on sampled image (e.g. edge(I,’canny’) in Matlab),
3: Compute the differentiated samples using Equation (4.14),
4: for all position (i, j) detected as an edge do
5: find the differentiated samples in the neighborhood of (i, j),
6: calculate τ0,j , τ1,j and τ1,j+1 using Equation (4.15),
7: calculate α, tan θ and γ using Equations (4.19),
8: store [α tan θ γ weight] as a candidate edge
9: end for

10: while there exists similar edges do
11: Merge similar edges i.e. average [α tan θ γ] and add weight together,
12: end while
13: Discard edges having a too small weight.

(a) (b)

(c) (d)

Figure 4.7: (a)-(b) Two high-resolution images of size 512x512 pixels with different
field of view (translation = (0, 28)); (c) - (d) The same two images after sampling with
a quadratic B-spline of order 8. Each image has a size 64x64 pixels.

Harris Corner Detector

The Harris corner detector was first presented by Harris and Stephens in [54]. This detector

is based on the image intensities and models a corner as a point where the intensity changes

greatly in two different directions.

For different shifts [m, n], the intensity change is first calculated over a small win-
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dow:

E [m, n] =
∑

u,v

w [u, v] (g [u + m, v + n] − g [u, v])2 ,

where w [u, v] is the integration window function e.g. a circular Gaussian window. In

practice, if the shifts [m, n] are small, the intensity change is approximated by:

E [m, n] = [u v] · M · [u v]T ,

where

M =
∑

u,v

w [u, v]




g2
x gxgy

gxgy g2
y


 .

Here, gx and gy are the image derivatives of g after applying a finite difference operator

along x and y directions respectively. Based on the eigenvalue analysis of the matrix M ,

a measure of corner response R is calculated as:

R = λ1λ2 − k (λ1 + λ2)
2

= detM − k (traceM)2 ,

where λ1 and λ2 are the two eigenvalues of M and k is an empirical parameter usually set

between 0.04 and 0.06. Now depending on the value of R, we have:

• |R| small: the region considered is flat;

• R < 0: the region considered presents an edge; and

• R large: the region considered contains a corner.

The Harris corner detector used in our experiment is the subpixel implementation by

Kovesi that can be found in [68]. Figure 4.8 shows the extracted features using both

feature extraction techniques. Figure 4.8(a) and (b) show the Harris corners in two low-

resolution images while Figure 4.8(c) and (d) show the features extracted using the pro-

posed approach. Note that in this last case, no features are extracted on the contour of

the tiger plush as model considered if the step edge, thus reducing the number of available

features for registration.
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(a) (b)

(c) (d)

Figure 4.8: (a)-(b) Harris features detected in the low-resolution images; (c) - (d)
Features detected using our step edge detector in the low-resolution images.

Feature-based Registration Procedure

We follow a similar registration procedure described by Capel and Zisserman in [18]. The

local features considered in their work are corners extracted using the Harris corner detec-

tor. Although this detector does not achieve a high sub-pixel accuracy, precise registration

can be obtained provided that a large number of corresponding features (several hundreds)

are available on each image. As the number of extracted features increases, the inaccuracy

of the Harris corner detector is counterbalanced by the large number of features involved

in the estimation of the transformation. However on low-resolution images, only a small

number of features, say between 10 to 20, can sometimes be extracted in each image and

matched. In this case, the registration error can be large.

The same registration procedure as given in Algorithm 2 is used for the case of Har-

ris features and our features. The functions implementing the correlation matching and

the RANSAC robust estimation are available from [68]. The RANSAC (RANdom SAm-

ple Consensus) algorithm first introduced by Fischler and Bolles in [33] is used to discard

bad extracted features so that they are not taken into account for the estimation of the

transformation. Figure 4.9 shows the feature correspondences after RANSAC estimation
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Algorithm 2 Registration of two images with local features [18]
.

1: Extract local features at sub-pixel accuracy in both images,
2: Find putative feature correspondences using e.g. a correlation-based method on the

feature neighborhoods,
3: n=1, {Start RANSAC}
4: repeat
5: Select randomly 3 putative correspondences to calculate the affine transformation

T ,
6: Compute geometric image distance error for each putative correspondence,
7: Calculate number of inliers consistent with T as the number of feature correspon-

dences whose distance error is less than a threshold,
8: n=n+1,
9: until n=N

10: Select the transformation T with the highest number of inliers {End RANSAC},
11: Re-calculate the transformation T using all the features considered as inliers.

with both types of features. With the Harris detector, eighteen corners have been suc-

cessfully matched across images and are plotted against f1 and f2 on Figure 4.9(a). With

our features, the six corners have been successfully matched across the two images and

are plotted on Figure 4.9(a) against the high resolution images for a visual appreciation

of the subpixel accuracy.

Registration Accuracy

The translation t between the two images is then calculated in each case by averaging the

space differences between each feature correspondence. The estimated translation using

the proposed features is:

t̃ =




−0.15

28.13


 .

Because we only have a translation, the average and maximum registration errors as

defined by Equations (4.11) and (4.12) are equal:

ε = εmax = 0.039 pixel.
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(a)

(b)

Figure 4.9: (a) Feature correspondences plotted against the high resolution images
after RANSAC estimation with Harris features: 18 corners are matched; (b) Feature
correspondences plotted against the high resolution images after RANSAC estimation
with the features from our step edge detector: 6 corners are matched.

As for the Harris feature extraction case, the estimated translation is:

t̃ =




−0.94

26.93


 ,

and the corresponding registration errors are:

ε = εmax = 2.04 pixel.

Thus, although only half the number of corner points have been extracted with the pro-

posed approach by comparison with the Harris corner detector, the registration accuracy

is improved by a factor of 50 using the step edge extractor.
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Chapter 5

Application to Image

Super-resolution

5.1 Introduction

I
MAGE super-resolution techniques aim at constructing a single detailed high-

resolution image from a set of several low-resolution images of the scene taken from

different positions. Because each low-resolution image captures a different view of the

scene, it is possible to reconstruct an image in which details that cannot be seen on any

of the acquired images become visible. Image super-resolution is therefore a solution to

overcome the physical limitations of hardware capabilities.

The problem of image super-resolution can be conceptually divided into two sub-

problems known as image registration and image reconstruction (see Figure 5.1). Image

registration is necessary to find the disparity between the low-resolution images and image

reconstruction consists of fusing the set of images into a single image and restoring the

fused image by removing any blur and noise introduced by the acquisition device.

Since its first formulation by Tsai and Huang [58], the super-resolution problem has

received much attention in the signal processing community. Most earlier works focused on

the restoration stage assuming that traditional registration methods provided a solution

sufficiently accurate and robust. However the quality of the restoration depends heavily

on the accuracy of the registration. Indeed, the restoration process is a typical inverse
125
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Set of low-resolution
images registration

1. Image 2. Image Super-resolved
reconstruction image

Figure 5.1: The two main stages of image super-resolution: image registration and
image reconstruction. Input low-resolution images need first to be registered before a
super-resolved image can be generated. The image reconstruction step involves image
restoration whose output can be greatly improved with a correct registration.

ill-posed problem for which the presence of noise makes the search for a good solution very

difficult. As it can be seen in Figure 5.1, the registration precedes the restoration step.

Therefore the noise at the input of the restoration stage resulting from misregistration can

be greatly reduced if registration is accurately performed. This would result in producing

a super-resolved image of higher quality.

There has therefore been a recent shift in research on super-resolution towards the

problem of achieving an accurate registration of low-resolution signals [128] [101]. Since

the same motivation is also behind this research, it is therefore quite natural to test our

registration algorithms in the context of image super-resolution.

5.2 Discrete Problem Formulation

Let fi be the desired, ideal, high-resolution discrete image of size NxN representing the

continuous scene fi observed by the i-th camera and let gi be the corresponding acquired

image of size MxM , with M < N . Equation (4.1) can be discretized using quadrature

methods into a linear system relating gi and fi with sampling period T = N/M as:

g
i
= M · f i, where f i = vec (fi) and g

i
= vec (gi) . (5.1)

The ‘vec’ operator stacks the columns of a matrix X into a column-vector x. The dimen-

sions of f i and g
i

are respectively N2x1 and M2x1. Usually dense and large (M2xN2),

the mapping matrix M, obtained by discretization of the sampling kernel ϕ, represents

the blurring and the downsampling process of the acquisition device. The i-th row of M

consists of the weights used in the linear combination of all the elements of f which give

rise to the pixel in the i-th row of g. If we assume spatial invariance and compactness

of the sampling kernel, M becomes sparse and exhibits some particular structures (e.g.
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circulant-like, Toeplitz-like or Hankel-like) which depend on the boundary conditions con-

sidered outside the field of view. For example, by assuming periodic boundary conditions,

the matrix M becomes a block-circulant matrix with cyclic shift value equal to T [89].

We now focus on the case where the sampling kernel is separable. Equation (5.1)

becomes in this case:

g
i
= (M1 ⊗ M2) · f i ⇔ gi = M2 · fi · MT

1 . (5.2)

Here, M1 and M2 are both of size MxN . We therefore have M = M1 ⊗ M2. If the

sampling kernel is considered rotationally symmetric, then M1 = M2. The main advantage

of considering a space-invariant separable kernel is computational since only two MxN

matrices are necessary to describe the large M2xN2 matrix M due to the properties of the

Kronecker product. It is also much more efficient as far as matrix-vector operations and

singular values decompositions are concerned. The matrix M2 blurs and downsamples

the columns of f whereas M1 operates on the rows of f . We define k1 [m] as the discrete

version of the 1-D sampling kernel ϕ1 (x) by expanding it by T and then sampling it:

k1 [m] = ϕ1

(m

T
+ ℓ

)
, m ∈ Z, (5.3)

where ℓ is a desired offset. The sampling period therefore determines the resolution of

the discrete approximation of ϕ1 (x). Assuming periodic boundary conditions, the [m, n]

entry of M1 is given by:

M1 [m, n] = k1 [n − 1 − T (m − 1) mod N ] .

It can be seen as a circulant matrix to which only one out of T rows have been kept, i.e.
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the product of a downsampling matrix and blurring matrix. Thus for T = 2, we have:

M1 =




k1 [0] k1 [1] k1 [2] . . . k1 [N − 1]

k1 [N − 2] k1 [N − 1] k1 [0] . . . k1 [N − 3]

...
. . .

. . .
. . .

...

k1 [3] · · · k1 [0] k1 [1] k1 [2]

k1 [1] · · · k1 [N − 2] k1 [N − 1] k1 [0]




MxN

.

M2 is obtained similarly after discretization of ϕ2 (y). Unless stated otherwise, we consider

in this research the case of a spatially invariant and separable sampling kernel.

5.3 Image Restoration

In image super-resolution, the image reconstruction step consists in interpolating the miss-

ing samples on the desired high resolution grid given the available registered samples. The

resulting image g̃ of size NxN is blurred since the effect of the lens has not yet been re-

moved. Because of the interpolation step and possible misregistration, the image g̃ is also

perturbed by noise. The restoration problem consisting in removing the blur is expressed

as:

g̃ = K · f , (5.4)

with

g̃ = g + e, (5.5)

where:

• g = vec (g) is the noiseless blurred image,

• f = vec (f) is the desired image,

• e is the perturbation,

• K is the N2xN2 matrix representing the pure blurring process.

We notice that the restoration problem is a particular case of the sampling problem (see

Equation (5.1)) where K = M for T = 1 (and M = N).
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Figure 5.2: Singular values of the blurring matrix K obtained by discretization of the
cubic B-spline with N = 512. The condition number of this matrix is equal to 7.8×1033.

5.3.1 Discrete Ill-posed Problems

Because the sampling kernel ϕ has a smoothing effect, the matrix K, of rank r, is inherently

ill-conditioned: the singular values σi of K decay progressively to zero. For example, let

ϕ be a 2-D cubic B-spline with scale 16 and let N = 512. The corresponding matrix K of

size 5122x5122 is the Kronecker product of two matrices K1 and K2 so that: K = K2⊗K1.

The singular values of K are shown in Figure 5.2 for which the condition number, defined

as the ratio between the largest and the smallest singular values, is equal to 7.8 × 1033.

The problem of finding f given g̃ and K is a linear discrete ill-posed inverse problem

for which a square summable solution with finite l2-norm is searched. In this case, standard

inverse methods do not work since the perturbations within g̃ are amplified by the very

large singular values of K−1. Indeed, the singular value decomposition (SVD) of K is

given by:

K = UΣVT ,

where U and V are matrices with orthonormal columns ui and vi, and Σ is the diagonal

matrix of singular values arranged in descending order. The direct inverse solution to
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Equation (5.4) is:

f = K−1g̃

=
r∑

i=1

uT
i g̃

σi
vi

=
r∑

i=1

uT
i

(
g + e

)

σi
vi

=
r∑

i=1

uT
i g

σi
vi +

r∑

i=1

uT
i e

σi
vi

︸ ︷︷ ︸
error

.

Thus, as the contributions of the small singular values of K are taken into account, the

noise is amplified and the solution starts to be dominated by the noise.

5.3.2 Regularization Methods

Direct Regularization Methods

Discrete ill-posed problems are usually solved using regularization methods which trans-

form an ill-posed problem into a well-posed one by dampening or filtering out the part

of the solution corrupted by noise (i.e. due to small singular values) and by adding a

constraint on a priori knowledge about the solution called the regularization term. One

standard way to solve the restoration problem:

g̃ = K · f

is to minimize the residual norm that measures the quality of the solution:

min
f

∥∥g̃ − K · f
∥∥

2
(5.6)

Various constraints can be added to the above minimization problem. Direct regularization

methods offer a framework where the estimated solution can be computed in one step.

A common regularization term Ω (f) is to require that the norm of the solution, or of

its derivatives, is also minimized. Probably the most popular method, the Tikhonov
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regularization is expressed as [118]:

fλ = argmin
{∥∥g̃ − Kf

∥∥2

2
+ λ2 ‖L (f − f∗)‖2

2

}
, (5.7)

or as:

fλ = argmin

∥∥∥∥∥∥∥




K

λL


 f −




g̃

λLf∗




∥∥∥∥∥∥∥

2

2

where:

• f∗ is an optional initial estimate;

• λ is the regularization parameter that tunes the importance of the constraint; and

• L is an operator like the identity matrix if the norm of f is minimized or a banded

matrix of finite differences if the norm of the derivative is minimized.

The optimal value of λ needs to be estimated separately. It can be shown that for L = I

and f∗ = 0, the Tikhonov solution of Equation (5.7) is [49]:

fλ =
(
KTK + λ2I

)−1
KT g̃

=
r∑

i=1

Φi

uT
i g̃

σi
vi,

where

Φi =
σ2

i

σ2
i + λ2

. (5.8)

Initially close to 1 for σi ≫ λ, the filter factors Φi decays smoothly down to zero when

the singular values σi ≪ λ. Thus, the regularization method tends to gradually filter

out the contribution of
uT

i g̃

σi
vi in the solution as σi gets smaller. The Tikhonov factors

Φi of Equation (5.8) are in this case identical to the Wiener filter which operates in the

frequency domain [94].

A large set of regularization methods differ depending on how the decay of the filter

factors is specified. The general expression of the solution is written as:

fλ =
r∑

i=1

Φi

uT
i g̃

σi
vi, (5.9)
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For example, the filter factors Φi for different methods are can be the following [49]:

• Least-square estimation:

Φi = 1 ∀i.

This is the least square estimate when there is no regularization term (λ = 0). It

usually gives a poor quality solution for discrete ill-posed problems.

• Truncated Singular Value Decomposition (TSVD):

Φi =





1, if i ≤ λ

0, if i > λ

The filter factors implement a step filter where the first λ biggest singular values are

taken into account and the remaining ones are discarded.

• Damped Singular Value Decomposition (DSVD):

Φi =
σi

σi + λ
. (5.10)

The DSVD offers a smoother cut-off than the TSVD and the filter decays more

slowly than the Tikhonov regularization of Equation (5.8).

Iterative Regularization Methods

The iterative Conjugate Gradient (CG) method is popular to solve linear problem with a

sparse symmetric positive definite matrix:

g̃ = K · f , .

If the system is not symmetric positive definite, the CG is run on the normal equations:

KT g̃ = KTK · f . The implementation of the CG however does not compute explicitly the

product KTK. The CG has inherent regularizing properties [51]: as the algorithm iterates,

the low frequency components of the solution converge faster than the high frequency

ones. Consequently, there is an optimal number of iteration after which the CG starts
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to introduce errors in the estimated solution. The number of iteration constitutes the

regularization parameter λ.

An alternative algorithm to CG is LSQR [93] which avoids the need to write the

problem in terms of normal equations as for the CG algorithm. The LSQR is mathemati-

cally equivalent to the CG but it allows the use of the Lanczos bidiagonalization algorithm

to build the so-called Lanczos vectors [44]. The reorthogonalization at each iteration of

the Lanczos vectors accelerates in theory the convergence of LSQR, but this is not usually

done in practice as it is too computationally demanding [51].

A different approach to restoration is to consider iterative minimization algorithms

for solving linear systems that constrain the solution to be nonnegative. Enforcing non-

negativity is particularly relevant for images and often leads to more accurate results

although it is also more computationally demanding. The algorithm introduced in [66]

as EM-LS (Expectation Maximization Least Square) and in [90] as MRNSD (Modified

Residual Norm Steepest Descent) solves the following problem:

min
f

∥∥g̃ − K · f
∥∥

2
subject to f ≥ 0.

At each iteration, the direction of the negative gradient is taken and a line search is applied

to minimize the residual norm
∥∥g̃ − K · f

∥∥ in such a way that the nonnegativity of the

solution is maintained. The MRNSD approach, as all the steepest descent algorithms,

has a slow convergence which can be accelerated using preconditioning. Finally, there

exists also with this approach an optimal number of iterations that gives the best solution

possible.

Because the exact moments of f can be retrieved with the proposed feature extrac-

tion approach, different restoration methods which constrain the moments up to order 3

of the solution to be equal to the moments of f were tried out. However, no significant

improvements were obtained as far as the quality of the restored image is concerned. As

also suggested by theorem 1, this is due to the fact that a large number of moments is

required to describe the content of an image so that the restoration process is helped to

converge towards the correct solution.
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Figure 5.3: The log-log curve of the residual norm versus the solution norm often leads
to an L-shaped curve as above. The optimal value for the regularizing parameter is
found at the corner of the curve where both the residual norm and the solution norm
are minimized. Problems can occur when the corner is not sharp enough.

Regularization Parameter Estimation

Direct and iterative methods both require the estimation of the optimal value of the

regularization parameter λ. The regularization parameter can have different meanings:

it can correspond either to a particular singular value (e.g. Tikhonov, DSVD or TSVD

methods) or to the number of iteration (e.g. with the CG or MRNSD methods). The

two most popular methods are the L-curve method and the Generalized Cross-Validation

method.

The L-curve is a method that seeks to minimize the residual norm
∥∥g̃ − K · f

∥∥
2

and the norm of the solution ‖L · f‖2 as shown on Figure 5.3 [84] [50]. The L-curve is a

log-log plot of the two norms for different λ and has the shape of an “L”. The optimal

regularization parameter is found at the corner of the “L” where both norms are minimized.

Thus, after computations of
∥∥g̃ − K · f

∥∥
2

and ‖L · f‖2 for several values of λ, the optimal

regularization parameter can be estimated by finding the maximum of the curvature of the

L-curve. One necessary assumption to ensure that the L-curve has an “L” shape is that

the Discrete Picard Condition is satisfied for the noiseless problem [50]: the exact SVD

coefficients |uT
i g| decay faster than the singular values σi of K. This condition ensures

that, in the ideal noiseless case, the least-square solution does not have a large norm and

that it can be approximated by the regularized solution [125].

The Generalized Cross-Validation (GCV) is a function of the regularizing parameter
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λ whose minimum is achieved at the optimal λ. The GCV function can be expressed as [51]:

G (λ) =

∥∥Kfλ − g
∥∥2

2

(trace (I − KKλ))

′

where Kλ is such that:

fλ = Kλg

The exact expression of the GCV function varies depending on the regularization method

used and the type of regularization parameter looked for (see [45]).

5.4 Image Super-resolution: Simulations

5.4.1 Comparison of Restoration Methods

The set of restoration methods described in the previous section are now used in the

restoration step of a super-resolution algorithm. The assessment of the quality of the super-

resolved image is based on the PSNR value and the visual quality of the reconstructed

image. The original image has size 172x172 pixels and is used to generate a set of 15

different translated images and sampled by a cubic B-spline with scale T = 4. Each

low-resolution image has a size of 43x43 pixels.

The set of low-resolution images is registered using the continuous moments and

fused on the same high resolution grid where missing samples are evaluated by cubic inter-

polation. The size of the resulting blurred image is the same as the original image: 172x172

pixels. The original image, one low-resolution image and the reconstructed blurred image

are shown in Figure 5.4.

The image presented in Figure 5.4(c) is then restored using various algorithms. The

resulting restored images are shown in the following figures:

• Figure 5.5: Truncated SVD with GCV method,

• Figure 5.6: Damped SVD with GCV method,

• Figure 5.7: Tikhonov regularization with L-curve method,

• Figure 5.8: Wiener filter (deconvwnr in Matlab),
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(a) (b) (c)

Figure 5.4: (a) Original image (172x172 px); (b) Sampled image (43x43 px); (c) Re-
constructed super-resolved image (172x172 px) before restoration using 15 translated
images. Original image “Blue Marble” by NASA’s Earth Observatory.

• Figure 5.9: Conjugate Gradient with L-curve method,

• Figure 5.10: Modified Residual Norm Steepest Descent.

From the obtained results, the Wiener filter and the MRNSD algorithm provide the images

with the best quality both visually and in terms of PSNR (above 33 dB). Therefore these

two restoration methods are selected for further super-resolution experiments. The Wiener

filter has the advantage of being a direct method compared to the MRNSD algorithm which

requires one to find the optimal number of iteration.
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Figure 5.5: (a) GCV function; (b) Super-resolved image with Truncated SVD and
GCV method: PSNR = 7.9 dB. The minimum of the GCV function is achieved at
k= 10873 largest singular values.

In the next two experiments, larger problems are considered with super-resolved

images of size 512x512 pixels obtained from sets of low-resolution images of size 64x64

pixels (T = 8). In the first case shown in Figure 5.11, the assumed transformation be-

tween low-resolution images is a translation. A set of 40 low-resolution images is used
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Figure 5.6: (a) GCV function; (b) Super-resolved image with Damped SVD and
GCV method: PSNR = 13.5 dB. The minimum of the GCV function is achieved at
λ = 2.5 · 10−3.
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Figure 5.7: (a) L-curve; (b) Super-resolved image with Tikhonov regularization and L-
curve method: PSNR = 15.7 dB. The corner of the L-curve is achieved at λ = 1.3·10−2.

Figure 5.8: Super-resolved image with Wiener filter: PSNR = 33.6 dB.

to construct the super-resolved image. Figure 5.11(a) shows the ground-truth image and

Figure 5.11(b) shows one the 40 low-resolution images. The registration is based on the

continuous moments and both the Wiener filter and the MRNSD are considered in the

restoration step (Figure 5.11(c) and (d)). Both super-resolved images are visually good

and the image restored with the Wiener filter has a higher PSNR (24.2 dB) than the image
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Figure 5.9: (a) L-curve; (b) Super-resolved image with Conjugate Gradient algorithm
and L-curve method: PSNR = 23.8 dB. The corner of the L-curve is achieved at 100
iterations approximately.

Figure 5.10: Super-resolved image with Modified Residual Norm Steepest Descent
algorithm after 400 iterations (experimentally estimated): PSNR = 33 dB.

restored with the MRNSD approach (23 dB). However this is not the case with the second

experiment shown in Figure 5.12 where the low-resolution images are now related by affine

transformations. As previously, the registration is based on the continuous moments and

both the Wiener filter and the MRNSD algorithms are used for restoration. In this more

challenging situation, the super-resolved image obtained with the MRNSD algorithm (Fig-

ure 5.12(d)) has much better visual quality and a higher PSNR (30.5 dB) than the image

restored with Wiener filter (17.1 dB). Because affine transformations are more difficult to

estimate exactly, the image to restore is noisier than in the case of low-resolution images

related by translations. We thus observe that the MRNSD is more robust to noise than

the Wiener filter but has the disadvantage of being slow to converge to the solution. The

straightforward approach offered by the Wiener filter and its variants has recently been

used as a restoration method in several super-resolution techniques [101] [53].



5.4 IMAGE SUPER-RESOLUTION: SIMULATIONS 139

(a) (b)

(c) (d)

Figure 5.11: Image super-resolution of translated images with registration based on
continuous moments; (a) Original high resolution image (512x512pixels); (b) One of
the 40 translated low-resolution images (64x64 pixels) used in the super-resolution
simulation; (c) Super-resolved image obtained with Wiener filter, 512x512 pixels,
PSNR = 24.2 dB; (d) Super-resolved image obtained with the Modified Residual
Norm Steepest Descent method (100 iterations), 512x512 pixels, PSNR = 23 dB.

5.4.2 Moment-based Registration: Discrete vs Continuous Moments

The following simulation illustrates that the quality of the super-resolved image is in-

creased when accurate features for registration are considered. The discrete and continuous

moments are used here for comparison and the experiment is shown in Figure 5.13. As with

the previous experiments, we use a single high resolution image (Satellite image, 512x512

pixels) shown in Figure 5.13(a) to generate 24 other images related by translations. Each

of these images is blurred and downsampled with a cubic B-spline to give a low-resolution

image of size 64x64 pixels (see e.g. Figure 5.13(b)). This set of low-resolution images is

then used as input for super-resolution. The translations are retrieved either from the

discrete or the continuous moments of each image for comparison. In the case of the dis-

crete moments, the registration error averaged over the 24 frames is ǭ = 0.11 pixels with a

maximum registration error of ǭmax = 2.5 pixels. In the case of the continuous moments,

the registration error averaged over the 24 frames is ǭ = 3.5 ·10−29 pixels with a maximum
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(a) (b)

(c) (d)

Figure 5.12: Image super-resolution with affine registration based on continuous mo-
ments; (a) Original high resolution image (512x512pixels); (b) One of the 16 affine low-
resolution images (64x64 pixels) used in the super-resolution simulation; (c) Super-
resolved image obtained with Wiener filter, 512x512 pixels, PSNR = 17.1 dB; (d)
Super-resolved image obtained with the Modified Residual Norm Steepest Descent
method (80 iterations), 512x512 pixels, PSNR = 30.5 dB. Original image “Blue Mar-
ble” by NASA’s Earth Observatory.

registration error of ǭmax = 8 · 10−28 pixels. For a fair comparison, only the Wiener filter

is used for restoration as it is fast and does not involve iterations. The super-resolved

images are shown in Figure 5.13(c) and (d). The image in Figure 5.13(c) is obtained after

registration with the discrete moments. Visual artefact are clearly visible and the PSNR

is equal to 16.8dB. The super-resolved image shown in Figure 5.13(d) results from the

utilization of the continuous moments for registration. Ringing effects are less visible and

the image has a higher PSNR = 19.6 dB. Thus, by considering more accurate features like

the continuous moments instead of the discrete moments, the registration is improved and

can lead to super-resolved images of higher quality.

5.4.3 Edge-based Registration: Edge Extraction vs Harris features

In this second experiment, we consider the registration based on the extraction of step

edges. As in the previous section, we generate 20 images of a scene (Figure 5.14(a))
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(a) (b)

(c) (d)

Figure 5.13: Image super-resolution from translated images with registration based on
moments; (a) Original high resolution image (512x512pixels); (b) One of the 24 low-
resolution images (64x64 pixels) used in the super-resolution simulation; (c) Super-
resolved image obtained from the discrete moments and the Wiener filter, 512x512
pixels, PSNR = 16.8 dB; (d) Super-resolved image obtained from the continuous
moments and the Wiener filter, 512x512 pixels, PSNR = 19.6 dB.

by cropping a high resolution image at different locations. The set of images are thus

related by translations and each image is then blurred and downsampled with a quadratic

B-spline to generate 20 low-resolution images of size 64x64 pixels (Figure 5.14(b)). In

this simulation, two feature extraction methods are considered: the proposed step edge

extractor and the Harris corner detector. As previously, in order to do a fair comparison,

we do not use an iterative method and consider the Wiener filter as the restoration method

in both cases.

With Harris features, the registration error averaged over the 20 frames is ǭ = 0.44

pixels and the maximum registration error observed in the 20 images is ǭmax = 2.04 pixels.

The number of matched features varies between 13 and 21 corners. With our extracted

features, the average registration error averaged over the 20 frames is ǭ = 0.044 pixels and
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(a) (c)

(c) (d)

Figure 5.14: Image super-resolution from translated images with registration from
the extracted edges and detected corners; (a) Original high resolution image
(512x512pixels); (b) One of the 20 low-resolution images (64x64 pixels) used in the
super-resolution simulation; (c) Super-resolved image obtained from features of the
Harris corner detector, 512x512 pixels, PSNR = 14.1 dB; (d) Super-resolved image
obtained with features from the proposed edge detector, 512x512 pixels, PSNR =
15.1 dB.

the maximum registration error observed in the 20 images is ǭmax = 0.14 pixels. Although

the number of matched features with our approach is only 6 throughout the whole set of

images, the registration accuracy is improved by a factor 10. Figure 5.14(c) presents the

super-resolved image obtained with Harris features. This image has strong artefact and a

PSNR = 14.1 dB. On the other hand, the super-resolved image obtained with the proposed

registration technique shows a much better visual quality and a PSNR = 15.1 dB. The

most visible artefact on both images occurs on the borders due to boundary effects and

to the lack of available samples for interpolation. This simulation, thus, better highlights

the fact that more accurate registration leads to better super-resolution.
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Figure 5.15: Estimation of the PSF with the slanted Edge Method; (a) Image of a
slanted white square with step edges for Point Spread Function estimation (acquired
with a Nikon D70s digital camera); (b) Zoom on the target; (c) Measured Edge
Spread Function (solid line) and ideal step edge (dashed line); (d) Measured Line
Spread Function (solid line). Its support has length 8 ranging from -4 to 4. The
sampling kernel ϕ (t) can be modeled for example by either a centered B-spline of
degree 7, β7 (t) (dashed line) or a centered B-spline of degree 3 scaled by 2, β3 (t/2)
(dash-dot line). In both case, the sampling kernel has support 8.

5.5 Image Super-resolution: Real-case Scenario

5.5.1 Estimation of the Sampling Kernel

In this section, we consider the case of image super-resolution from real images using the

samples as they are acquired by a digital camera. The registration approach considered

here is based only on the continuous moments. Since the registration approach takes a

sampling point of view, we want our image samples to be modified as little as possible by

internal post-processing occurring in a digital camera after acquisition. The set of images

is thus acquired by a SLR digital camera (Nikon D70s) in RAW format with no edge

sharpening. In a first experiment, pictures are taken in a classroom. The focal length is

set at 18mm (35mm equivalent: 27mm) and other settings are: F16, 1/60s and ISO 200.

To estimate the support and the shape of the PSF, the slanted edge method is used.

The PSF is the response of an imaging system to an infinitely small point light source.
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Measuring it directly can thus be very difficult. The slanted edge method estimates the

PSF indirectly by measuring the Edge Spread Function (ESF). It requires a picture of

a slanted step edge to be taken so that the sampling rate of the step edge is increased.

By differentiating along the edge’s normal direction, the Line Spread Function (LSF) can

be obtained (the response of the camera to a single line). The LSF represents the cross-

section of the PSF in a given direction. The PSF is assumed to be circularly symmetric

and spatially invariant in the considered region, so that only one LSF is necessary to

characterize the PSF. An implementation following ISO standards for Matlab of the slanted

edge method is freely available in [14].

Results of the estimation of the PSF are presented in Figure 5.15. The acquired

image is presented in Figure 5.15(a) and the target for the PSF estimation is shown in

Figure 5.15(b). The measured ESF is the solid line in Figure 5.15(c) while the estimated

LSF is the solid line in Figure 5.15(d). From both functions, it can be observed that the

support of the PSF is approximately 8 pixels, ranging from -4 to 4. The bell shape of

the PSF is fitted with a B-spline of support 8 as well. Two different fits are presented

in Figure 5.15(d): a B-spline of degree 7, β7 (t) (dashed line), and a B-spline of degree

3 scaled by 2, β3 (t/2) (dash-dot line). Although β7 (t) seems to fit better the measured

LSF, both functions are considered.

5.5.2 Super-resolution results

Keeping the same camera settings, 40 images of a scene of interest are taken from random

positions by slightly moving the camera horizontally and vertically between each acquisi-

tion. Figure 5.16 (a) presents one of the acquired images with the scene to super-resolve

at its center. This region of interest of size 128x128 pixels is selected in each image (e.g.

Figure 5.16 (b)) and only this region is used for registration and restoration.

The sampling kernel is first modeled by a B-spline of degree 7. We register the

images using the continuous moments of the regions of interest and the fused image is

restored with the MRNSD method. The obtained super-resolved image is shown in Figure

5.16 (c). In the second case, the sampling kernel is modeled by a B-spline of degree 3 and

scale 2. Because the kernel is scaled by two, the device is oversampling by a factor two
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(a) (b)

(c) (d)

Figure 5.16: Real-case scenario of image super-resolution from 40 images acquired
with a Nikon D70s SLR camera and a lens at a focal length of 18mm; (a) Acquired
image of reference (3039x2014 pixels); the region of interest for super-resolution is
visible at the center of the image; (b) Two out of 40 regions of interest (128x128
pixels) used for super-resolution; (c) Super-resolved image of size 1024x0124 pixels
(SR factor = 8). The PSF in this case is modeled by a B-spline of order 7 (scale 1);
(d) Super-resolved image of size 1024x0124 pixels (SR factor = 8). The PSF in this
case is modeled by a B-spline of order 3 (scale 2). Both images have been restored
after 60 iterations of the MRNSD method.

with respect to our model. The sampling period is consequently reduced by a factor two

and the samples can be written as:

g [m, n] = 〈f (x, y) , ϕ (x/T − m/2, y/T − n/2)〉.

Two consecutive samples are now distant by T/2 instead of T and even and odd samples

must be treated independently so that polynomial reproduction is satisfied. We thus
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decompose the observed samples into their four polyphase components [27]:





g [2m, 2n] = 〈f (x, y) , ϕ (x/T − m, y/T − n)〉

g [2m, 2n + 1] = 〈f (x, y) , ϕ (x/T − m, y/T − n − 1/2)〉

g [2m + 1, 2n] = 〈f (x, y) , ϕ (x/T − m − 1/2, y/T − n)〉

g [2m + 1, 2n + 1] = 〈f (x, y) , ϕ (x/T − m − 1/2, y/T − n − 1/2)〉.

For each region of size 128x128 pixels (Figure 5.16(b)), four sub-images of size 64x64

pixels are considered separately, each one corresponding to a polyphase component. The

continuous moments of each polyphase component are computed and used for registration

of the polyphase component of each view. For each image pairs, four estimations of

the registration are obtained and then averaged. The super-resolved image achieved after

registration from the polyphase components is shown in Figure 5.16 (d). As in the previous

case, we restored the image using 60 iterations of the MRNSD algorithm. The super-

resolved image presents a good level of detail and is comparable to the image obtained

with B-spline of level 7. Moreover, this image looks less saturated than the previous one.

Another experiment is presented in Figure 5.17. Sixty pictures of the moon are

taken with a digital SLR camera and a lens with a focal length of 38mm (35mm equivalent:

57mm) and settings: F16, 1/60s, ISO 200. The PSF in this case is not estimated as

previously and is empirically chosen to be a cubic B-spline at scale 1. This choice was

decided in this case empirically by selecting the PSF that lead to the visually most pleasing

super-resolved image. The final super-resolved image is obtained after 60 iterations of the

MRNSD restoration method. Figure 5.17(a) shows the moon as acquired by the camera.

Figure 5.17(b) presents the obtained super-resolved image where details of the moon can

be observed.
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(a)

(b)

Figure 5.17: Real super-resolution of the moon from 60 images acquired with a Nikon
D70s SLR camera and a lens (18-70mm, F3.5-4.5) set at a focal length of 38mm
(35mmm equiv.: 57mm). (a) The moon as acquired by the camera (60x60 px); (b)
Super-resolved image of the moon (600x600 px) with MRNSD restoration method.
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Chapter 6

Conclusions

6.1 Thesis Summary

W
E have presented in this thesis new feature extraction methods for the registra-

tion of multiview images. The proposed techniques allow the exact extraction

of the considered features and are very efficient for image features that are acquired at

low resolution. The problem of feature extraction was formulated as a multichannel sam-

pling problem for which results from the sampling theory for signals with finite rate of

innovation were considered. The main requirement necessary to use this theory is that

the characteristics of the acquisition device, like the sampling kernel, must be known in

advance or through a preliminary calibration procedure. The sampling kernel assumed

in the major part of this thesis are B-spline functions which exhibit appealing properties

(compact support, reproduction of polynomial, dual basis) as well as being suitable for

modeling real camera devices.

The new sampling schemes for FRI signals have been first extended to a multi-

channel acquisition setup and, depending on the assumed sampling kernel (polynomial-

or exponential-reproducing one), their performances in this new framework have been

analyzed. It appears that kernels reproducing polynomials are not suitable for a truly

distributed and symmetric multichannel setup and requires an asymmetric setup. Exper-

iments of distributed acquisition of bilevel polygons have been carried out and, although

they are somewhat artificial and mostly for illustration purposes, some applications can be
149
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found such as in vision-based localization used in robotics. As opposed to kernels repro-

ducing polynomials, it is possible to design a truly symmetric and distributed acquisition

system using exponential reproducing kernels. We then proposed an application of the ex-

ponential case to time-interleaved analog-to-digital converters for which unwanted delays

introduced by the electronic components can be calculated precisely from the samples in

order to improve the accuracy.

We then considered the case of feature extraction for image registration. Exact

extraction methods have been proposed for two different features: image moments and

step edges. The geometric moments are global features and do not explicitly require any

feature correspondence between images. The registration method used in this thesis and

based on various types of moments (central and complex moments) allows the retrieval of

up to an affine transformation occurring between two different views. This assumes that

the observed scene is flat or that the perspective effect is weak so that the homography

can be approximated by an affine transformation and there is no known method for more

complex transformations. Extraction of step edges, on the contrary, provides local features

for registration from the contours, intersection and corners information. This approach

is more difficult to implement and, as with any local technique, it requires the correct

correspondence of features for registration. The corresponding pairs of corners allow the

estimation of more complicated transformations like homographies. The performance of

the proposed feature extraction methods is presented and simulations of image registra-

tion based on these features demonstrated their superiority when compared to similar

registration methods using standard features.

In a traditional framework, sampling theory is concerned with the problem of re-

constructing a signal from its samples. However perfect reconstruction schemes are rarely

available for highly complex signals like a real-world scene: it is not possible to acquire a

low-resolution image and have it displayed on a high resolution screen without inevitably

introducing undesirable visual artefact. One solution to overcome this problem is provided

by the technique of super-resolution. Developing new accurate registration techniques

that can improve image super-resolution algorithms was the initial and main motivation

throughout this research. We thus implemented an image super-resolution algorithm that
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incorporates the proposed feature extraction techniques in the registration part. With

the local and the global features, the super-resolved images obtained from artificial data

showed an improvement of the quality, both visually and in terms of PSNR, when com-

pared to the super-resolved images obtained with the same implementation but using

standard feature extraction methods. These results emphasize the need for very precise

registration methods for super-resolution.

Given these favorable results, we then ran real experiments of image super-

resolution from images acquired by a real camera. To satisfy our model, simple calibration

measurements of intrinsic parameters of the camera, like the point-spread function, were

carried out and the notion of polyphase components of an image was used for registration.

The obtained super-resolved images from real data set show a real improvement in their

resolving power compared to the acquired images. Besides, this also underlines the fact

that the proposed image acquisition framework is appropriate for modeling existing cam-

eras. Finally, the last super-resolution experiment was conducted without prior calibration

and the settings were chosen in order to obtain the best super-resolved image possible.

Along the same line as the sampling theory for FRI signals, the work presented in

this thesis on new feature extraction techniques takes into account the inherent defects and

imperfections of an acquisition device like a cameras and turns these shortcomings to an

advantage. Similarly to [124] where aliasing was exploited to provide more information,

it is here the knowledge of the sampling kernel that allows to develop exact methods

for extracting features almost irrespectively to original resolution of the acquired signal.

Although the knowledge of the sampling kernel can be seen as another constraint in the

design of a device, the potential benefits that may be obtained from it can be far greater

than the inconvenience caused.

6.2 Future Research

The feature extraction techniques proposed in this work lead to rather different registration

procedures. The main limitations of using the moments as image features are linked to the

impossibility of dealing with occlusion and disappearance of objects in the scene, and with
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non-uniform backgrounds. In these cases, accurate segmentation techniques like level sets

methods [92] should be used to separate the objects of interest from the still background

in order to register different images with moments. It would be interesting to apply

the approach of continuous moments to another popular application for moments that is

pattern recognition. One of the main advantage of the proposed method with moments

is that it works very well with very low-resolution images which thus allows to operate

with very compact representations of the patterns of interest. The step edges were used as

features because it was possible to derive a parametric model (FRI signal). In addition to

edges, other types of feature can be envisaged and modeled as FRI signals (lines, circles. . . )

and used in man-made scenes like urban areas or in more specific applications (e.g. bar

codes reader).

Since it was not the main focus on this thesis, the restoration techniques employed

in the super-resolution experiments are fairly standard ones (with the exception of the

MRNSD algorithm). More advanced restoration/regularization techniques based, for ex-

ample, on the minimization of the ℓ1-norm of the solution ( [32]) would probably lead to

super-resolved images of better quality. In particular, the exact positions of the step edges

in the images extracted for registration were not taken into account although this could

be useful information for restoration. Various algorithms are likely to give even sharper

images like for example Total Variation methods [19] [30]. Besides, the interpolation step

does not consider the fact that the sampling kernel is known. Different interpolation

schemes can be developed so that the blurred image contains less errors and is ultimately

better restored.

A thorough analysis of the impact of noise on the proposed algorithms similarly to

the work of Blu et al [10]. In particular, deriving performance bounds in the case of the

edge features, such as the Cramér-Rao bounds, would provide much insights as to how the

noise affects the feature extraction schemes and which signal enhancement methods (e.g.

Cadzow [15]) are most suitable.

In addition to standard digital cameras, it would be of interest to apply these

techniques to different acquisition devices with various sampling kernels like microscopes,

satellite imaging, or low quality cameras found on webcam or mobile phones. The B-splines
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offer a flexible framework to model a variety of sampling kernels as well as reproducing

polynomials. Although less studied, the E-splines can offer a similar framework and lead

to new sampling results. Since the registration takes into account the parameters of the

acquisition device, auto-calibration techniques for cameras can be developed through a

possibly recursive process by choosing the parameters that lead to the best registration of

multiview images.
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Appendix A

Proof of Equation (4.16): Single

Step Edge Case

Let h (x, y) be the single step edge function with parameters (α, θ, γ) as in Equation

(4.14) and let h [m, n] = 〈h (x, y) , ϕ (x/T − m, y/T − n)〉 be its samples. The sampling

kernel ϕ (x, y) can reproduce polynomials and is variable separable so that ϕ (x, y) =

ϕ1 (x)⊗ ϕ2 (y). We denote by d [m, n] = h [m + 1, n]− h [m, n] the differentiated samples

of h (x, y) and by c
(p)
m the coefficients used for polynomial reproduction with the modified

kernel ϕ1 (x/T − m) ∗ β0 (x/T − m). We now prove the following result:

Proposition 3. The linear combination of the differentiated samples d [m, n] with the

coefficients c
(p)
m :

τp,n =
∑

m

c(p)
m d [m, n] ,

is equal to:

τp,n = −α

p∑

i=0

(
p

i

)
mi

(tan θ)i

(
γ +

n

tan θ

)p−i

where mi =
∫ ∞
∞ tiϕ2 (t) dt are the moments of ϕ2 (y).

Proof. We first recall the following relation between the moments mp of function f (t) and

the moments m′
p of the translated function f (t − ∆t):

m′
p =

∫ ∞

−∞
f (t − ∆t) tpdt =

p∑

k=0

(
p

k

)
∆tkmp−k (A.1)
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Let Ω = [−L, L] be the support of the sampling kernel ϕ2 (t). For simplicity, we assume

T = 1:

τp,n =
∑

m∈Sn

c(p)
m d [m, n]

= −α sin θ
∑

m∈Sn

c(p)
m

〈
δ
(

~d · ~N
)

, ϕ (x − m, y − n) ∗ β0 (x − m)
〉

= −α sin θ

〈
δ
(

~d · ~N
)

,

(
∑

m∈Sn

c(p)
m ϕ1 (x − m) ∗ β0 (x − m)

)
⊗ ϕ2 (y − n)

〉

= −α sin θ
〈
δ
(

~d · ~N
)

, xp ⊗ ϕ2 (y − n)
〉

= −α sin θ

∫ n+L

n−L
ϕ2 (y − n)

∫ ∞

−∞
δ (−x sin θ + y cos θ + γ sin θ)xpdxdy

= −α sin θ

∫ n+L

n−L
ϕ2 (y − n)

∫ ∞

−∞
δ (−t + y cos θ + γ sin θ)

(
t

sin θ

)p dt

sin θ
dy

= −α

∫ n+L

n−L
ϕ2 (y − n)

(
y cos θ + γ sin θ

sin θ

)p

dy

= −α

∫ n+L

n−L
ϕ2 (y − n)

( y

tan θ
+ γ

)p
dy

= −α

∫ L

−L
ϕ2 (t)

(
t + n

tan θ
+ γ

)p

dt

=
−α

(tan θ)p

∫ L

−L
ϕ2 (t) (t + n + γ tan θ)p dt, then applying Equation (A.1),

=
−α

(tan θ)p

p∑

i=0

(
p

i

)
mp−i (n + γ tan θ)i , where mi =

∫ ∞

−∞
tiϕ2 (t) dt,

= −α

p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i

(
γ +

n

tan θ

)i
.

For information, we give below the expression of the even order moments for the

B-splines of degree 0 to 3 (odd order moments are null due to the symmetry of B-splines):

ϕ2 (t) = β0 (t) =⇒ m2j =
1

22j (2j + 1)

ϕ2 (t) = β1 (t) =⇒ m2j =
2

(2j + 2) (2j + 1)

ϕ2 (t) = β2 (t) =⇒ m2j =
32j+3 − 3

22j+2 (2j + 3) (2j + 2) (2j + 1)

ϕ2 (t) = β3 (t) =⇒ m2j =
22j+5 − 8

(2j + 4) (2j + 3) (2j + 2) (2j + 1)
.
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Proof of Equation (4.18): K

Parallel Step Edges Case

Let h (x, y) be the function representing K parallel step edges with parameters {αk, γk, θ},

k = 1, . . . , K, as in Equation (4.20) and let h [m, n] = 〈h (x, y) , ϕ (x/T − m, y/T − n)〉

be its samples. The sampling kernel ϕ (x, y) can reproduce polynomials and is variable

separable so that ϕ (x, y) = ϕ1 (x) ⊗ ϕ2 (y). We denote by d [m, n] = h [m + 1, n] −

h [m, n] the differentiated samples of h (x, y) and by c
(p)
m the coefficients used for polynomial

reproduction with the modified kernel ϕ1 (x/T − m) ∗ β0 (x/T − m). We now prove the

following result:

Proposition 4. By defining τp,n as the linear combination of the differentiated samples

with the coefficients c
(p)
m :

τp,n =
∑

m

c(p)
m d [m, n] ,

the angle θ parameter of the K parallel step edges can be exactly retrieved as:

tan θ =
τ0,n

τ1,n+1 − τ1,n

Proof. From Appendix A, it is straightforward to show that in the case of K parallel step
157
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edges, we have:

τp,n ≡
∑

m∈Sn

c(p)
m d [m, n]

=
K∑

k=1

−αk sin θ
∑

m∈Sn

c(p)
m

〈
δ
(

~dk · ~N
)

, ϕ (x − m, y − n) ∗ β0 (x − m)
〉

=
K∑

k=1

−αk

p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i

(
γk +

n

tan θ

)i

=

p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i

(
K∑

k=1

−αk (uk,n)i

)
, (B.1)

where uk,n = γk + n
tan θ . We then have:

τ1,n+1 − τ1,n =

(
m1

tan θ

K∑

k=1

−αk + m0

K∑

k=1

−αkuk,n+1

)
−

(
m1

tan θ

K∑

k=1

−αk + m0

K∑

k=1

−αkuk,n

)

= m0

K∑

k=1

−αk (uk,n+1 − uk,n)

= m0

K∑

k=1

−αk

tan θ

=
τ0,n

tan θ
,

which finally leads to the desired result.
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Proof of Equation (4.22): K

Parallel Step Edges Case

Let h (x, y) be the function representing K parallel step edges with parameters {αk, γk, θ},

k = 1, . . . , K, as in Equation (4.20) and let h [m, n] = 〈h (x, y) , ϕ (x/T − m, y/T − n)〉

be its samples. The sampling kernel ϕ (x, y) can reproduce polynomials and is variable

separable so that ϕ (x, y) = ϕ1 (x) ⊗ ϕ2 (y). We denote by d [m, n] = h [m + 1, n] −

h [m, n] the differentiated samples of h (x, y) and by c
(p)
m the coefficients used for polynomial

reproduction with the modified kernel ϕ1 (x/T − m) ∗ β0 (x/T − m). We now prove the

following result:

Proposition 5. Let the quantity τ̂p,n be recursively defined as:

τ̂p,n =





τ0,n, p = 0,

τp,n − ∑p−1
j=0

(
p
j

) mp−j

m0(tan θ)p−j τ̂j,n. p > 0,

where τp,n is defined in Equation (B.1), then τ̂p,n can be expressed as a powersum series

as:

τ̂p,n =
K∑

k=0

λk (uk,n)p ,

with λk = −m0αk and uk,n = γk + n
tan θ .

159



160 APPENDIX C

Proof. First, the case for p = 0 is straightforward since by definition, we have:

τ̂0,n = τ0,n = m0

K∑

k=0

−αk =
K∑

k=0

λk

For p > 0, we have:

τ̂p,n = τp,n −
p−1∑

j=0

(
p

j

)
mp−j

m0 (tan θ)p−j
τ̂j,n.

Moving the summation term to the left side of the expression gives:

τ̂p,n +

p−1∑

j=0

(
p

j

)
mp−j

m0 (tan θ)p−j
τ̂j,n = τp,n.

After assimilating τ̂p,n in the left summation and recalling the definition of τp,n in Equation

(B.1), we obtain:

p∑

j=0

(
p

j

)
mp−j

m0 (tan θ)p−j
τ̂j,n =

p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i

(
K∑

k=1

−αk (uk,n)i

)
.

Then by identifying each term of the summation on each side of the expression above, we

have:
1

m0
τ̂i,n =

K∑

k=1

−αk (uk,n)i .

We can then conclude with the desired result:

τ̂i,n =
K∑

k=1

−m0αk (uk,n)i

=
K∑

k=1

λk (uk,n)i



Appendix D

Proof of Equations (4.18) and

(4.22) in the Linear Edge Case

Let h (x, y) be the function representing a linear edge with parameters {α, λ, γ, θ} (see

Figure 4.5):

h (x, y) = H
(〈

~d, ~N
〉)

[λ (−x sin θ + y cos θ) + α] . (D.1)

The function H (t) is the unit step function and:

• α is the amplitude of the plane at the origin,

• λ is the slope of the plane,

• γ is the offset of the straight edge,

• θ is the angle of the straight edge.

The first and second derivative of h (x, y) are respectively (λ 6= 0):

dh (x, y)

dx
= − sin θδ

(〈
~d, ~N

〉)
[λ (−x sin θ + y cos θ) + α] − λ sin θH

(〈
~d, ~N

〉)
,

d2h (x, y)

dx2
= sin2 θδ(1)

(〈
~d, ~N

〉)
[λ (−x sin θ + y cos θ) + α] + 2λ sin2 θδ

(〈
~d, ~N

〉)
,

= λ sin2 θ
[
δ(1)

(〈
~d, ~N

〉) (
(−x sin θ + y cos θ) +

α

λ

)
+ 2δ

(〈
~d, ~N

〉)]
,

(D.2)
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where δ(1) (t) is the differentiated Dirac function. Similarly to the step edge case, the

function h (x, y) is sampled with a polynomial reproducing kernel ϕ (x, y) = ϕ1 (x)⊗ϕ2 (y)

so that we observe the following samples:

h [m, n] = 〈h (x, y) , ϕ (x/T − m, y/T − n)〉 (D.3)

We consider the second order differentiation of the samples obtained by filtering and giving

the following differentiated samples d [m, n]:

d [m, n] = h [m + 2, n] − 2h [m + 2, n] + h [m, n] (D.4)

Using the result of [27], the differentiated samples are equal to:

d [m, n] =

〈
d2h (x, y)

dx2
, ϕ1 ∗ β0 ∗ β0 (x − m) ⊗ ϕ2 (y − n)

〉
(D.5)

Let c
(p)
m be the coefficients used for polynomial reproduction of degree p with the modified

kernel ϕ1β0 ∗∗β0 (x/T − m) and let τp,n be the linear combination of these coefficients and

the differentiated samples. We therefore have:

τp,n =
∑

m

c(p)
m d [m, n]

=
∑

m

c(p)
m

〈
d2h (x, y)

dx2
, ϕ1 ∗ β0 ∗ β0 (x − m) ⊗ ϕ2 (y − n)

〉

=

〈
d2h (x, y)

dx2
, xp ⊗ ϕ2 (y − n)

〉
.

Assuming that ϕ2 has a compact support Ω = [−L, L], then:

τp,n = λ sin2 θ

∫ n+L

n−L
ϕ2 (y − n)

∫ ∞

−∞

[
δ(1)

(〈
~d, ~N

〉) (
(−x sin θ + y cos θ) +

α

λ

)
+

2δ
(〈

~d, ~N
〉) ]

xpdxdy,

= λ sin2 θ

∫ n+L

n−L
ϕ2 (y − n)

∫ ∞

−∞

[
δ(1) (−x sin θ + y cos θ + γ sin θ) ×

(
(−x sin θ + y cos θ) +

α

λ

)
+ 2δ (−x sin θ + y cos θ + γ sin θ)

]
xpdxdy,
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Let t = x sin θ, we have:

τp,n = λ sin2 θ

∫ n+L

n−L
ϕ2 (y − n)

∫ ∞

−∞

[
δ(1) (−t + y cos θ + γ sin θ) ×

(
(−t + y cos θ) +

α

λ

)
+ 2δ (−t + y cos θ + γ sin θ)

] (
t

sin θ

)p dt

sin θ
dy,

Now, since
∫ ∞
−∞ f (t) δ(r) (t − t0) dt = (−1)rf (r) (t0):

τp,n = λ sin θ

∫ n+L

n−L
ϕ2 (y − n)

[
(−1)

(
−

(
t

sin θ

)p

+ p
(
−t + y cos θ +

α

λ

) (
t

sin θ

)p−1
)

+

2

(
t

sin θ

)p
]

t=y cos θ+γ sin θ

dy

= λ sin θ

∫ n+L

n−L
ϕ2 (y − n)

[
3

(
t

sin θ

)p

− p
(
−t + y cos θ +

α

λ

)
×

(
t

sin θ

)p−1
]

t=y cos θ+γ sin θ

dy

= λ sin θ

∫ n+L

n−L
ϕ2 (y − n)

[
3

(
γ +

n

tan θ

)p
− p

(α

λ
− γ sin θ

) (
γ +

n

tan θ

)p−1
]
dy.

Introducing the notation un = γ + n
tan θ yields:

τp,n = 3λ sin θ

∫ n+L

n−L
ϕ2 (y − n) (un)p dy −

pλ sin θ
(α

λ
− γ sin θ

) ∫ n+L

n−L
ϕ2 (y − n) (un)p−1 dy.

Using the results from Appendix A, we finally obtain:

τp,n = 3λ sin θ

p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i
(un)i −

pλ sin θ
(α

λ
− γ sin θ

) p−1∑

i=0

(
p − 1

i

)
mp−1−i

(tan θ)p−1−i
(un)i ,
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where mi are the moments of order i of ϕ2. Let A and B be defined as:

A = 3λ sin θ (D.6)

B = −λ sin θ
(α

λ
− γ sin θ

)
, (D.7)

so that:

τp,n = A

p∑

i=0

(
p

i

)
mp−i

(tan θ)p−i
(un)i + p · B

p−1∑

i=0

(
p − 1

i

)
mp−1−i

(tan θ)p−1−i
(un)i . (D.8)

Proposition 6. The angle θ and slope λ can be retrieved using τ0,n, τ1,n and τ1,n+1 as:

tan θ =
τ0,n

τ1,n+1 − τ1,n
, (D.9)

and

λ =
τ0,n

3 sin θm0
. (D.10)

Proof. We have:

τ0,n = Am0 (D.11)

τ1,n = A
[
m0 (un) +

m1

tan θ

]
− Bm0

τ1,n+1 = A
[
m0 (un+1) +

m1

tan θ

]
− Bm0,

and:

τ1,n+1 − τ1,n = Am0
1

tan θ
=

τ0,n

tan θ
.

Therefore:

tan θ =
τ0,n

τ1,n+1 − τ1,n
.

Using Equations (D.11) and (D.6), we also directly conclude that:

λ =
τ0,n

3 sin θm0
.
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Proposition 7. Let the quantity τ̂p,n be recursively defined as:

τ̂p,n =





τ0,n, p = 0,

τp,n − ∑p−1
j=0

(
p
j

) mp−j

m0(tan θ)p−j τ̂j,n. p > 0,

then τ̂p,n can be expressed as:

τ̂p,n = Am0 (un)p + pBm0 (un)p−1 . (D.12)

Proof. For p = 0, we directly have:τ̂0,n = τ0,n = Am0. For p > 0, we have:

τ̂p,n = τp,n −
p−1∑

j=0

(
p

j

)
mp−j

m0 (tan θ)p−j
τ̂j,n,

Therefore:

τ̂p,n +

p−1∑

k=0

(
p

k

)
mp−k

m0 (tan θ)p−k
τ̂k,n = τp,n,

p∑

k=0

(
p

k

)
mp−k

m0 (tan θ)p−k
τ̂k,n = A

p∑

k=0

(
p

k

)
mp−k

(tan θ)p−k
(un)k +

p · B
p−1∑

k=0

(
p − 1

k

)
mp−1−k

(tan θ)p−1−k
(un)k .

p∑

k=0

(
p

k

)
mp−k

m0 (tan θ)p−k
τ̂k,n = A

p∑

k=0

(
p

k

)
mp−k

(tan θ)p−k
(un)k +

p · B
p∑

k=1

(
p − 1

k − 1

)
mp−k

(tan θ)p−k
(un)k−1 .

Now, since p
(
p−1
k−1

)
= k

(
p
k

)
, we have:

p∑

k=0

(
p

k

)
mp−k

m0 (tan θ)p−k
τ̂k,n = A

p∑

k=0

(
p

k

)
mp−k

(tan θ)p−k
(un)k +

p∑

k=1

k

(
p

k

)
mp−k

(tan θ)p−k
B (un)k−1 .

p∑

k=0

(
p

k

)
mp−k

m0 (tan θ)p−k
τ̂k,n =

p∑

k=0

(
p

k

)
mp−k

(tan θ)p−k

[
A (un)k + kB (un)k−1

]
.

Then by identifying each term of the summation on each side of the expression above, we
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finally obtain:

1

m0
τ̂k,n = A (un)k + kB (un)k−1

τ̂k,n = Am0 (un)k + kBm0 (un)k−1 .

Provided that enough consecutive values of τ̂p,n, p = i − 1, i, i + 1 . . . are known,

the values of un, A and B can be retrieved using a generalized version of the annihilating

filter method. Once un is known, the parameter γ can be retrieved as:

γ = un − n

tan θ
. (D.13)

Then, using the value of B, the remaining parameter α can be also retrieved as:

α = λγ sin θ − B

sin θ
. (D.14)
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[73] P. Löwenborg, H. Johansson, and L. Wanhammar. Analysis of gain and time-skew

errors in filter bank based a/d converters. IEEE Midwest Symposium on Circuits

and Systems, 1:263–266, 2001.

[74] L. Lucchese and G. M. Cortelazzo. A noise-robust frequency domain technique

for estimating planar roto-translations. IEEE Transaction on Signal Processing,

48(6):1769–1786, June 2000.



174 Bibliography

[75] E. P. Lyvers, O. R. Mitchell, M. L. Akey, and A. P. Reeves. Subpixel measurements

using a moment-based edge operator. IEEE Trans. Pattern Analysis and Machine

Intelligence, 11(12):1293–1309, December 1989.
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